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Abstract—The paper presents the application of the hybrid global
optimization algorithm, introduced in the companion paper Part I,
to reflector antenna power pattern synthesis and reflector antenna
surface diagnosis from only amplitude data. The synthesis algorithm
determines both the reflector surface and the excitation coefficients of
the array of primary feeds to meet the designing specification on the
far-field pattern expressed by means of two couple of masks bounding
the squared amplitude of both the copolar and crosspolar components.
The diagnosis technique allows to find the reflector surface profile
from the measurement of the far field power pattern by a proper
formulation of the corresponding inverse problem. In both cases we
take advantage of the exploring capability of an evolutionary algorithm
and of the solution refinement capability of an efficient, quasi-Newton
based, local search procedure. The numerical analysis shows that
Global Optimization can outperform the standard local approach, by
significantly improving the performance of the synthesized antenna in
the first case and by enhancing the reliability of the diagnosis procedure
in the second one.

1. INTRODUCTION

The solution of the power pattern antenna synthesis problem and of the
antenna diagnosis from only amplitude field data requires the global
optimization of a non linear multimodal objective functional.

In many instances, such optimization problems are afforded by
exploiting a local optimization technique.
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However, as explained in the Part I of this paper, this approach
suffers from the trapping problem due to the secondary minima of
the objective functional leading the searching algorithm into false
solutions.

Accordingly, new strategies able to overcome or significantly
reduce the occurrence of false solutions have been introduced in Part
I and are here exploited.

In particular, the aim of the paper is to present the applications
of a global optimization algorithm to reflector antennas power pattern
synthesis and reflector antennas surface diagnosis from amplitude
only far field data. These are two problems of real interest in the
electromagnetic community as long as high performances are required
in modern telecommunication and radar applications.

As long as antenna synthesis is considered, it must be noted that
sophisticated synthesis procedures are mandatory to effectively exploit,
at the designing stage, all the degrees of freedom in the radiating
structure and to meet at best the user’s needs. In recent years
the problem has been stated in a general and flexible mathematical
framework leading to an effective synthesis technique for scanning
and/or reconfigurable hybrid antennas also with near-field constraints
[1–18].

However, the use of local optimization procedures, can miss
the best attainable solution wasting the potentiality of the radiating
system and of the synthesis approach [19–26].

Once the antenna has been designed and carried out, reliable
and accurate diagnosis procedures are required to monitor the system
and collect those information needed to restore the optimum working
conditions. As a matter of fact, the performances of reflector antennas
are strongly degraded by the distortions of the primary reflecting
surface, misalignments of the antenna feed as well as of the subreflector
[27, 28].

Accordingly, antenna diagnosis techniques, possibly simple and
inexpensive, are required. Convenient approaches retrieve the state
parameters of the radiating system useful in the restoring process
by measuring the field radiated by the antenna [28–50]. To
avoid the difficulties related to the phase measurement, diagnosis
techniques exploiting only amplitude field data have been developed
[50, 36, 38, 39, 42, 44, 45, 49]. Again, since these approaches are based
on the optimization of a multiextremal functional, global optimizers
are required in order to attain a reliable estimation of the antenna
status [51–54, 43].

In this paper we firstly present the mathematical framework of
the antenna synthesis and diagnosis problem, then the optimization
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algorithm is applied and the results of the numerical analysis are
discussed by comparing the obtained results with those achievable by
using a local optimization approach.

2. PROBLEM FORMULATION

In the Part I of the paper, we showed that the optimization of
multiextremal functions by means of standard techniques of local
nature can lead to a totally useless estimation of the searched solution.

We also noted that the rapid evolution of Global Optimization,
both from a theoretical and an algorithmic point of view, together
with the impressive growing of the computational resources nowadays
available, provided effective tools to look for global optima.

Moreover, we also stressed that the effective performances of
Global Optimization techniques in practical applications can be
evaluated only if these algorithms are tested against real world
problems.

In this Part II of the paper, we present two different applications
of a Hybrid Evolutionary Algorithm to relevant topics in applied
electromagnetics.

The first example considers the synthesis of hybrid reflector
antennas, i.e., the synthesis of contoured-beam reflector antennas fed
by an array of primary sources.

The second example concerns the diagnosis of large reflector
antennas from far-field, only amplitude, data.

In both cases the numerical analysis shows that Global
Optimization can outperform the standard local approach, by
significantly improving the performance of the synthesized antenna in
the first case and by enhancing the reliability of the diagnosis procedure
in the second one.

For the sake of convenience, to address the two problems,
a common mathematical framework, naturally leading to an
optimization problem, will be exploited [1].

In fact, in both cases, we need to find a set of parameters defining
the working state of the radiating system:

a) the design parameters, in the synthesis case, to be determined to
meet the design specifications;

b) the diagnosis parameters, in the diagnosis case, to be determined
to match the measured data.

Accordingly, we can define two functional spaces, X and Y say. The
space X represents the set wherein the unknown state parameters, say
X, defining the properties of the radiating system lie. The space Y
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represents the set to which the system output, say Y , belongs, i.e.,
the radiated pattern or the observed data in the synthesis or diagnosis
case, respectively.

Moreover, it is convenient to model the antenna system by
introducing the operator A

A I X ∈ X → Y ∈ Y (1)

However, in any practical problem, physical constraints as well as
design specifications usually require that X belongs to a subset, say
Xc, of X .

Analogously, design specifications, in the synthesis case, or
measurement errors and noise, in the diagnosis case, require that Y
belongs to a subset, say Yc, of Y, rarely reducing to a singleton. And
so, in both cases the goal of the procedure is to find a point in the
intersection set:

A(Xc) ∩ Yc (2)
where A(Xc) is the image of Xc through the operator A.

Provided that Yc is a closed set, this is equivalent to find a point
X̂ ∈ Xc such that:

d2(A(X̂),Yc) = inf
Y ∈ Yc

‖A(X̂) − Y ‖2 = 0 (3)

where ‖ · ‖ is a properly chosen norm equipping the space Y and
d2(T ,Yc) = inf

Y ∈ Yc
‖T − Y ‖2

L2(Ω) denotes the squared distance of the

element T ∈ Yc from Yc.
Accordingly, denoting with PYc the projector onto the set Yc, i.e.,

the operator that maps each element of Y onto the nearest element of
Yc, X̂ can be obtained by solving the problem arg min

Xc

F (X) with

F (X) = ‖A(X) − PYcA(X)‖2 (4)

It must be noted that, A(Xc)∩Yc can be a void set. F.i., this can be
due to the approximations generally made when modeling the antenna
system or, in the synthesis problem, to too tight design requirements.
In this case, the global minimization of the functional (4) provides a
quasi-solution to the inverse problem for the operator A [55].

This general framework will be now particularized to the synthesis
and diagnosis problems.

2.1. Synthesis of Reflector Antennas

For the sake of simplicity, in the following we will consider a
symmetrically fed reflector antenna with a fixed circular aperture, say
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Figure 1. Geometry of the problem.

Σ, with diameter d, even if the extension of the approach to off-set
antennas is straightforward.

By referring to the geometry depicted in Fig. 1, let us introduce a
reference system (O, x, y, z) with the origin in the aperture plane z = 0
and consider a reflecting surface represented by a continuous function
z = Z(x, y) and a primary feed made by a planar array of a given
number of elements aligned on a regular x-y grid and located on the
plane z = z0.

Assuming and dropping a time dependence exp(jωt), the far-field
pattern, say E, can be expressed as:

E(u, v) = −jr
exp(jβr)

λ
E′(u, v) (5)

where E′(u, v) is the radiated far-field, (r, θ, ϕ) are the spherical
coordinates, u = sin(θ) cos(ϕ), v = sin(θ) sin(ϕ), λ the wavelength
and β = 2π

λ .
The goal of the synthesis procedure is to evaluate the reflector

shape, i.e., Z(x, y), and the vector c of the excitation coefficients of
the array elements that provide a far-field pattern meeting the design
specifications. In the following, these specifications, involving a given
portion, say Ω, of the (u, v) plane, will be expressed by means of
two masks bounding the squared amplitude of the far-field co-polar
and cross-polar components. Such components are denoted with Eco

and Ecr, respectively. Each mask is defined by the upper and lower
bound functions denoted by Mu

co and M l
co, respectively, for the copolar

component and Mu
cr and M l

cr, for the crosspolar one.
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Let us consider now the functional spaces X and Y, the set Yc and
the operators A and PYc involved in Eq. (4).

Since the output of the antenna systems is given by the couple of
the squared amplitudes of the co-polar and cross-polar components of
the far-field, we set:

Y = {(T1, T2) ∈ L2(Ω) × L2(Ω) I T1(u, v) ≥ 0, T2(u, v) ≥ 0 (u, v) ∈ Ω}
(6)

where L2(Ω) is the Hilbert space of square integrable functions over Ω
and

Yc =




(Tco, Tcr) ∈ Y I

M l
co(u, v) ≤ Tco(u, v) ≤ Mu

co(u, v) (u, v) ∈ Ω
M l

cr(u, v) ≤ Tcr(u, v) ≤ Mu
cr(u, v) (u, v) ∈ Ω

Tco(u, v) = 0, Tcr(u, v) = 0 elsewhere




(7)

It must be noted that the values of the elements of Yc outside Ω
have been set equal to zero in order to get beneficial effects on the
well-position of the problem.

Concerning the definition of the operator A, it is noted that, since
Global Optimization is a computational expensive task, particularly
when several tens of real variables are involved, the demand for
analytical tools avoiding time consuming approaches must be taken
into account.

The synthesis method outlined in [2] and based on the aperture-
approach seems to fit our needs and will be briefly recalled later on.

First, a convenient factorization of the aperture field Ea is
considered, namely:

Ea(ξ, η) = PΣ(ξ, η) exp
(
−j2π

(
L̂(ξ, η) + S(ξ, η)

)) n∑
l

kckV k(ξ, η)

(8)
where PΣ is the support function of the reflector aperture Σ, L is the
optical path, normalized to λ, from the center of the feeding array to
the reflector aperture along the congruence of the incident and reflected
rays, L̂ is a normalized reference path, S(ξ, η) = L(ξ, η)− L̂(ξ, η), and
V k is the residual contribution to Ea due to the unitary excited k-th
element of the feed array.

Then, to allow an effective numerical implementation and reduce
the number of unknowns, a modal representation of S is adopted:

S = s · U =
p∑
l

isiUi (9)
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where {Ui}i∈N is a complete sequence in L2(Σ), N is the set of natural
numbers and p is the number of the expansion terms.

As a consequence, the antenna input-output relationship involves
the couples (c, s) and (|Eco|2, |Ecr|2) and can be expressed by means
of the operator A such that:

A I(s, c, V ) →
(
|Eco|2, |Ecr|2

)
(10)

where V = (V 1, . . . , V p).
The operator A can be conveniently evaluated by exploiting the

computationally inexpensive Fourier transform relationship.
However, it must be stressed that eq. (10) uses an improper

notation. In fact, S and V , hence s and V , are not independent on
each other, since both depend on the reflector geometry and, thus,
cannot be arbitrarily assigned. However, the dependence of V on the
reflector shape Z is weaker than the dependence of S. And so, the
design process suggested in [2] is performed by the following iterative
scheme:

a) a reference reflector is chosen and the corresponding value of L̂ is
computed;

b) the value of V corresponding to the reference reflector, say V̂ , is
evaluated;

c) a couple (c, s) is determined by inverting the operator A in eq. (10),
assuming V fixed and equal to V̂ ;

d) the reflector shape Z is obtained by inverse GO from the value of
s obtained at point c).

It is noted that, to account for a possible relevant difference between
V and V̂ during the iterations needed to perform step c), the reference
reflector, and thus V̂ , can be periodically updated. In this case the
updated values of L̂ and V̂ are the one corresponding to the reflector
shape synthesized at the previous iteration.

It must noted that, to apply the GO laws at point d), the optical
path L must satisfy the eikonal equation. Accordingly, in principle,
we must face a constrained minimization of F by requiring that S ∈ S
with

S =
{
S ∈ C l(Σ)|∇ξη(L̂ + S)I ≤ 1

}
(11)

∇ξη denoting the transverse gradient operator in the normalized
variables (ξ, η).

A further constraint is considered in [2] to account for spillover
losses.
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Following [2], to face the constrained minimization, the penalty
method is applied. Accordingly, the inverse problem for the operator
A at point c) can be solved by exploiting the general approach described
at the beginning of the Section, by setting X = (c, s), X = Cn0 × Cp

and minimizing the functional†:

Fα1,α2(s, c)=‖A(s, c)−PYcA(s, c)‖2
L2(Ω,W )×L2(Ω,W ) +α1Q1(s)+α2Q2(c)

(12)
where

Q1(s) =
∥∥∥∥PΣ

∣∣∣∇ξη

(
L̂+s · U

)∣∣∣2−PΣP∞
∣∣∣∇t

(
L̂+s · U

)∣∣∣2
∥∥∥∥
2

L2(Σ)
(13a)

Q2(c) =
∥∥∥∥
∣∣∣Ef

∣∣∣2
∥∥∥∥
2

Ls(Φ)
(13b)

P∞ is the operator projecting |∇ξηS|2 = |∇ξη(s · U)|2 (as an element
of the space of square integrable functions) onto the sphere of unitary
radius in the uniform norm, Ef is the field radiated by the primary
feed array and Φ is the angular sector centered on the feed and not
subtended by the reflector and α1 and α1 are two factors chosen to
make the contributions of Q1(s) and Q2(c) comparable to the first
term in eq. (12).

It is noted that the constant argument V̂ within A has been
dropped out in eq. (12).

2.2. Diagnosis of Reflector Antennas

As mentioned above, the second application of a Hybrid Evolutionary
Algorithm to Global Optimization here considered involves the
diagnosis of reflector antennas from amplitude only far field data.

The aim of such a technique is to determine the working status
of large reflector antennas for space and astronomical applications
without requiring the complex set-up needed by the holographic
techniques. In particular, both the misalignment of the primary feed
and/or of the subreflector as well as the misalignment of the panels
making up the primary reflecting surface must be retrieved. As shown
in [46], the information for the antenna reset can be obtained once
the phase of the field on the reflector aperture is assigned. In fact,
the misalignment of the primary feed and of the subreflector can be
evaluated by fitting the aperture phase with the best paraboloid. On
† We denote with L2(Ω, W ) the space of square integrable functions over Ω with respect to
a weighting function W . A particular choice of the weighting function W can be profitable
when high demanding far-field patterns are required.
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the other side, the profile of the primary reflector can be determined
form the residual aperture phase by exploiting inverse GO.

We consider a reflector antenna with a circular shaped aperture
Σ with diameter d illuminated by a single elementary feed (q0 = 1)
of known excitation, say c0 (Fig. 1). In the following, the reasoning
underlying eq. (10) is still applied so that eq. (10) is assumed as the
basic input-output relationship. However, taking into account that
now c reduces to a known constant c0, we assume X = Cp. It must be
noted that also in this case the reference optical path could be useful
f.i., to deal with intentionally defocused data.

Concerning the definition of the output space Y, it is assumed
that the observed data are the squared amplitudes of the co-polar and
cross-polar components of the far field within the region Ω of the (u, v)
plane. These components are supposed to be embedded in L2(Ω), so
that Y is still given by eq. (6).

Accounting for noise and measurement errors and introducing the
accuracy functions Nco and Ncr, the set Yc, i.e., the set of elements in
Y compatible with the measurements is given by:

Yc =
{
(T1, T2) ∈ Y I|T1 −Oco|2 ≤ Nco, |T2 −Qcr|2 ≤ Ncr (u, v) ∈ Ω

}

(14)
According to these considerations and exploiting the penalty

method, the objective functional involved in the reflector diagnosis
problem is expressed as:

Fα1(s, c0) = ‖A(s, c0) − PYcA(s, c0)‖2
L2(Ω,W )×L2(Ω,W ) + α1Q1(s) (15)

where, as in eq. (12) the constant argument V̂ of A has been dropped
out and α1 is a multiplier making the contribution of Q1(s) comparable
to the first term in eq. (15).

It is worth noting that, to account for struts and subreflector
effects [56, 57], a suitable characteristic function PΣ has been
considered by computing the struts and subreflector spherical and
plane wave shadow on the aperture field.

3. NUMERICAL ANALYSIS

To test the effectiveness of the proposed approach, both the synthesis
and the diagnosis algorithms have been subjected to an extensive
numerical analysis.
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3.1. Synthesis of Reflector Antennas

The examples we refer herein consider a reflector antenna with d =
20λ, z0 = d, a primary feeding array consisting of 5 × 5 Huygens
elementary sources regularly spaced on a grid with a mesh size equal
to λ/2. The unknown S is represented by Tchebitchev polynomials up
to the 7-th degree.

Two cases concerning the synthesis of a contoured-beam are
considered. In the first case, case A later on, a circular-triangular
shaped beam is synthesized, while in case B a real world shaped beam
covering Italy is considered.

The first problem which must be faced when constructing an
Evolutionary Algorithm relies on how coding the unknowns.

The continuous nature of our problem suggested a real coding.
Concerning the reproduction operators, a roulette wheel propor-

tional selection with elitist has been considered.
In order to get a non negative fitness function and to control the

selection pressure, a “quasi-linear” scaling of the objective functional
has been adopted according to the relationship eq. (21) of Part I.

An elitist has been introduced according to the considerations
made in the Section 4 of Part I.

Concerning the mutation scheme, a uniform mutation on the
searching space has been considered.

The last critical point to be faced when implementing an EA is
the parameter settings. Obviously only heuristics rules are available
to determine the population size and the parameters of reproduction
operators.

As discussed in Part I, to solve the parameter set problem many
Authors have proposed interesting schemes of Algorithms that, while
searching the desired solution, also automatically tune the parameters
or Algorithms whose parameters are the output of a meta-evolutionary
algorithm. However, in our opinion these strategies are very time
consuming, especially when hard optimization problems are involved,
so that we preferred the manual tuning exploiting the abilities of the
algorithm designer.

Obviously, the most part of the numerical analysis has been
devoted to enlighten those modules of the Evolutionary Algorithm that
provide better performances and to set the searching parameters, such
as the mutation and the recombination probabilities. A population size
as wide as possible, according to the available computing resources, has
been considered.

In order to make the performance of the Evolutionary Algorithm
no worse than the one of the local search approach, in the initial
population we inserted an individual corresponding to the starting
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point of the local search.
Let us now discuss some significant examples.
Concerning case A, the enforced design specifications require a

top flat beam, within a tolerance equal to −0.5 dB and +0.5 dB, inside
the triangular-circular shaped portion of the (u, v) plane, say Ωi, and
inside an enlarged version of Ωi, say Ωe, respectively (see Fig. 2).
Then a maximum and a minimum level equal to −30 and −200 dB
are prescribed outside Ωi, and Ωe, respectively. Since the cross-polar
component should be as low as possible, only an upper bound equal to
−70 dB is considered.

The synthesis has been performed with both the Hybrid
Evolutionary Algorithm (case A1) and the quasi-Newton optimizer
(BFGS) [58] (case A2).

It is noted that the local phase of the hybrid algorithm is assigned
to the same algorithm adopted in case A2.

The co-polar amplitude synthesized in case A1 is shown under
Fig. 3 while the one synthesized in case A2 is presented in Fig. 4. The
obtained results clearly show that the global optimizer outperforms the
local one. In particular, the value of the objective functional attained
in case A1 is about 10 dB under the one corresponding to case A2.

The cross-polar components obtained in case A1 and A2 are

v 

e

i

u

Ω

Ω

Figure 2. Boundaries of the regions Ωi and Ωe defining the masks in
the case A.
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v 

u

Figure 3. Co-polar synthesized by exploiting the hybrid evolutionary
algorithm (case 1).

u u 

v 

Figure 4. Co-polar synthesized by exploiting the local approach (case
1).



Progress In Electromagnetics Research, PIER 56, 2006 245

depicted under Figs. 5 and 6, respectively. At difference of what
happens on the co-polar components, the worse result correspond now
to case A1. However, the cross-polar remains under the −30 dB level.

The amplitudes and the phases of the excitations coefficients
synthesized in case A1 are shown under Figs. 7 and 8, respectively,
while the corresponding reflector shape is shown under Fig. 9.

As case A, case B involves a top flat beam within a tolerance
equal to −0.5 and +0.5 dB, inside the regions of the (u, v) plane Ωi,
and Ωe, respectively, shown in Fig. 10 and tailored to the Italian
peninsula, the Sicily and Sardinia islands, also reported in that figure.
Again a maximum and a minimum level equal to −30 and −200 dB
are prescribed outside Ωi and Ωe, respectively. Since the cross-polar
component should be as low as possible, only an upper bound equal to
−70 dB is considered.

The synthesis has been performed with both the hybrid
evolutionary algorithm (case B1) and the quasi-Newton optimizer
(BFGS) (case B2).

The co-polar amplitude synthesized in case B1 is shown under
Fig. 11 while the one synthesized in case B2 is presented in
Fig. 12. Again, the obtained results clearly show that the global
optimizer outperforms the local one. In particular, the value of the
objective functional attained in case B1 is about 3 dB under the one
corresponding to case B2.

The cross-polar components obtained in case B1 and in case B2
are depicted under Figs. 13 and 14, respectively. Again a worsening of
the cross-polar level characterize the result obtained with the hybrid
approach with respect to those corresponding to the local search.
Anyway, as in case A, the result appears quite good, since the cross-
polar remains under the −30 dB.

The amplitudes and the phases of the excitations coefficients
synthesized in case B1 are shown under Figs. 15 and 16, respectively,
while the corresponding reflector shape is shown under Fig. 17.

3.2. Diagnosis of Reflector Antennas

The main results of an extensive numerical analysis involving the
reflector diagnosis algorithm are now presented.

All the worked examples have involved a parabolic reflector (in
its undistorted configuration) corresponding to a real antenna of the
JPL/DSN, whose diameter and working frequency are equal to 34 m
and about 12 GHz, respectively.

The antenna is fed at the focus by an elementary radiator with
pure co-polar y-directed primary pattern of the type cosm(ϕ) with
m = 9, providing a tapering of about 10 dB at the reflector edge. As
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v 

u 

Figure 5. Cross-polar synthesized by exploiting the hybrid
evolutionary algorithm (case 1).

v 

u 

Figure 6. Cross-polar synthesized by exploiting the local approach
(case 1).
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Figure 7. Amplitudes of the excitation coefficients obtained by
exploiting the hybrid evolutionary algorithm (case 1).

 (case 1). 
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Figure 8. Phases of the excitation coefficients obtained by exploiting
the hybrid evolutionary algorithm (case 1).
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Figure 9. Reflector shape synthesized by exploiting the hybrid
evolutionary algorithm (case 1).

i

e 
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Ω

Ω

Figure 10. Boundaries of the regions Ωj and Ωe defining the masks
in the case B.
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u 

Figure 11. Co-polar synthesized by exploiting the hybrid evolutionary
algorithm (case 2).

v 

u 

Figure 12. Co-polar synthesized by exploiting the local approach
(case 2).
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Figure 13. Cross-polar synthesized by exploiting the hybrid
evolutionary algorithm (case 2).

u

Figure 14. Cross-polar synthesized by exploiting the local approach
(case 2).
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Figure 15. Amplitudes of the excitation coefficients obtained by
exploiting the hybrid evolutionary algorithm (case 2).
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Figure 16. Phases of the excitation coefficients obtained by exploiting
the hybrid evolutionary algorithm (case 2).
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Figure 17. Reflector shape synthesized by exploiting the hybrid
evolutionary algorithm (case 2).

a consequence, the x-component of Ea is zero, while the y-component
is proportional to cosm(θ)(1 + cos(θ)).

Concerning the basis function exploited in the expansion of the
optical path disturbance, we considered two different choices: the
Tchebytcheff and the Zernike polynomials [59]. Obviously, both are
complete in the space of square integrable functions, although the
Zernike polynomials are orthogonal on the circle of unitary radius.
A numerical analysis has been performed to chose the more convenient
representation.

In particular, the reflector deformations have been simulated
by representing the reflecting surface by means of Tchebytcheff
polynomials and by randomly and uniformly generating the expansion
coefficient (the simulated distortion has been suitably scaled to fix the
maximum deformation).

Then, the far-field power pattern has been computed by using the
current method, that differs from the aperture approach exploited in
the retrieving process.

The retrieving step has been performed by using only the local
algorithm and the results obtained with both representations of the
optical path disturbance S have been compared. The numerical
analysis showed that Zernike polynomials are more convenient than
the Tchebitchev ones, since, for a fixed degree of the reflector surface
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distortion, they require a smaller number of iterations and a smaller
number of terms to get comparable reconstructing errors.

The second point to be faced concerns the efficient evaluation
of the second term in the functional (15). This require an efficient
evaluation of the derivatives of the expansion polynomials. This task
has been easily accomplished by using the new recursive formulas for
the first order partial derivatives of the Zernike polynomials provided
in [60].

However, it must be stressed that, as long as the degree of the
expansion coefficients of S is less then 9 and the range of variability
of the expansion coefficient remains confined to the interval [−1, 1] the
eikonal constraint has never been violated in our numerical analysis.

After this preliminary study, we started the analysis of the
performances of the Hybrid Algorithm.

As in the synthesis case, the most part of the numerical analysis
has been devoted to enlighten those modules of the Evolutionary
Algorithm that provide better performances and to set the searching
parameters.

Again, to make the performance of the Evolutionary Algorithm
no worse than that of the local search, we inserted the individual
corresponding to the undistorted reflector in the initial population.

The performed numerical analysis involved several reflector
distortions with an optical path disturbance ranging from 3λ to
4.5λ. The corresponding far-field power patterns have been simulated
by exploiting the current method and the effect of the noise and
measurement errors have been taken into account by superimposing
an additive random error, uniformly distributed with a maximum
amplitude equal to −30 dB under the peak level of the simulated co-
polar amplitude.

The far-field pattern corresponding to the undistorted reflector is
shown in Fig. 18.

Later on, we explicitly present only one of the handled cases,
corresponding to a maximum optical path disturbance on the reflector
aperture equal to 4.5λ, since the results involving the other cases are
very similar.

The optical path disturbance has been represented by means of
Zernike polynomials up to the 7-th degree (36 expansion coefficients).

The simulated far-field patterns and the corresponding optical
path distortions are shown in Figs. 19 and 20, respectively. The
differences between the simulated optical path and the one retrieved
by applying the local search are displayed in Fig. 21.

Clearly, the local search was unable to retrieve the reflector
distortions.
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v 

u 

Figure 18. Squared amplitude of the copolar component radiated by
the undistorted reflector.

v 

u 

Figure 19. Squared amplitude of the copolar component radiated by
the distorted reflector.
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s/ �λ

Figure 20. Simulated optical path disturbance.

/�λs∆

Figure 21. Difference between the simulated optical path disturbance
and the one retrieved by local search algorithm.
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On the other side, the difference between the path retrieved
by using the Hybrid Algorithm and the true one is plotted under
Fig. 22. These results show that the optical path distortions have
been successfully retrieved by the Hybrid Algorithm.

/�λs∆

Figure 22. Difference between the simulated optical path disturbance
and the one retrieved by the hybrid evolutionary algorithm.

It is worth noting that the dependence of the algorithm on the
initial population has been investigated by restarting each case 5 times
with different random seeds to get different initial population and a
different algorithm evolution. The numerical analysis has proved that
the algorithm was always able to retrieve the distortions in the 70% of
the cases.

As a concluding remark, it must be stressed that, in Authors’
experience, the use of the Pure Evolutionary Algorithm never allowed
to attain the solution of the problem, since it requires an inordinate
amount of computing time.

4. CONCLUSIONS

The application of the hybrid global optimization algorithm introduced
in the Part I of the paper to two case of practical interest, the power
synthesis of contoured beam hybrid reflector antennas and the reflector
antenna diagnosis from only amplitude data, has been presented. To
show the performances of the optimization algorithm, a numerical
investigation has been performed. In both cases the global approach
outperformed significantly the optimization techniques based on a local
optimization tool.
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