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13397 MARSEILLE Cedex 20, France

Abstract—The paper presents the Scattering Operator Method,
which is devoted to the problem of scattering from a set ofN cylindrical
objects. By contrast with the Scattering Matrix Method, which
has been used by many groups in the last twenty years, it applies
to any kind of cylinder shape, regardless of the relative location of
the cylinders. The theory is based on a mathematical result: it is
possible to define in the vicinity of the surface of each cylinder two
complementary parts of the field: the total incident field and the field
scattered by this cylinder. These two parts are the Calderon projectors
of the values of the total fields on the surface of the cylinder. The
validity of the method is checked on two examples. It is shown that
the theory avoids some problems encountered in integral method like
evaluations of singular or hypersingular integrals, or instabilities due
to internal resonance of objects.

1. INTRODUCTION

The problem of electromagnetic scattering by a set of N objects has
been widely studied in the last fifteen years, due to the increasing
interest devoted to photonic crystals, metamaterials or left-handed
materials. Some authors have used classical and general methods of
Electromagnetics like FDTD or finite-element method [1, 2] while other
ones have developed the Scattering Matrix Method (SMM) [3–7]. The
SMM, which is quite well adapted to the problem of scattering from
a finite-size photonic crystal, allows one to compute the scattering
properties of a large set of objects (of the order of 1000 for 2D
cylindrical objects) with remarkable precision stability and rapidity
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using simple PC. However, this method suffers from some limitations.
For example, it cannot handle structures like Split Ring Resonators
(SRRs) proposed by J. B. Pendry to make metamaterials with negative
permeability [8–10]. The subject of metamaterials [11–14] becomes
increasingly important and there exists a need for accurate numerical
modeling tools in this domain. Thus, we sought for a generalization
of SMM, based on the same basic principles in order to hold the
stability of the method, but able to deal with arbitrary kinds of objects,
regardless of their relative location.

This generalization, called Scattering Operator Method (SOM)
relies on the following mathematical result: it is possible to separate
in the vicinity of each object a total incident field (the sum of the
imposed incident field and of the fields scattered by the other objects
towards this object) and the field scattered by this object. In the
present paper, we define as “vicinity of the surface” a thin strip placed
in vacuum and including the surface. This result can be expressed in a
very simple mathematical form: the total incident field on the object
and the field scattered by the object are the Calderon projectors of
the total field (and its normal derivative) on the surface of the object.
The SOM relies on the use of the same basic concepts as the SMM
and the final equation takes the same form, matrices being replaced
by operators. The validity of the theory is verified for two examples.

2. PRESENTATION OF THE PROBLEM AND
NOTATION

For the sake of simplicity, the problem of scattering byN objects will be
presented in the two-dimensional (2D) case with a s-polarized incident
plane wave (electric field parallel to the cylinder axes). The extension
of the theory to the other polarization or to the 3D case does not in
essence change the problem, even though for the 3D case, it leads to a
significant increase of the algebraic complexity of the formalism. The
problem is schematized in Figure 1. A set of N cylindrical objects
(N = 4 in the figure), parallel to the z axis, of cross sections Cj

with boundaries Σj , is illuminated by a s-polarized incident wave with
wavelength λ0 = 2π/k0 in vacuum. For simplicity, it is assumed that
the incident field is imposed by sources placed at infinity, but the final
equations hold true for incident fields generated by sources placed at
finite distance from the objects (for example a point source). In the
special case where this incident wave is a plane wave propagating under
the incidence θinc (angle between the x axis and the wavevector of the
incident wave, measured anticlockwise), and using a time dependence



Progress In Electromagnetics Research, PIER 57, 2006 57

x

y

vacuum

C4

C1 C3

C2

  incident 
    wave

O

inc

Z

Σ
1

Σ3

Σ2

Σ4

n1

θ

Figure 1. Presentation of the problem.

of exp(−iωt), the amplitude of the incident wave is given by:

Einc,ext = ẑEinc,ext = ẑ exp
(
ik0(x cos(θinc) + y sin(θinc))

)
(1)

and we designate by x̂, ŷ, ẑ the unit vectors along the coordinate axes.
The objects can be inhomogeneous and non isotropic, but for

the sake of simplicity it is assumed that they are not magnetic (the
extension to magnetic materials is straightforward). In the same way,
no hypothesis is made about the shapes and locations of the objects,
by contrast with the SMM in which it must be assumed that for each
object, a circle can be drawn which contains it entirely, in such a way
that two arbitrary circles have no intersection. The problem is to
determine the field at any point of space. It is worth noting that in the
present paper, we are not concerned by the calculation of the scattering
properties of each individual cylinder. In other words, it is assumed
that the classical problem of scattering from a single cylinder has been
solved. The SOM provides the rigorous solution of the problem of
scattering from a set of N objects as soon as the problem of scattering
by each cylinder has been solved. Of course, the solution of the problem
of scattering by a single cylinder depends on the material inside the
cylinder. Here, we only suppose that this material is such that the
polarization of the total field remains the same as the polarization of
the incident field. When the material is homogeneous and isotropic,
numerous classical methods allow one to solve the problem of scattering
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from a single cylinder [15–19]. Of course, these methods are able, in
theory, to solve the problem of scattering by N objects. However, they
do not take advantage of the fact that the objects are separated and,
consequently, that the preliminary solution of the problem of scattering
from each object considered as alone in the space is an essential step
in the solution of the N objects multiscattering problem.

3. BASIC PRINCIPLES OF THE SMM,
DECOMPOSITION OF THE FIELD IN THE VICINITY
OF A CYLINDER INTO A TOTAL INCIDENT FIELD
AND A SCATTERED FIELD USING FOURIER-BESSEL
EXPANSIONS

First, let us recall the basic principles of the SMM. In outline, this
method takes into account separately the specific scattering properties
of each object (which have been computed in a preliminary step)
and the coupling phenomena between them. One of its advantages
is to be accessible to postgraduate students. Moreover, the numerical
implementation does not present major difficulty. In contrast with
other classical methods like FDTD or finite element method, it becomes
much simpler in the case of 2D photonic crystals with circular cross
sections, or 3D photonic crystals formed by spherical inclusions.

The SMM is based on the expansion of the field in Fourier-Bessel
series inside and outside the cylinders. This expansion can be obtained
using a local system of polar coordinates (rj , θj) with an origin located
at a point Oj placed inside each cylinder and more or less in the
middle. For simplicity, we consider in Figure 2 the case of 2 cylinders.

r1

1
�2 ��

C1 C2

D1 D2

D'2

D'1

Incident wave

D1
'' θ

Figure 2. Domains of validity of the Fourier-Bessel expansions.



Progress In Electromagnetics Research, PIER 57, 2006 59

Obviously, the electric field is, for a given value of rj , a periodic
function of θj with period 2π and thus, it can be represented by a
Fourier series:

E(rj , θj) =
∑
m∈Z

Em(rj) exp(imθj) (2)

Outside the cylinders, the total field obeys the equation:

∇2E + k2
0E = 0 (3)

Using the expression of the scalar Laplacian in polar coordinates:

∇2V =
∂2V

∂r2j
+

1
rj

∂V

∂rj
+

1
r2j

∂2V

∂θ2
j

(4)

then reporting the expression of the field given by Eq. (2) in Eq. (3), a
straightforward calculation shows that the Fourier coefficients satisfy
the following equation :

∀m, d2Em

dr2j
+

1
rj

∂Em

∂rj
+

(
k2

0 −
m2

r2j

)
Em = 0 (5)

provided that the value of rj is such that the circle of radius rj centred
at the origin of the local system of coordinates is entirely placed in
vacuum. In other words, Eq. (5) is valid in the ring surrounding the
jth cylinder and extending until the nearest point of the closest cylinder
(hatched regions in Figure 2). Defining r′j = k0rj , this equation
becomes:

∀m, d2Em

dr′j
2 +

1
r′j

∂Em

∂r′j
+

(
1 − m2

r′j
2

)
Em = 0. (6)

Thus, Em satisfies the Bessel equation, whose general solution can be
given by:

Em = aj,mJm(k0rj) + bj,mH
(1)
m (k0rj). (7)

with Jm and H(1)
m Bessel function of the first kind and Hankel function

of the first kind respectively.
Introducing the expression of Em in Eq. (2), we are led to an

expression of the total field in the cylinder in the form of a Fourier-
Bessel expansion:

E(rj , θj) =
∑
m∈Z

aj,mJm(k0rj) exp(imθj)+
∑
m∈Z

bj,mH
(1)
m (k0rj) exp(imθj).

(8)
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Now, it turns out that the properties of Bessel functions allow us
to give a physical meaning to each of the terms placed in the right-
hand side of Eq. (8). Indeed, from an intuitive physical viewpoint, the
field in the ring surrounding the jth cylinder can be written in three
parts that can be interpreted as:

• the incident plane wave (source) given by Eq. (1), called external
incident field,

• the fields scattered by all the other cylinders towards the jth
cylinder, which behave for this cylinder as incident fields. These
fields add to the incident external field to constitute the total
incident field on the jth cylinder,

• the field scattered by the jth cylinder which, according to the
radiation condition, must propagate away from the cylinder.

In order to identify in Eq. (8) each physical component of the field,
let us notice first that obviously, the total incident field on the jth
cylinder has been generated by sources located outside this cylinder
(at infinity for the incident plane wave and inside the other cylinders
for the complementary part). Thus, it must satisfy inside this cylinder
a Helmholtz equation and cannot have any singularity in this domain.
This property allows us to deduce that the total incident field is
contained inside the first sum of Eq. (8). Consequently the second sum
represents a field scattered by the jth cylinder. The question which
arises is to know whether this second sum represents the totality or only
a part of the field scattered by the jth cylinder. In the first case the
first sum represents the total incident field on this cylinder (and only
the total incident field on this cylinder). In the second case, the first
sum represents not only the total incident field on the cylinder, but also
a part of the scattered field. Causality properties provide the answer to
this question. The field scattered by the jth cylinder must propagate
away from it. It emerges that the only Fourier-Bessel function that
satisfies this condition is that containing the Hankel functions of the
first kind [20]. In conclusion, the first sum in Eq. (8) does represent the
total incident field on this cylinder whilst the second sum represents the
field scattered by the jth cylinder. It can be shown that the domain of
validity of the series representing the field scattered by the jth cylinder
(second sum in the right-hand member of Eq. (8)) is not limited to the
ring around C2. In fact, this domain extends from Dj to infinity.

In order to determine the coefficients aj,n and bj,n of Eq. (8),
two series of matrix equations are used. The first one uses the local
scattering matrix relation for each cylinder, which states that the
coefficients bj,n of the field scattered by the jth cylinder deduces
linearly from the coefficients aj,n of the total field incident on the same
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cylinder:
bj = Sjaj (9)

In this equation, we have introduced the infinite column matrices
aj and bj with components aj,m and bj,m and Sj square matrix of
infinite dimension. It must be noticed that Sj , called scattering matrix
of the jth cylinder, depends on the geometrical and electromagnetic
characteristics of the jth cylinder only. In other words, aj and bj

depend on the locations and shapes of the cylinders surrounding the
jth cylinder, but it is not so for the linear relationship between these
two column matrices. From a computational point of view, this feature
means that the calculation of Sj can be achieved using a classical
method of scattering by solving a problem of scattering by a single
cylinder. This fundamental property, which contributes to the strong
stability of the method, is a direct consequence of the use of the
concepts of total incident field on a cylinder and field scattered by
this cylinder. On the other hand, the classical concepts of incident and
scattered fields, which do not include the coupling phenomena between
the cylinders, do not lead to a local relationship between the Fourier-
Bessel coefficients and in that case the linear relationship involves the
entire set of Fourier-Bessel coefficients of all the objects.

The second set of N equations is obtained through a second
causality property: the total incident field on the jth cylinder can be
interpreted as the sum of the external incident field and of the fields
scattered by the other cylinders towards the jth cylinder,

aj = Qj +
∑
l �=j

T l→jbj (10)

In this equation, the infinite column matrix Qj , contribution of the
external incident field, can be calculated in closed form [6], as well
as the square matrices of infinite dimension T l→j [6], using the Graf
formula [20]. It is worth noting that the matrix T l→j , called coupling
matrix from cylinder l to cylinder j, does not depend on the materials
inside the N cylinders, but only on the shapes of surfaces Sj .

Multiplying Eq. (10) by Sj and using Eq. (9) to eliminate aj in the
left-hand member leads to a set of N matrix equations with unknowns
bj , j = (1, N):

bj = SjQj +
∑
l �=j

SjT l→jbl (11)

This set of equations can be solved by truncating the column matrices
aj and bj .

The limitation of this method is imposed by the calculation of
matrices T l→j . For simplicity, let us consider the case N = 2
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represented in Figure 2. In order to find the matrix T 2→1, we have to
find the expression of the field scattered by cylinder 2 (second sum in
the right-hand side of Eq. (8) with j = 2) in the form of an incident
field on cylinder 1 (first sum in the right-hand side of Eq. (8) with
j = 1). It has been seen that the expression of the field scattered by
cylinder 2 converges from D2 to infinity. Thus it converges inside the
circle D′′

1 centered on O1 and tangent to D2. Inside D′′
1 , it satisfies

the Helmholtz equation (3) and does not have any singularity, thus it
can be expressed in the form of a Fourier-Bessel series (with Bessel
functions of the first kind only) in the local coordinates system linked
to C1. In practice, this calculation can be made in closed form using
Graf ’s formula. Now, this series must converge at any point of the
profile C1, which shows that the circle D′′

1 of convergence of the series
must include entirely C1. We deduce the condition of validity of the
method: two arbitrary circles Dj and Dl should not intersect each
other. For ellipsoids of Figure 2, this condition is not fulfilled as soon
as the distance between the objects is smaller than the large axis. The
same remark holds true in Figure 1, since one object is included in an
open cavity of another one, as it happens for example in SRRs.

For this reason, the new theory renounces to the use of Fourier-
Bessel series of the field. On the other hand, it is still based on the
notions of total incident field and scattered field in the vicinity of one
object. By contrast with the SMM, these fields are defined until the
surface of the scatterers, thanks to the use of Calderon projectors. It is
worth noting that the equations take the same form in the new theory
(SOM) as in the SMM, the matrices being replaced by operators.

4. GENERAL MATHEMATICAL DEFINITION OF THE
FIELD SCATTERED BY A CYLINDER AND THE
TOTAL INCIDENT FIELD IN THE VICINITY OF ITS
SURFACE

4.1. Separation between Total Incident Field and Scattered
Field

The aim of this section is to show that, in the vicinity of the surface
of the jth cylinder, it is possible to define a total incident field
Einc,total

j , composed of the incident plane wave Einc,ext and a field
Einc,cyl

j generated by the other cylinders:

Einc,total
j = Einc,ext + Einc,cyl

j (12)

The total field in the vicinity of the jth cylinder is the sum of the total



Progress In Electromagnetics Research, PIER 57, 2006 63

incident field and the field Escatt
j scattered by the jth cylinder:

E = Einc,total
j + Escatt

j = Einc,ext
j + Einc,cyl

j + Escatt
j (13)

In order to find the integral expression of each component of the
field in Eq. (13), let us define the function U(x, y) at any point of space
by:

U(x, y) =

{
E(x, y) outside the cylinders
0 inside the cylinders

(14)

From Maxwell’s equations, it can be shown easily that the field in
vacuum, outside the cylinders, satisfies the Helmholtz equation in
vacuum:

∇2E + k2
0E = 0 (15)

thus, the function U(x, y) satisfies at any point of space the Helmholtz
equation in the sense of functions:

∇2U + k2
0U = 0 (16)

Furthermore, the incident field satisfies the same equation:

∇2Einc,ext + k2
0E

inc,ext = 0 (17)

Thus, if we define at any point of space the function U ′ defined by:

U ′ = U − Einc,ext (18)

it turns out that U ′ satisfies in the sense of functions the equation:

∇2U ′ + k2
0U

′ = 0 (19)

Since U ′ satisfies a radiation condition at infinity, it can be
deduced from the theory of distributions (see Appendix A, Eq. (A5))
that it can be expressed in an integral form from the values ψj(M ′)
and ϕj(M ′) (with M ′ ∈ Σj) of its jump and the jump of its normal
derivative on the set of surfaces Σj :

U ′(P )=
∑

j=1,N

∫
Σj

(
Gk0(P,M

′)ϕj(M ′) − ∂Gk0(P,M
′)

∂nj(M ′)
ψj(M ′)

)
dM ′ (20)

with ψj and ϕj being functions defined on Σj as the jumps of U ′

and its normal derivative ∂U ′
∂nj

respectively, n̂j unit normal to Σj

oriented towards the exterior of Σj . The expressions of Gk0(P,M
′)
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and ∂Gk0
(P,M ′)

∂nj(M ′) are given by Eqs. (A6) and (A7). Let us notice that

the jumps ψj and ϕj . on Σj of U ′ and its normal derivative ∂U ′
∂nj

are

identical to the jumps on Σj of U and its normal derivative ∂U
∂nj

, thus

identical to the limit values E+ and ∂E+

∂nj
on Σj (outside Cj) of the

total field and its normal derivative.
Finally, from Eqs. (18) and (20), U can be written in the form:

U(P ) = Einc,ext(P )

+
∑

j=1,N

∫
Σj

[
Gk0(P,M

′)ϕj(M ′) − ∂Gk0(P,M
′)

∂nj(M ′)
ψj(M ′)

]
dM ′ (21)

Eq. (21) allows us to write the field given by Eq. (13) in three
parts. Let us consider a point P outside Cj in the vicinity of the
surface Σj of the jth cylinder. From Eq. (13), it emerges that the
integral in Eq. (21) represents the sum of the field Escatt

j scattered by
the jth cylinder and the field Einc,cyl

j generated by the other cylinders.
The separation between these two fields is straightforward and it turns
out finally that

Escatt
j (P ) =

∫
Σj

(
Gk0(P,M

′)ϕj(M ′) − ∂Gk0(P,M
′)

∂nj(M ′)
ψj(M ′)

)
dM ′ (22)

Einc,cyl
j (P ) =

∑
l �=j

∫
Σl

(
Gk0(P,M

′)ϕj(M ′)− ∂Gk0(P,M
′)

∂nl(M ′)
ψl(M ′)

)
dM ′ (23)

Eqs. (22) and (23) allow us to distinguish, in the vicinity of the jth
cylinder a total incident field Einc,total

j = Einc,ext
j + Einc,cyl

j from the
field Escatt

j scattered by the jth cylinder. However, the identification
leads to the calculation of N integrals.

4.2. Field Scattered by a Cylinder and Total Incident Field
in Its Vicinity in Terms of Integrals over the Surface of That
Cylinder

Let us show that, in fact, the calculation of the total incident field
Einc,total

j = Einc,ext
j + Einc,cyl

j in the vicinity of the jth cylinder can
be achieved through a single integral solely over Σj , just like the
calculation of the scattered field Escatt

j . With this aim, let us recall



Progress In Electromagnetics Research, PIER 57, 2006 65

that U vanishes inside Cj . Thus, from Eq. (21), if P ∈ Cj :

Einc,ext(P )+
∑

j=1,N

∫
Σj

(
Gk0(P,M

′)ϕj(M ′)− ∂Gk0(P,M
′)

∂nj(M ′)
ψj(M ′)

)
dM ′=0

(24)
This equation can be written in the form: if P ∈ Cj

Einc,ext(P )+
∑
l �=j

∫
Σl

(
Gk0(P,M

′)ϕl(M ′)− ∂Gk0(P,M
′)

∂nl(M ′)
ψl(M ′)

)
dM ′

= −
∫
Σj

(
Gk0(P,M

′)ϕj(M ′)− ∂Gk0(P,M
′)

∂nj(M ′)
ψj(M ′)

)
dM ′ (25)

The right-hand side of Eq. (25) is formally minus the value of the field
scattered by the jth cylinder given in Eq. (22), but now the point P is
located inside Cj , and not outside. It is worth noticing that the value
of this expression, as well as the value of its normal derivative are
discontinuous across Σj , and thus its value of this expression inside Cj

should not be considered as the analytic continuation of the scattered
field Escatt

j (here, we deal with the notion of analytic function of two
variables satisfying an elliptic partial differential equation [21]). It
is not so for the left-hand member of Eq. (25) since in this case the
integrals have discontinuities on the surfaces Σl of the other cylinders,
but not on Σj . Now, the left-hand side of Eq. (25) is the expression of
the total incident field in the vicinity of Σj (see Eq. (23)), therefore,
the right-hand side represents the analytic continuation inside Cj of
the total incident defined in Eq. (23) and in the following, it will be
called total incident Einc,total

j field as well. Thus, from Eq. (25):
If P ∈ Cj ,

Einc,total(P ) = −
∫
Σj

(
Gk0(P,M

′)ϕj(M ′)− ∂Gk0(P,M
′)

∂nj(M ′)
ψj(M ′)

)
dM ′

(26)
Finally, Eqs. (22) and (26) can be gathered together in the following
equation:

Rj(P ) =
∫
Σj

(
Gk0(P,M

′)ϕj(M ′)− ∂Gk0(P,M
′)

∂nj(M ′)
ψj(M ′)

)
dM ′

=

{
Escatt

j (P ) if P /∈ Cj

−Einc,total
j (P ) if P ∈ Cj

(27)



66 Maystre

It is worth noticing that, of course, the range of validity of the
expression of the scattered field and the total incident field extends
outside the domain located at the vicinity of Cj . The field scattered
by Cj can be calculated from Eq. (27) at any point outside Cj . The
same remark holds for the total incident field on Cj . However, by
contrast with the scattered field, the expression of the total incident
field on Cj given by Eq. (27) has no physical meaning outside the
circle D′

j . Indeed, a part of this field has been generated by the other
cylinders. Inside D′

j , this field actually represents a field incident on
Cj (we have seen in section 3 that between D′

j and Dj , this field can
be expanded in Fourier-Bessel series containing Bessel functions of the
first kind only). It is not so outside D′

j and, for example, at infinity,
this field satisfies the radiation condition and propagates away from
Cj .

The integral contained in Eq. (27) provides the values of the total
incident field and the scattered field inside and outside Cj . On Σj , the
surface that separates these two regions, the integral is discontinuous
and does not represent any physical quantity.

The result given by Eq. (27) is very simple to express using the
theory of distributions and the notion of Calderon projectors. We

define the column matrices F inc,total
j =

[
uj

u′j

]
and F scatt

j =
[
vj

v′j

]
of size 2 containing the functions uj and u′j describing Einc,total

j (M)

and its normal derivative
dEinc,total

j

dnj
(M) on Σj (or the functions vj and

v′j describing Escatt
j (M) and its normal derivative

dEscatt
j

dnj
(M) on Σj).

Since the left-hand side of Eq. (27) represents a function satisfying a
Helmholtz equation in vacuum and a radiation condition at infinity
we are led to this important conclusion (see Appendix A): the field
F scatt

j scattered by the jth cylinder and minus the total incident field
F inc,total

j on this cylinder are the Calderon projectors of the total field
Fj on Σj :

F scatt
j = P +

Σj ,k0
Fj (28)

−F inc,total
j = P−

Σj ,k0
Fj (29)

Eq. (A21) of Appendix A allows us to give the expressions of uj and
vj , which are the limits on both sides of Σj of Rj(P ):

−uj = GΣj ,k0ϕj −
(
I

2
+
∂GΣj ,k0

∂n

)
ψj (30)
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vj = GΣj ,k0ϕj +
(
I

2
−
∂GΣj ,k0

∂n

)
ψj (31)

Finally, we notice that it is possible to express Einc,total
j (P ) (if P ∈ Cj)

and Escatt
j (P ) (if P /∈ Cj) from their limit values uj , u

′
j , vj and v′j on

Σj using the Kirchhoff-Helmholtz equation (Eq. (A22) of Appendix
A):

P /∈ Cj

Escatt
j (P ) =

∫
Σj

(
Gk0(P,M

′)v′j(M
′)− ∂Gk0(P,M

′)
∂nj(M ′)

vj(M ′)

)
dM ′ (32)

P ∈ Cj

−Einc,total
j (P ) =

∫
Σj

(
Gk0(P,M

′)u′j(M
′)− ∂Gk0(P,M

′)
∂nj(M ′)

uj(M ′)

)
dM ′

(33)

5. SCATTERING OPERATOR METHOD

5.1. First Equation: Expression of the Coupling between
Cylinders

In this section, we use the causality relation between the part Einc,cyl
j

of the total incident field which has been radiated by the other
cylinders towards the jth cylinder and the origin of this field: the
fields Escatt

j , l �= j scattered by the other cylinders. With this aim, we
apply Eq. (32) to the N−1 other cylinders and we calculate the values
of these scattered fields on the surface Sj . We deduce:

Einc,cyl
j (M)=

∑
l �=j

∫
Σl

[
Gk0(M,M

′)v′l(M
′)dM ′− ∂Gk0(M,M

′)
∂nl(M ′)

vl(M ′)dM ′
]

(34)
with M ∈ Σjand M ′ ∈ Σl. In order to obtain the total incident field
on Cj , we add to the right- hand member of Eq. (34) the value Qj(M)
of the incident plane wave Einc,ext

j on Σj :

Einc,total
j (M) = Qj(M)

+
∑
l �=j

∫
Σl

(
Gk0(M,M

′)v′l(M
′)− ∂Gk0(M,M

′)
∂nl(M ′)

vl(M ′)
)
dM ′ (35)
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Qj(M) = Ein,ext(M) (36)

In operator notation, this equation can be written

uj = Qj +
∑
l �=j

(
GΣl→Σj ,k0v

′
l −

∂GΣl→Σj ,k0

∂nl
vl

)
(37)

where the operators GΣl→Σj ,k0 and
∂GΣl→Σj ,k0

∂nl
denote operators acting

on functions defined on Σl, the result being a function defined on Σj :
if M ∈ Σj ,

GΣl→Σj ,k0v
′
l =

∫
Σl

Gk0(M,M
′)v′l(M

′)dM ′ (38)

∂GΣl→Σj ,k0

∂nl
vl =

∫
Σl

∂Gk0(M,M
′)

∂nl(M ′)
vl(M ′)dM ′ (39)

In order to eliminate v′l in Eq. (37), it suffices to remember that vl

and v′l are the limit values on Σl of the field Escatt
l scattered by the lth

object. It is well known that if a function satisfies a Helmholtz equation
outside Cj and a radiation condition at infinity, one can impose either
its limit value on Σj (Dirichlet problem) or the value of its normal
derivative on Σj (Neumann problem), but not both [22]. The linear
relationship between vl and v′l is given by Eq. (A24)

v′l = Z+
Σl,k0

vl (40)

The operator Z+
Σl,k0

is given by Eq. (A25):

Z+
Σl,k0

= G−1
Σl,k0

(
I

2
+
∂GΣl,k0

∂nl

)
(41)

the operators in the right-hand side of Eq. (41) being given by
Eqs. (A6) and (A7). Finally, Eqs. (37) and (41) yield:

uj = Qj +
∑
l �=j

Tl→jvl (42)

with

Tl→j = GΣl→Σj ,k0Z
+
Σl,k0

−
∂GΣl→Σj ,k0

∂nl
(43)
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5.2. Second Equation: Use of the Scattering Operator
between the Field Scattered by a Cylinder and the Total
Incident Field That Illuminates It

The field Escatt
j scattered by the jth cylinder and the total incident

field Einc,total
j that illuminates it are linked by a linear relationship.

Thus, vj can be deduced from uj by

vj = Sjuj (44)

In this equation, the scattering operator Sj associates a function
defined on Σj with another function defined on Σj . It is crucial
to notice that the scattering operator of a given cylinder depends
on the characteristics of this cylinder only. Thus, the calculation of
the scattering operators of the N cylinders requires N independent
calculations. When the cylinders are identical, the scattering
operators are the same and a single calculation is needed. Of
course, the complexity of the calculation of the scattering operators
depends strongly on the complexity of the shape and electromagnetic
characteristics of the cylinders. For example, in the case in which a
cylinder is perfectly conducting, the total electric field vanishes on the
surface, which entails that the scattering operator is equal to −I, with
I the identity operator. In the case of circular cylinders, the scattering
operator can be obtained in closed form.

5.3. Final Equation

Eqs. (42) and (44) provide us with a doubly-infinite set of linear
equations between the unknown functions vj and uj . In order to obtain
a single series of equations, it suffices to multiply both members of
Eq. (42) by Sj , then to use Eq. (44) to eliminate uj . We thus obtain:

vj = SjQj +
∑
l �=j

SjTl→jvl (45)

In an explicit form, this equation can be written:


I −S1T2→1 −S1T3→1 · · · · · ·
−S2T1→2 I −S2T3→2 · · · · · ·
−S3T1→3 −S3T2→3 I · · · · · ·

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·







v1
v2
v3
· · ·
· · ·


 =




S1Q1

S2Q2

S3Q3

· · ·
· · ·




(46)
This equation takes exactly the same form as the final equation of the
SMM.
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5.4. Calculation of the Diagram of Diffraction at Infinity

The scattered field at infinity can be obtained by calculating the
asymptotic behavior at infinity of the scattered field given by equation
(32). With this aim, we use the asymptotic expression of the Hankel
functions at infinity:

H
(1)
0 (z) ∼

√
2
πz

exp
(
−iπ

4

)
exp(iz)

H
(1)
1 (z) ∼

√
2
πz

exp
(
−i3π

4

)
exp(iz)

(47)

and the asymptotic expression of PM :

PM ′ ∼ r − u(θ) · OM ′ (48)

r and θ being the polar coordinates of P and u(θ) = OP
OP the unit

vector in the direction of P . Finally, we obtain:

Escatt
j (P ) ∼ g(θ)

exp(ik0r)√
r

(49)

g(θ) =
∑

j=1,N

∫
Sj




exp
(
−iπ

4

)
2
√
λ0

u(P )nj(M ′)vj(M ′)−
exp

(
i
π

4

) √
λ0

4π
v′j(M

′)




× exp
(
−ik0u(P ) · OM ′) dM ′ (50)

Let us recall that in the case of lossless materials, and when the incident
field is a plane wave, the Energy Balance Criterion (EBC) requires:

2π∫
θ=0

|g(θ)|2dθ + 2
√
λ0 Re

[
exp

(
i
π

4

)
g(θinc)

]
= 0 (51)

5.5. Comparison with the Classical Integral Theory

The problem of scattering from N objects can be solved using the
classical integral theory of scattering. In that case, the unknowns are,
in general, the values of the field and its normal derivative on the
objects. The big difference with the SOM is that the physical notions
of input (total incident field on a cylinder) and output (field scattered
by the same cylinder) is not used anymore. The first equation is
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obtained by writing that the value of the field and its normal derivative
on a cylinder can be deduced from the values of the field and its
normal derivative on the entire set of cylinders, using the Kirchhoff-
Helmholtz equation (Eq. (A22) of Appendix A). By contrast with the
first equation of the SOM, this equation needs an integration over the
entire set of cylinders, including the cylinder on which the field and
its normal derivative are calculated. It is well known that one of the
major difficulties of the integral theory comes from the singularities of
the integrals when the point of calculation identifies with a point of
integration. Thanks to the linear relation between the incident field on
a cylinder and the field scattered by the other cylinders, this difficulty
never happens in the first equation of the SOM (see Eq. (37)) where it
suffices to evaluate the integral on the (N−1) cylinders where the field
is not calculated. This difference is quite important since, by contrast
with the second one, the first equation is that in which a large number
of cylinders are involved, and thus it can be conjectured that it is the
major origin of numerical errors.

As regards the second equation, the classical theory of scattering
leads to a local relation as in the SOM: it is obtained by writing the
relation between the field and its normal derivative at the surface of a
cylinder, imposed by the material inside this cylinder. It is well known
that this relation may present instabilities in some cases, due to internal
resonances. The corresponding equation in the SOM links the values
of the incident and scattered fields on the surface of the cylinders. The
scattering operator, i.e., the operator which associates these functions,
satisfies strong mathematical properties, for instance unitarity in some
cases. Thus it can be conjectured that the scattering operators in
the SOM are better conditioned than the operators deduced from
compatibility between the field and its normal derivative in the classical
integral theory. In conclusion, it can be conjectured that the SOM is,
like the SMM, more stable than the classical integral theory.

5.6. Numerical Implementation

The numerical implementation of Eq. (46) requires the transformation
of this equation into a matrix equation of finite size. One of the general
ways for solving this problem is to expand the functions vj , uj and Qj

on a system of Mj finite elements, the variable being the curvilinear
abscissa on the jth cylinder [18]. In that case, functions vj , uj and
Qj become column matrices of dimension Mj while the operators Sj

and Tl→j reduce to matrices of dimensions Mj × Mj and Ml × Ml

respectively. Finally, the size of the linear system to be solved is equal
to

∑
j=1,N Mj . In this paper, the examples of numerical calculations

are given on elliptic objects. The profiles of such objects are given by
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parametric equations

x = l cos(u), y = h cos(u)

The discretisation of the profile has been made by using equally
spaced values of the parameter u. For circular cylinders, this choice
corresponds to equally spaced values of the curvilinear abscissa. Of
course, for more complicated profiles, or even for very flat ellipses, best
adapted discretization process should be adopted in order to sample
the profile more adequately, for example by choosing equally spaced
values of the curvilinear abscissa.

When there exists, for each cylinder, a local polar coordinate
system (rj , θj) such that the profile Σj can be given by a function
rj = fj(θj), it may be beneficial to represent the functions vj , uj and
Qj by Fourier series in θj . Truncating these Fourier series between
coefficients −Pj and +Pj , these functions become column matrices of
dimension 2Pj+1 while the operators Sj and Tl→j reduce to matrices of
dimensions (2Pj +1)2 and (2Pl+1)×(2Pj +1) respectively. Finally, the
size of the linear system to be solved is equal to (N+2

∑
j=1,N Pj)2. In

the case when the shape of the cylinders is circular, the total incident
field on a cylinder and the field scattered by the cylinder, as well
as the total field inside the cylinder, can be represented by Fourier-
Bessel series [6], in such a way that the calculation of the scattering
operator can be achieved in closed form. In that case, the scattering
operator method described in this paper reduces to the scattering
matrix method. The strong advantage of the SOM lies on the fact
that it can deal with any set of cylinders, whatever the shapes and the
locations of the cylinders.

5.7. Numerical Validation

In order to check the validity of the method, we have first compared
our results with those published in [6] on a very simple case. Figure 6
of this article shows the intensity scattered at infinity by a couple of
dielectric cylinders of index 1.5 with diameter 6 cm, the centers being
at a distance 9 cm from each other, illuminated with a s-polarized
incident plane wave with a wave-vector tilted 45◦ on the symmetry
planes of the device (θinc = −45◦). The curve obtained from the
SOM cannot be distinguished from that of Figure 6, obtained from the
SMM. On this example, we have checked the precision of the results
from three criteria: convergence of the results as the number of points
M = M1 = M2 on each cylinder is increased, Energy Balance Criterion
(EBC, see Eq. (51)) and reciprocity theorem. Let us recall that the
reciprocity theorem states that the amplitude at infinity g(θ) obtained
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Table 1. Convergence, energy balance and reciprocity criteria for
the problem of scattering by a couple of dielectric circular cylinders
(Figure 3).

Number M of discretization
points on each cylinder

25 50 75 100 125 150

(  (case 1) 0.930 0.825 0.822 0.823 0.824 0.824)g

 (case 2) 0.930 0.825 0.822 0.823 0.824 0.824

 (case 1) -149.8 -146.7 -148.5 -149.3 -149.8 -150.0

 (case 2) -149.8 -146.7 -148.5 -149.3 -149.8 -150.0

Precision on EBC (case 1) 0.07 0.005 0.002 0.0006 0.0003 0.0002

Precision on EBC (case 2) 0.06 0.002 0.0002 0.0002 0.0002 0.0002

θ

( )g θ

( )g θArg

( )g θArg

in the direction of scattering given by the angle θ, when the set of
cylinders is illuminated by a plane wave with angle of incidence θinc,
remains unchanged when the incidence angle and the scattering angle
become equal to θ + 180◦ and θ + 180◦ respectively, or in other words
when the directions of propagation of the incident and scattered fields
are reversed [23]. Cases 1 and 2 are defined in Figure 3. It can be seen
in Table 1 that the convergence of the results to within 1% in relative
value is obtained for |g(θ)| for M = 50 while the same precision needs
M = 75 for (g(θ)). On the other hand, the EBC is satisfied to within
5 · 10−3 as soon as M > 50. The reciprocity theorem is perfectly
satisfied for the first 4 digits whatever M may be. These results show
that the EBC and the reciprocity theorem cannot give an estimate of
the precision of the results. The computation time for M = 150 is of
the order of 1 second on a desktop.

A second validation test has been made on a set of 4 elliptic
perfectly conducting cylinders illuminated with a s-polarized plane
wave. Cases 1 and 2 for the reciprocity theorem are defined in Figure 4
and the results are given in Table 2. The conclusions are almost the
same as in Table 1, even though a precision of 1% on the results needs
slightly greater values of M . It is worth noting that these results could
not be obtained from the SMM.

In order to show a second example of the capability of the SOM
to deal with crystals which cannot be analysed using the SMM, we
have investigated the properties in transmission of the photonic crystal
shown in Figure 5. The dashed circles at the top right of the figure
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x

y

Figure 3. The two cases in the reciprocity theorem for the set of two
dielectric circular cylinders. Solid and dashed arrows represent cases 1
and 2 respectively.

Table 2. Convergence, energy balance and reciprocity criteria for
the problem of scattering by a couple of dielectric circular cylinders
(Figure 4).

Number M of discretization
points on each cylinder

25 50 75 100 125 150

 (case 1) 1.057 1.133 1.155 1.164 1.168 1.170

 (case 2) 1.058 1.133 1.155 1.164 1.168 1.170

 (case 1) 22.04 27.68 28.45 28.73 28.83 28.90

 (case 2) 22.09 27.69 28.46 28.73 28.83 28.90

Precision on EBC (case 1) 0.005 0.002 0.0008 0.0004 0.0003 0.0002
Precision on EBC (case 2) 0.0009 0.0002 0.00009 0.00004 0.00003 0.00002

( )g θ

( )g θArg

( )g θArg

( )g θ

show that the calculation cannot be achieved using the SMM since they
intersect each other. Figure 6 shows the value of the modulus of the
field at the point of observation versus the wavelength in both cases, the
amplitude of the incident wave being equal to unity. The calculations
are made for 48 values of the wavelength and need a computation time
of less than one hour on a desktop working at 1.4 GHZ with 512 MB
of RAM.

The physical intuition inclines one to conjecture that the
transmitted field should be much larger in case 2 than in case 1.
This rule is true in general, but for greater wavelengths it is reversed.
This surprising result can be explained in the following way: when the
wavelength is much lower than the period of the crystal, the rules of
geometrical optics give a good approximation of scattering phenomena.
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y

x

Figure 4. The two cases in the reciprocity theorem for the set of two
perfectly conducting elliptic cylinders. The vertical and horizontal axes
of the ellipses are equal to 1 and 2 respectively. The distances between
the centers of the ellipses in the vertical and horizontal directions are
equal to 3 and 1.5 respectively. The wavelength in vacuum is equal
to 2.5 and the incident light is s-polarized. Solid and dashed arrows
represent cases 1 and 2 respectively.

 

CASE 1 
 

Observation 
point 

CASE 2
 

Incident
wave 

CASE 2 
 

Observation 
point 

CASE 1 
 

Incident 
wave 

Figure 5. Photonic crystal made of 46 elliptic cylinders. The ellipses
are perfectly conducting, their centers being located at the edges
of equilateral triangles of side unity. The vertical and horizontal
axes of the ellipses are equal to 1.2 and 0.4 respectively. The
crystal is illuminated by a p-polarized incident plane wave propagating
horizontally (case 1) or vertically (case 2). The field is calculated in
both cases at a point located in the shadow region of the crystal.



76 Maystre

0 1 2 3 4 5
1E-3

0,01

0,1

1

10

F
ie

ld
 m

od
ul

us

Wavelength

 case 1
 case 2

Figure 6. Modulus of the field at the observation point versus the
wavelength.

As the wavelength reach values of the same order or even greater than
the period, we are in the resonance regime and these rules do not apply
anymore.

6. CONCLUSION

It has been shown that it is possible to generalize the SMM to
an arbitrary case of scattering from a set of cylinders of arbitrary
shapes located arbitrarily. The new method can be implemented on
a simple desktop and provides a remarkable precision with moderate
computation times. We are actually implementing the method to the
swiss rolls (split ring resonators) used in the context of metamaterials
to generate magnetic resonances. The generalization to 3D problems of
scattering by N objects does not present difficulties from a theoretical
point of view, but of course it leads to a significant increase of the
complexity of the equations and of the numerical implementation.
The generalization to the 2D case in off-plane mountings should be
very interesting since it would enable one to deal with microstructured
optical fibers with non-circular holes.

The generalization to many other kinds of structures can be
envisaged, for instance the scattering by a stack of rough surfaces.
In that case, the SOM permits one to interpret the total field as the
sum of incident and scattered fields at the vicinity of each interface.
From that point of view, the definition of these fields can be interpreted
as a generalization of the Rayleigh hypothesis [24], which represents
the scattered field by plane wave expansions up to the interfaces. The
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SOM provides a means to calculate the rigorous value of the scattered
field on the interface in cases where the Rayleigh expansion does not
converge.

ACKNOWLEDGMENT

This work has been carried out in the framework of the Nanosciences
and Nanotechnology French program. The support of the EC-
funded project PHOREMOST (FP6/2003/IST/2-511616) is gratefully
acknowledged. The content of this work is the sole responsibility of
the authors.

APPENDIX A. THE THEORY OF DISTRIBUTIONS IN
OUTLINE, CALDERON PROJECTORS

A.1. Definitions

In this appendix, we present the notion of Calderon projector from the
theory of distributions. Then we establish the Kirchhoff-Helmholtz
equation and we give some remarks about its use in this paper. The
reader interested in more details on the theory of distributions can
refer to [25].

A.2. Convolution and Integral Expression of a Function
Satisfying a Helmholtz Equation in the Sense of Functions

Let us consider the case of a function u satisfying the Helmholtz
equation in the sense of functions, the jumps of the function u(x, y)
and its normal derivative on a contour Σ being respectively equal to
[u]Σ and

[
∂u
∂n

]
Σ
. In addition, it is assumed that this function satisfies

the radiation condition at infinity. This function satisfies in the sense
of distributions a Helmholtz equation with a right-hand side:

∇2u+ k2u =
[
∂u

∂n

]
Σ
δΣ + ∇ · (n[u]ΣδΣ) (A1)

In order to express u in an integral form, we define the elementary
solution of the Helmholtz equation gk in a material of wavenumber k,
which must satisfy the radiation condition at infinity and the following
Helmholtz equation:

∇2gk + k2gk = δ0,0 (A2)
It is very easy to show that u is given by the convolution product:

u = gk ∗
([
∂u

∂n

]
Σ
δΣ + ∇ · (n[u]ΣδΣ)

)
(A3)
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Let us recall that the elementary solution of Helmholtz equation
satisfying a radiation condition at infinity is a locally integrable
function given by:

gk = − i
4
H

(1)
0 (kr) (A4)

with r the distance to the origin of coordinates and H
(1)
0 the Hankel

function of the first kind and zero th order.
Tedious algebraic calculations show that the convolution products

can be expressed in the following form:

u(P ) =
∫
Σ

(
Gk(P,M ′)

[
∂u

∂n

]
Σ

(M ′) − dGk(P,M ′)
dn(M ′)

[u]Σ(M ′)
)
dM ′

(A5)

Gk(P,M ′) = gk(PM ′) = − i
4
H

(1)
0 (kPM ′) (A6)

∂Gk(P,M ′)
dn(M ′)

= − i
4
n(M ′) · ∇M ′(gk(PM ′))

=
ki

4
n(M ′) · PM ′

PM ′ H
(1)
1 (kPM ′) (A7)

A.3. Calderon Projectors

Eq. (A5) allows us to express the limit values u± and ∂u±
∂n of u on both

sides of Σ, the sign + and − assigned to the sides of the surface and
the direction of the normal are such that the normal points from the
− to the + side:

∇2u+ k2u =
[
∂u

∂n

]
Σ
δΣ + ∇ · (n[u]ΣδΣ) (A8)

u±(M)= lim
P→M±

∫
Σ

(
Gk(P,M ′)

[
∂u

∂n

]
Σ

(M ′) − ∂Gk(P,M ′)
∂n(M ′)

[u]Σ(M ′)
)
dM ′

(A9)
In these equations the symbol P → M± means that the point P of
space tends to the point M of Σ either from the side of the normal
(M+) or from the other side (M−). The limit values ∂u±

∂n could be
calculated as well by differentiating Eq. (A5) and taking its limits as
P →M±.
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We define the column matrices

F =


 [u]Σ[

∂u

∂n

]
Σ


 , F± =


 ±u±

±∂u
±

∂n


 .

The Calderon projectors P±
Σ,k are defined by [26]

F± = P±
Σ,kF (A10)

Thus, P±
Σ,k are matrix operators of size 2×2 which associate the limits

on both sides of the contour Σ of a function F satisfying the Helmholtz
equation with wavenumber k in the sense of functions and its normal
derivative to the jumps on Σ of the same quantities. It can be noticed
that, in general, the Calderon projectors are defined through the use
of the electric field and the tangential component of the magnetic field
(instead of the normal derivative of the electric field). In fact, the
two definitions are equivalent in our case since the normal derivative
of the electric field is proportional to the tangential component of the
magnetic field.

Obviously, since F+ + F− = F , we have:

P +
Σ,k + P−

Σ,k = I (A11)

Furthermore, it can be shown that Calderon projectors satisfy the
following relations:

P +
Σ,kF

+ = F+, P−
Σ,kF

− = F−, P +
Σ,kF

− = P−
Σ,kF

+ = 0 (A12)

which implies:

P +
Σ,kP

+
Σ,k = P +

Σ,k, P−
Σ,kP

−
Σ,k = P−

Σ,k, P +
Σ,kP

−
Σ,k = P−

Σ,kP
+
Σ,k = 0

(A13)
Eq. (A13) shows that P±

Σ,k are idempotent operators, or in other words,
projectors.

Now, in order to deduce the expression of Calderon projectors, we
will eliminate the limits in equation (A9). Let us define:

J(P ) =
∫
Σ

(
Gk(P,M ′)

[
∂u

∂n

]
Σ

(M ′) − ∂Gk(P,M ′)
∂n(M ′)

[u]Σ(M ′)
)
dM ′

(A14)
in such a way that Eq. (A9) becomes:

u±(M) = lim
P→M±

J(P ) (A15)
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Now, from the definition of the jump of u on Σ,

[u]Σ(M) = u+(M) − u−(M) (A16)

therefore
lim

P→M+

J(P ) − lim
P→M−

J(P ) = [u]Σ (A17)

Furthermore, it can be shown [19] that the value J(M) of the integral
on a point M of Σ is the average of the limit values of on both sides
of Σ:

lim
P→M+

J(P ) + lim
P→M−

J(P ) = 2J(M) (A18)

From Eqs. (A15), (A16), (A17) and (A18), it can be deduced that:

u±(M) = J(M) ± [u]Σ(M)
2

(A19)

and from Eq. (A14), we get:

u±(M) =
∫
Σ

(
Gk(M,M ′)

[
∂u

∂n

]
Σ
(M ′) − ∂Gk(M,M ′)

∂n(M ′)
[u]Σ(M ′)

)
dM ′

± [u]Σ(M)
2

(A20)

In order to write this equation in a more condensed form, it is
convenient to introduce the notation in terms of operators:

u± = GΣ,k

[
∂u

∂n

]
Σ
− ∂GΣ,k

∂n
[u]Σ ± [u]Σ

2

= GΣ,k

[
∂u

∂n

]
Σ

+
(
±I

2
− ∂GΣ,k

∂n

)
[u]Σ (A21)

In this equation, GΣ,k and ∂GΣ,k

∂n are considered as operators which,
acting on functions defined on Σ, give another function defined on
Σ, I being the identity operator.

A.4. Kirchhoff-Helmholtz Equation

From Eq. (A5), it is possible to deduce the so-called Kirchhoff-
Helmholtz equation, which is a basis of the theory of Green functions.

Let us suppose that u vanishes inside C and satisfies a Helmholtz
equation outside (with a radiation condition at infinity). Of course,
it satisfies the Helmholtz equation, including inside C, thus Eq. (A5)
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enables one to have the expression of u everywhere from the jumps
[u]Σ and

[
∂u
∂n

]
Σ

of and ∂u
∂n on Σ, which in that case reduce to u+ and

∂u+

∂n . Thus we get:

u(P ) =
∫
Σ

(
Gk(P,M ′)

∂u+

∂n
(M ′) − dGk(P,M ′)

dn(M ′)
u+(M ′)

)
dM ′ (A22)

This equation, generally called Kirchhoff-Helmholtz equation, permits
one to deduce the value of a function u satisfying a Helmholtz equation
outside C, from its value and the value of its normal derivative on Σ.
From the theory of distributions, it is fundamental to notice that in
that case, there exists a relationship between u+ and ∂u+

∂n . Indeed, if
u+ and ∂u+

∂n are chosen arbitrarily, these two functions will be equal
to the jumps of u and ∂u

∂n on Σ, and not to their limit values outside
Σ. The relationship between u+ and ∂u+

∂n is straightforward: we must
write either that the limit of u outside Σ is equal to u+, or that its
limit inside Σ is equal to 0. In both cases, the jumps of u and ∂u

∂n on Σ
will reduce to the limit values outside S, the resulting equation being:

GΣ,k
∂u+

∂n
−

(
I

2
+
∂GΣ,k

∂n

)
u+ = 0 (A23)

This equation of compatibility between the limit values on Σ of a
function satisfying a Helmholtz equation outside C and a radiation
condition at infinity can be written in the form:

∂u+

∂n
= Z+

Σ,ku
+ (A24)

with
Z+

Σ,k = G−1
Σ,k

(
I

2
+
∂GΣ,k

∂n

)
(A25)

The same calculation can be achieved to find the expression of a
function satisfying a Helmholtz equation inside C. By considering
now a function u equal to this function inside C and 0 outside, the
expression of u is given by:

u(P ) = −
∫
Σ

(
Gk(P,M ′)

∂u−

∂n
(M ′) − dGk(P,M ′)

dn(M ′)
u−(M ′)

)
dM ′

(A26)
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and the compatibility between ∂u−
∂n and u− leads to

GΣ,k
∂u−

∂n
+

(
I

2
− ∂GΣ,k

∂n

)
u− = 0 (A27)

or
∂u−

∂n
= Z−

Σ,ku
− (A28)

with
Z−

Σ,k = G−1
Σ,k

(
−I

2
+
∂GΣ,k

∂n

)
(A29)
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