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Abstract—The Sommerfeld integrals for the electromagnetic field due
to a delta-function current in a horizontal electric dipole located on
the planar boundary between air and a homogeneous dielectric are
examined in detail. Similar to the case of the vertical dipole, the
tangential electric fields consist of a delta-function pulse travelling in
the air with the velocity ¢, the oppositely directed delta-function pulse
travelling in the dielectric with the velocity ¢/ €!/2 for the component
E, and the velocity ce/? for the component Ey4, and the final static
electric fields due to the charge left on the dipole. The appearance of
the vertical magnetic field is similar to that of the tangential electric
field. It is pointed out that the amplitude of the pulsed field along the
boundary is 1/p?, which is characteristic of the surface-wave or lateral
pulse.
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1. INTRODUCTION

The electromagnetic fields from vertical and horizontal electric dipoles
located on or near the planar interface between two different media
like earth and air or sea water and rock have many useful applications
in subsurface and closed-to-the-surface communication, radar, and
geophysical prospecting and diagnostics [1-9]. A historical account and
extensive list of references can be found in the monograph by King,
Owens and Wu [9]. In addition, the problem of the transient field due
to a dipole source near or on the boundary between two dielectrics
have been visited by many investigators, especially Van der Pol [10],
Wait [11, 12], Frankena [13], De Hoop and Frankena [14], Ezzeddine,
Kong, and Tsang [15], and Wu and King [16].

In [10], the transient calculation evaluates the Hertz potential of
a delta-function current in a vertical electric dipole on the boundary
between two half-spaces. Unfortunately, as pointed out in the chapter
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Figure 1. Geometry of a Z-directed horizontal electric dipole on the
boundary between two dielectrics like as air and earth.

13 of [9], the electric field components E, and E, can not be obtained
by evaluating the Hertz potential in the time domain. On other
hand, the magnetic field By can be evaluated readily. In [17, 18], the
approximate formulas are derived for lateral electromagnetic pulses
due to vertical and horizontal dipole source with delta excitation and
Gaussian pulse excitation. Recently, the approximate formulas are
derived for lateral electromagnetic pulses from a horizontal electric
dipole on the surface of one-dimensionally anisotropic medium [19].
The important introduction to the exact formulas for the components
E. and By of the transient electromagnetic field generated by a
vertical electric dipole with delta-function current on the boundary
between two dielectrics was addressed by Wu and King [16]. The
developments in [16] rekindled the interest in the study on the transient
electromagnetic field due to a horizontal dipole on the boundary
between two dielectrics. The derivation for the case of the horizontal
dipole will be more complex because the six components of the
transient electromagnetic field are involved.

In the present study, with extension of [16], the exact formulas in
terms of elementary function are obtained for three time-dependent
components FEo.(p,0;t), Bo,(p,m/2;t), and Bay(p,m/2;t) from a
horizontal electric dipole located on the planar boundary z = 0 between
two dielectrics.
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2. FORMAL REPRESENTATIONS OF
TIME-INDEPENDENT FIELD DUE TO UNIT
HORIZONTAL ELECTRIC DIPOLE ON THE
BOUNDARY BETWEEN TWO DIELECTRICS

The geometry under consideration is shown in Fig. 1, where a unit
horizontal electric dipole in the & direction is located at (0,0, —d).
When the dipole source and the observation point approach the
boundary from below (d — 07) and from above (z — 07), respectively,
with the time dependence of e~™*, the frequency-domain formulas for
the electromagnetic field in the cylindrical coordinates (p, ¢, z) with
x = pcos¢ and y = psing (0 < ¢ < 27) have been derived in [9, 21].
They are

EQp(pvqb;w) = Elp(p7¢;w)
_ _w/”w A{ VE 22\ 22
Ar Jo 2\ /K2 — 22 + k2, /K2 — \2

x[Jo(Ap) — J2(Ap)]
1
Jo(A Jo(A cos ¢, (1
+¢kg_v+\/z¢§—x2[°( p) + Jaf p)]} ¢, (1)
Eog(p, p;w) = Eig(p, d;w)

w#o/oodM{ VE = A2\ K3 — x2
A Jo K3\ /K2 — N2+ k2 kS — X2

x[Jo(Ap) + J2(Ap)]

1 .
T - 2[Jo(/\P) —J2()\P)]}Sln¢, (2)
VE = X2+ k] — A
- k% ~
E22(27¢;W) = FElz(lmQS;w)
2
iwno [ k3K =22 — k3 K3 - A2
= 5 [ dA J1(Ap) cos ¢,
drky Jo kg\/k% _ )\2+k%\/k%—)\2

. ) (3)
BQp(pv¢;w) = Blp(pa ¢;w)
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_ _@/oo {kQW/kQ A2 — k2 k3 — A2
™ Jo k:2 /k2 )\2+k‘2 /k:2 22
x[Jo(Ap) + J2(Ap)]
\/k2 22—\ [k} — a2
[Jo(Ap) — J2(>\P)]}Sin¢, (4)
\/k2 A2 4\ Jk3 — a2
§2¢(p7¢;w) = Bld)(p’ ¢) )
7@/ kzy/k2 A2 — k2, k2 — 22
81 Jo k:2 /k2 >\2—|—k2 /k2 A2
x[Jo(Ap) — J2(Ap)]
\/k2 )\2 \/k2 )\2
[Jo(Ap) + Jg()\p)]} cosp, (5)
\/k2 A2+ [k — a2
§2z<za¢§w) = Blz ¢;w)

1
_ z,uo/ d\ )\2 Ji(Ap)sing, (6)
— X2 4 K] - N2

where k; (j = 1,2) is the wave number in medium j, Jy and J; are the
Bessel functions of orders 0 and 2, respectively.

For mathematical conveniences, it is necessary to express the
components in terms of w instead of the wave number. With ¢ = 0,
k= we}/z/c, ky = w/e, N = e\, and o = p/c, where ¢ = (ugeg) /2
is the velocity of light and € = €1/¢y, and taking into account the
following relations,

Jo(Ap) + Ta(Ap) = %Jlup), (7)
Jo(Ap) — Ja(Ap) = 2Jo(Ap) — %Jmm, (8)

where J; is the Bessel function of order 1. The formulas for the six
field components can be expressed in explicit forms.

Eap(p',0;w) = E1,(p', 05 w)

— w/’LO / d)\/ )\l \/w2€ - )\,2\/0(-}2 - )\/2
2me BN RN e
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SLGEEE]

1 1 /)
+\/w2 — N2+ Vw?e — /\,2)\,—/),J1()\p)},

B B (9)
E2¢(,0/, 7['/2; w) = El(i?(p/v 77/2; w)

0 e — N2/? — N2 1
N W—MO/ AN ‘\//L v —Ji(Np)
2mc Jo wWivVw2e— N2 +w2ev/w?2 N2 Np

1 N 1 !/
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Es.(p,0;w) = €eE1.(p, 0;w)

) /d)\ \2v 2Vw2e — N2 — Wlev/w? — /\’2J V)

~ dmwe S Re Nt reaR N2 P
(11)
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§2¢(p/7 0; w) = §1¢(:0/7 0; w)
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y {Jo(xp') -5 L v ')]
Vw2 = N2 — Vw2e — N2 1

!/
\/ 2 . )\/2 + \/L()QG _ )\/2 )\/—pljl()\ p )}7 (13)
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”’1’0 / dA )\/2 1
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/o
_)\/2+\/w2€_/\/2jl()\p)‘ (14)
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3. TIME-DEPENDENT COMPONENT FE;, DUE TO A
HORIZONTAL DIPOLE WITH A DELTA-FUNCTION
EXCITATION

3.1. The Integrated Formula for Time-dependent
Component £,

If the exciting current in a horizontal dipole is a delta-function current
with a unit amplitude, the time-dependent component Ep, can be
obtained by the Fourier transform

1 0 .
Es(p',0;t) = ;Re/o dw e " Ey,(p', 0y w). (15)

Substituting (9) into (15), we get

—uutw

00 T — V22 — N2
XRe/ d)\/ )\/ \/w € )\ \/Cd )\
0 WAvVwZe — N2 + w2ev/w? — N2
1
<) = 5= 50|
1 1 !/
+\/w26—)\’2+\/w2—)\’ZA’—/)’JI(AP)}' (16)

The evaluation of the integral in (16) is a very difficult task. With the
definition N = wg, d\ = wdg, (16) reads as

Ba(pl, 051) = {/ e

[(‘%Q/Clwe ZWtJO(ng)JF_/&/ dwe™ ™! ]y (wép )}

E2p(p/7 07 t)

1 iwt
\/T+\/7§2§p’8t / dwe™ J(wfp)} (17)

The integrals in (17) with respect to w can be obtained readily by using
the infinite integral formula 6.611-1 of [30]. When ¢t > &p/,

> —iw / i

/0 dwe™ " Io(weh) = — ey (18)
o —iwt N — 1 _ t ___

/0 dwe™™" J (wép') = 7 1 = _52[),2]. (19)
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Thus, (17) can be rewritten as

EQP(p,7 O; t) =

Ho
3 e [Il+]2+.[3]. (20)

where
o [ YETE
h= g Ve—@+e/1-8 VPP -
B Ve—E21-€6 1 t
[2——§Im/0 cde [1— \/m}, (22)

(21)

Ve—@+e/1-g &
0 o0 1 1 ¢
Igzalm/o édﬁ\/€_£2+ﬂ_£2§2p,[ —m} (23)

Next, we should evaluate the above three integrals.

3.2. Evaluation of I;

Following the similar manner used for the evaluation of Fs.(p,t) due
to the vertical dipole in [16], the evaluation of I; can be carried out
readily.

E—plane

t/p'

- G

5 G

Figure 2. Branch-cut structure for the integrals in (21)—(23).

With the branch-cut structure in Fig. 2, it follows that

I =0, t/p <1, (24)
and
R Je—ei-g
h = gl [ el =t e
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_ Ve-2y1-¢ ]
(Ve—@+e/T-)(-Vi]7 - &)
" i BVE-T
+/1 gd&[(m+if\/§2—l)\/t2/p/2_§2
N |
_(W—Fie\/fQ — 1)(_\/t2/p’2 — 62)} }’ 1< t/p < \/E

(25)

Because the integrand of the first integral is real, there is no
contribution to the imaginary part.

12y/e — £2\/€2 — 1
(Ve @ tieVE DB &
The real and imaginary parts can be separated readily and there is

no contribution to the integral for the real part. Then, the integral is
simplified as

(26)

I 821 t/p/d
1—@m/1 §d§

L = 8_2 /t/plédg 2(6_52)\/52—_1
T T e Dlle+ e - VT =&
= 2 8_2 /t/plé{%df _\/52—_1
S emto )y (e + D&~ VPP =2
2e 82 t/p' 52_1
oo ) e )

With the change of the variable ¢ = £2, d¢ = 2£d€, it follows

19 e —/(—1
Wi | e avE

e ? I -1
+Zﬁ/1 dc[(e+1)g—e]\/t2/pf2—g' (28)

The following two integrals need to be treated.

M t2/p'? —/C—=1
o = [ g e (29)

@ [P/ (-1
W= e v &
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The above two integrals had been solved by Wu and King [16]. The
results are

12 2€ 2€ 12 —1/2
ﬂm:—l———l———% 1—> 1
0 2(e+1) | p? +€—|—1 e+1 (e + )p’2 ¢ » (31)
2 —1/2
) Gl L
= 1— 1) — : 2
P = - (enz—o) ] (32)
Thus
T 9% | t2 2¢2 262 12 —1/2
L=t o - T (e 1) —
! 2(e2—1) ot? [p’Q 6+1+6+1 ((6+ )p’2 6) ’

When t/p > \/e,
_Z v SN N
L = 2 Im{/ Edg(\/€_§2+i6\/§2—1)\/152/’0/2_52
o 2/ — /-1
+/ £d§<\/§2—6+6\/§2—1)\/t2/p/2_52}' (34)

The imaginary part is as follows:

R {/ e EIVE
o2 T V& Ve e
[ e N gy
v e+ DE - Ve - &
2 B[ (- €)VET
—1oe | e gy e
e € 1)VE
i s e ) &

With the change in variable ¢ = £2, it becomes

I A Y (e—¢QvC—T1
Il‘:ﬁ{/l e - avEim—c

+fw2 (¢ —Dy(—e }
[(6 + 1) — €]t/ p? = ¢
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19t gt V{1
- e | e avE

€ 82 t2/p/2 C— 1
v | e avE=

€ 82 tz/p/2 /—C €
tetor | e aver—

e 02 [t*/e? —/( —¢
+:@/€ dc[(e—l—l)(—e]«/tQ/p’z—C' (36)

The first and second integrals in (36) are shown in (31) and (32). Next,
the third and fourth integrals need to be evaluated. They are

t2/p12 —
o = [ cac A (37)
¢ [(e+1)¢ —€e]V/E?/p? —¢
, 12/ _ C s
92 — / d¢ S (38)
¢ [(e+1)C—e€lvt?/p? —¢
Also the above two integrals were solved by Wu and King [16]. They
are
2 2 2 ~1/2
m__T |¥_ i_i( 1’5__>
196 2(6"‘1) p/2 €+€+1 €+1 (€+ )p/2 € ’ (39)
2 —1/2
O — 1—< 1t——) 4
s e el (e+ )p’2 € . (40)

With substitutions (31), (32), (39), and (40) into (36), we get

T P <t2 62+1)
T2+ noe \p?2 et1)

Then, I; can be rewritten as follows:

t
g > /e (41)

T 02 t
h=55ah(5) (42)
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where
t
0, — <1
1 [t2 22 2¢2 ( 2\
[ ()
t 2 /2 /2 ’
f1<;>— e¢—1|p e+1  e+1 (43)
< = < \e
p
1 (t2 €2+1> t e
— — — €
e+1\p?2 e+1)’ 4

It follows that fi(1-) = fi1(1+) = 0 and fi(ve—) = fi(Vet+) = Sz

Thus, f1(t/p') is everywhere continuous.

t
0, LS
p
—3/2
¢ 12t 2
/ _ 1— 1 1< 5 <
1<p’> €2 —1p" <(6+ ) ) ] ’ Ve
1 2t t
e+ 1 p,25 ; > \/E
(44)
Since f{(1-) = 0, f{(l—i—) = 2/p/, there is a step discontinuity of

g = 1. Similarly, f{(ve—) = —2/[\/e(e + 1)),

0
2/p" in fi(t/p) at t/p’
(e+1)p'], f1(t/p) has a step discontinuity of 2/(1/ep)

fiVer) =2Ve/
at t/p’ = y/e. Thus,

'
0, — <1
2 {1+ e (2t2+ ’ ) 2 . _5/2]
{'(i) _ ) (E=1)p2L (e+1)32 e+1/\p? e+l ’
/ t :
0
2 t
7’ _ >
(e+1)p"? o ve

(45)
Finally, the exact expressions for I; is obtained readily.
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t
0, <
P —5/2
) {1+ € (262t2 n € ) 2t? € ]
o (e+1)3/2\ p2 e+1/\ p? e+l ’
+ .
(e2—1)p? ct
1< = < e
ct P
e—1, — > €
p

(46)

3.3. Evaluation of I

Following the similar manners used for the evaluation of Bay(p,t) due
the vertical dipole with delta-function excitation in [16], the evaluation
of I can be also carried out readily.

IL=0, t/p<1. (47)
When 1 < t/p" < /e,
L= -2 m {/wfdg[ iVe— V¢ —1
ot 0 "Ve—E +ie/E2 -1
ot e EVE—1 ”
pr(Ve—&+ie/E -1 (V[P =) 1]

The real and imaginary parts is separated readily and there is no
contribution to the integral for the real part. The result reduces to

I 1 > 8dg (e — &)V — 1
2T T (e— )’8t 0 & (e+1)E2—¢

LO e (e—&)VE -1 }

(48)

A e

With the contour in Fig. 3, this becomes

b= - a{/t/”'@e—s%ﬁ@—l
(e—1)p’ 0t & (e+1)&2—e¢
__/t/p £dg (e-&)Ve-1
ARSI N e
/t/p %(6—52)&2—
1

& (e+1)&—¢

(49)
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t<p & - plane
0 t/p
: Je
0 p'<t<p'\/g [ t/p,
\ ><>
‘ 5
p'\/€<t { l t/p'
A4 A4 ><>

\ | ‘

Figure 3. Contours of integration for the integrals in (21)—(23).

/t/p gdg (c—)ve -1 }
& [(e+ D& — (VB[22
0 { /lt/p fdg (=)W1 }(50)

- Wat L N e S
With ¢ = €2,
-+ 9 i/*/””% (e=Ove-1 }
P oe=npa P L Cllet )¢ —dVE/E ¢

c 2{1/#//3/2% -1 }
C(e=1)pat \p N Clle+1)C—elyt?/p?—(

p
18 [t [©” —V(—
ey {?/1 dc{(e+1)4‘—e}\/t2/p’72—<}' oy



Progress In Electromagnetics Research, PIER 55, 2005 263

Then,

9@ _ /tz/”lzd_C (-1

O T h e - VB C
@ _ @ _ [T V(-

0 = = | e = )

The first integral need to be solved and the second one has been solved
n (32). Let 2/ =¢—1, Ty =t?/p? — 1, and Eg = 1/(e + 1), then

(52)

z'dz’

(3) o
7o /0 (z' + 1)[(e + Da! + 1]/(To — ')’

1 To x'dx
B e+1/o (' +1)(2' + Eo)/(Tp — o'’
1 1 To 1 1 x'dx’
B e+11—E0/0 ($’+Eg_:z’+1> (To — o)

Ty z'dx To z'dz’
- %{/0 (x’+Eo)\jm_/0 (x,—i_l)\/c(i%_ix/)x/}'

(54)

Let x = 2/ + Ey and X7 = (To + Eg — x)(x — Ey), then

/TO x'dx’ _ [TotEo (x — Ep)dx
0 '+ Ey

) (T — x)a! Eo 2/ (To + Eo — z)(z — Ep)
To+Eo g To+Eo
- / 12~ EO/ 1/2
Eo Xl Ey l‘X

_ W[1 - ((e—i- 1);—,22 - e>_1/21. (55)

Similarly, let x = 2’ + 1 and X9 = (Tp) +1 — z)(x — 1), then

To x'dx’ To+1 (x —1)dz
/o (@' +1)\/(Tp — ")z / VI +1—2)(z—1)
/To+1 dx /To+1 dx
S h xMPh axlP

_ W[1 - (;—22> _1/21. (56)
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With substitutions (55) and (56) into (54), we get

@ w2\ 2 ~1/2
9 — ;K?) (- | (57)
Thus,

I T ot 1 2N\2 ¢ 1t2 —1/2
o= Sl o) aalerE=) T

When t/p' > /€,

glm{ O N
ot 0 0\ e—2tie/2 -1
Ve &de ive— V& -1

P &0 (Ve—E+ie/E 1) /B[R - €&

2 Ld i/ — e/ 1

Ve &0 JE et e/E 1
b gde iV — e/ -1 } (59)
plve &0 (V& —ete/E2—-1)/2]p7 =& |

The imaginary part is as follows:

1 9 /ﬁ%@—éz)wf?—l
(e=1)p'0t | Jo & (e+1)§2—¢
__/Vfﬁ (- €/ -1
(e+1)&2 — €]/ /p? — &

EdEe(§ — 1)V —e— (£ -V -1
Ve & (e+1)&2 ¢
_t “%e(ﬁg—1N£2—e—(§2—e)\/g—2_1}
dlve & ler e - dyem - ¢
10 { 0 gd (e — €2)/E2 — 1
(e—1pat | Jo € (e+1)&2—¢
bt [ &ds (e— &)V —1
pllo € [(e+1)&2 — /B2 /p?— &

L = -

+

L = -

+
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~ gde c(e? 1) VP
f & (e+1)& —e
g (& -1)VE e } (60)
v @ lerne—dvem-ef

In terms of the variable ¢ = &2, d¢ = 2€d¢, this becomes
L e 0 /t2/p’2 d¢ c—1
2T (oot ¢ l(e+1)¢—dviZ/pm—¢

19 [t s —/C—1
e {p/ M er D v < <}
S
Cller DC— v <

¢ a ft t2/p"? NG
ey {ﬂl “lerne- d%ﬁﬁﬁ_f}( !

The first and second integrals in (61) have been evaluated in (57) and
(53). Next, the third and fourth integrals need to be evaluated. They

are

+

€

d

IOt
LD
(e—1)p Ot
0

! Ot

t2/ /2 _ —
oo = [ I (62
e ¢ [e+1)C—elvt?/p* = ¢
9 = 9@, (63)
Let o' =( —¢, T, =t2/p? — ¢, E. = €2/(e + 1), then
19(3) _ /Te xld.%'/
¢ o (@+4e)|(e+ Da! + e\ /(T. — 2’ )a!

z'dz’

1T
Ce+1 ./0 (' 4+ €)(z' + E)\/ (T — ')’

- 1 1 /T€< 1 1 ) z'dx’
. etle-E :c’—i—E ' +e (T—x’)x’
z'd

1

N 6{/0T6 (' + B, \/—71‘ / (2" + €)\/(T. — 2/)a’ }

(64)

Let x =2’ + E. and Y1 = (T. + E. — x)(x — E,),
/T€ x'dx’ Te+FEe (x — Ee)dx
0o (2'+E)

W (T — ') VT + Ec—z)(z — E)
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Te+FEe d.ﬁU Te+Ee d:[;
= / vz B / Y]
Ee Yl E. IL‘}/l
t2 -1/2

Similarly, let x = 2’ + € and Yo = (T, + € — x)(x — ¢)

/TE x'dx’ Tete (x —€)dx
0

(x' + )/ (T — ) V(T +e—x)(x—¢)
/T ete dﬂj‘ /T cte  dx
ey —_— 6 S
) v /2 ) a:Y21/2
2\ —1/2
= ﬂll—e(ﬁ> 1 (66)
With substitutions (65), (66) into (64), we get

£2\ —1/2 +2 —1/2
9B = F[_ (;_/2> + ((e + DW - e> . (67)

Thus,

m= i (s u () ) g e e

Combined with (47), (58), and (68), the result is

122(_#),& f2( ) (69)
where
0, L
2 \—1/2 2 1/2
NORY i) alenag
1< — <+e
fte-a(E) ) £
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Since fo(1-) = fo(1+) = 0, fo(Ve-) = a(Vet) = Ve (-2 + %),
it is continuous at t/p’ =1 and t/p’ = /€.

t
0, — <1
o
1 1 62 1t2 —3/2
—| = + e+1l)— —¢€ ,
fé(i,>: p’[ e+1 e+1(( )p’2 t> } . (1)
le—1 t
—_, _>
p,€+1 pl \/E

The complete formula for I5 can be expressed as follows:

t
0, L
I Ar I+ €2 <02t2 € )3/2 1P< ct < e
— S _ , — € .
2T (@ —1)p? (e+1)32\ p2  e+1 P
e—1, < Ve
p

(72)

3.4. Evaluation of I3

Following the same procedures in evaluations of Iz, I3 can also be
evaluated readily. When ¢/p’ < 1,

I3 =0. (73)
When 1 < t/p" < /e,

_ 9 o0 &dg 1
I3 = 8t1m{/0 £2p/|:\/€_£2+i\/£2_1

(74)

t 1
A Ve iVE DB —52>} }

The real and imaginary parts is readily separated and only the
imaginary part is retained. Is reduces to

B 1 0 o ¢de t [eede &2 -1
b= e T el

& Jh & e

(75)
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With the contour in Fig.3, this becomes

_ 1 tet gde et gde €2 -1
k__@fﬁW%{/ e Efﬁiﬁ?i
t/ef §d§ / tel €d€ Ve-1
/1 52 / _ t2/p/2 }

_ L 9] /t/ﬂ cde \/52—_ -
- (6 — 1) ! Ot 1 52 \/m .
With the change of the variable = 52, d¢ = 2¢d¢, it follows
L o[t erta VT
SR {p’/1 ¢ \/WTC}‘ (77)

The integral in (77) can be evaluated readily.

9@ _ /tz/”% V=1
‘ 1 C VP —¢

B /t2/p/2 dC B /tz/p/2 dC

S h V@P=01KC-1) h /P =01KC-1)
2\ —1/2

- 77[1 - (ﬁ) ] (78)

When t/p" > /€,

I3 = g Im{ Ve &g 1
ot 0o &% \e—2+iyE -1
_L/ﬁﬁﬁ L
€2p/2 (\/e—§2+i\/§2—1)\/t2/p/2—52

¢de 1
+/\/E 0202 —e+i/E2 -1

_ b Lde ! (79)
PIve €07 (V& —e+i/E - 1) -

The contributing imaginary part is

_ 1 ffdf 21 Veegds JEE—1
h‘&—nﬁm{é fk'__/ RV
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o £dg
\/- €2 <\/§2 \/62 _6>
5d5¢52—1—¢52—e}
VR NNCITET
L {/ S fo oy b [T Ve
0 0

S (e—1)p ot & e -
- / T e - e ”'52_6 } (80)
v & ve & =gf

In terms of the variable ¢ = £2, this becomes

19 i/tz/‘ﬂ%;v“l
(e—1)p2 ot 1 ¢ VE[p?—C

Iy =

1 o 2/ d¢ -/ —1
e Do {;/ ?W}’ o

The first integral in (81) is shown in (78) and the second one need to
be evaluated.

9 _ /tQ/’ﬂ%—iVC—ﬁ

‘ ; CVEp?—¢
e
T VOG-

- t2/p” d¢ t2/p' d¢
- VEF-OC-9 / VE/P? =0 =)
2N\ —-1/2
- l1 - ﬁ(ﬁ> ] (82)
With substitution (78) and (82) into (81),

- ol 2\ —1/2 ot
Is = (61)p/§[?(ﬁ_1)(ﬁ> ] ?>ﬁ’ (83)

Thus,

™

b= g h(5): (54)
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where
0 , ct <1
2\ —1/2 P
t t [ ct
() = 5 -(e) | < e
£2\ —1/2 ot
(Ve— 1)(@) ', > e

Since f3(1-) = f3(14) = 0, fs(Ve-) = fa(vet) = ve— L. It is

continuous at ¢t/p' =1 and ¢/p’ = /€.

t
0o, <1
p
t 1 t
g(_,> =S <SSyl (86)
p p ot p
0 , —>e
P
Finally, the complete expression for I3 is obtained as follows,
t
0 , % <1
*r 1 1< < < e
Iy =—rFs ’ P €. (87)
(6 - 1)P ct
0, — >4/
p

3.5. Evaluation of FEy,(p,0;t)

Combined with (20), (46), (72), and (87), the electric field component
Es,(p,0;t) can be expressed as follows:

1 p 1 \ﬁp) 1
Eap(p,0it) = s—— (ot —2) + s(t - YP) | 4 .
20(p; 051) 2megep? l(S( C> * \/E5< c - 2meo(e + 1)p?

t
0, <
P _5/2
1 1 € 02t2+ 2e 2t? €
% e—1(e+1)32\ p2  e+1)\ p? e+l ’
ct
1< — < e
ct P
2, — > /e
P

(88)
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From (88), it is seen that the amplitude of the delta-function in
(88) includes the factors 1/p%. It is concluded that when the horizontal
dipole is on the boundary, the far pulsed field along the boundary
decreases with 1/p?, which is characteristic of the surface-wave or
lateral pulse.

Assuming that the dipole source is located on the boundary in
Region 1(the dielectric), at any distance p, the electric field Eo,(p, 0; 1)
is always 0 until the instant ¢ = p/c. The magnitude of the electric field
component Fa,(p,0;t) increases momentarily to infinite and decreases
to the value

1 3¢+ —e+1

EZP(p» 0; t) = _27T€0P3 21

(89)

The first pulse arrives at ¢ = p/c has travelled along the boundary
in Region 2 (air) with the velocity ¢. The magnitude of the field
component varies with time according to

1 1 €2 Atr 2
E 0;t) = 1-—
20(p; 051) 2F60(6+1)p3l 6—1(e+1)3/2< p? +e+1)

242 —5/2

(C— - > . (90)
P2 e+1
until ¢ = y/ep/c when it approaches the value
1 e+3

E 0;t) = 1-— . 91
20(p: 051) 2meg(e +1)p3 [ €2(e — 1)} (91)

At this instant, the magnitude of the field component FEy,(p,0;t)
increases momentarily to infinite and decreases to the value

2

Es(p,0;t) = 2meo(e2 — 1)p>

(92)

The second pulse arrives at t = \/ep/c has travelled along the boundary
in Region 1 (dielectric) with the velocity ¢/+/e.
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4. TIME-DEPENDENT COMPONENT E,; DUE TO A
HORIZONTAL DIPOLE WITH A DELTA-FUNCTION
EXCITATION

4.1. Finite Integration for Time-dependent Component Fy;

Similarly, time-dependent component FEyy due to a horizontal dipole
with a delta-function excitation can be written as follows:

1 o
Esy(p' m/2;t) = —Re/ e Eay(p, /2 w)dw. (93)
m 0
With substitution (10) into (93), we get

iw

Eag(p',m/2;t)

27r2

2 12 2 12 1
XR?LdXA{: Vwle — AVw? - ) ——Ji(Np)

W wZe N2t wleV/w? N2 Np

1 !/ !/
+\/w26 — A2 + Vw2 — N2 {JO()\p) Y /Jl()\ )] }
(94)
With the definition N = wg, d\ = wdg, (94) reads as
) _ £2 _ £2 )
Eaolpf,m/2:1) = o5 Re [~ gagd LEZSVIZE LD
2ree Jo Ve—E2 +ey/1—€28p Ot
00 ) 1
. d 7zth /
/ e hl) - = e
iwt Lg
[atZ / dwe™" Jo(wép') + &) ot
/ dwe™ ™t (w{p’)} } (95)
0
Then, (95) can be rewritten as
Eaglp',m/2;t) = [Ir + I3 + 1], (96)

22/

where I and I3 had been solved and shown in (72) and (87). The next
task is to evaluate I4.

ok o0 1 1
=g e ievEr e

(97)
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4.2. Evaluation of I

Following the similar procedures in the evaluation of Iy and I3, the
evaluation of the integral I, can be carried out readily. When t/p" < 1,

I =0. (98)
When 1 < t/p" < /e,

0? ! 1
= g [ ety e

1
_uk52+¢1exwﬂnﬂg%]

t/p' J 1
v =y

: |
- ; : (99)
(Ve— & +iVe —1)(—=V1?/p* — &) }
Because the integrand of the first integral is real, the contributing
imaginary part is

-2 /W cdg 2 (100)
e N N EE N W e =
Then,
2 0% e VE -1
Iy = v / gdggil. (101)
e—10t V2] = &2
With ¢ = €2, it follows
2 t2/ /2 —
I, = L@_ / g d # (102)
e—10t2 )i t2/p? — ¢

Let Ty = t?/p? — 1, and 2’ = ¢ — 1, the integral in (102) can be
rewritten as follows:

19(6) ‘/tz/pl2 dC \/ﬁ To xldl'/

L VEPE=C S0 (T — )

With z = 2/ + Ey, Ey = 1/(€—|- 1), and X3 = (T(] + Eg — $)(.’L’ — Eo),

(103)

thus
19(6) . TO+E0 xdx E TO+E0 dl‘
R )
o X3 Eo X3
s 7 [ t?
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Thus,

Iy =

T 82 t2 t

When t/p' > /€,
2

NG
Im{/1 §d§(m+i\/§2_1)\/t2/p’2—§2

82
Iy = BT

v 2
N e e e W } (109

The imaginary part is as follows:

2 t/ 71 _ — 2
14_%8{/§£t2//2 . pggwf 1— /e é}

10t2 /2] 5% — &2
2 t/o VE2— t/p' p Ve— &
- e (e i [ e el

(107)

In terms of the variable ¢ = £2, this becomes

1 82 t2/p/2 d \/CTl t2/p/2 d ﬁ
o b S| Sy

(108)
The first integral has been addressed in (104). In the next step, the
second integral need to be solved. Let T, = t2/p? — ¢, and ¢/ = ( — e,
the second integral in (108) can be written as

g(ﬁ)z/tQ/”/Z VC ¢ oY )

With y =y’ + Eo, Eg =1/(e+ 1), and Y3 = (Te + Eo — y)(y — Eo), this

Iy =

becomes
,19(6) _ Te+Ep ydy B EO To+Eo dy
€ B Y1/2 & Y1/2
0 3 0 3
s T/ t2
= 5 (Te+2E0) —mEy = §(ﬁ—€>- (110)
So that
™ t
I =5, 1< <ye (111)

2 p
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From (98), (105), and (111), it is obtained readily.

7'(' 82
where
0 , % <1
1 12
t _ -
1(5) e_1<pfz ) Clegsvel )
t

1 " > /e

Obviously, fu(1-) = fa(1+) = 0 and fi(Ve-) = fa(Vet) =

follows that f4(t/p’) is everywhere continuous.

t
0 T
t 1 2t
t
0 ,—/>\/E

Since fi(1-) = 0, fi(1+) = 2/[(e— /], fi(t/¢) has a step
discontinuity of 2/p" at t/[(e —1)p'] = 1. Similarly, fi(v/e—) =
2\€/[(e — Dp'l, f1(\/e+) = 0, fi(t/p') has a step discontinuity of
—2/€/[(e —1)p'] at t/p' = \/e. Thus,

0 , =<1
n(t 2 t
— | = — 1<+ < .
4 <p/ (6 _ 1)p/2 ’ . p/ \/E (115)
0 5 _I>\/E
1Y

The final expression for I can be written as follows:

L= T (- 8) - va(e- )

t
I T P (116)
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4.3. Evaluation of Eyy(p,m/2;t)
Combined with (72), (87), (96), and (116), it is obtained readily.

Baolpn/20) = gy W’f‘ 7) - ves(i- @ﬂ
1
2meo(e — 1)p?
0, AP
1 2 22 e 32
1T er (e+1)5/2( p? 6+1) ’
1<C—t<\/E
e—1 ct P
p——y — > e

(117)

Similarly, at the instant ¢ = p/c, the magnitude of the electric
field Ea4(p,0;t) increases momentarily to infinite and decreases to the
value

1 e+1

(118)

The magnitude of the electric field varies with time according to

1 1 2 242 -3/2
Esy(p,0;t) = 2 +—° <C ‘ > .

omeg(e— )3 |7 e+1 (e+1)52\ p2  e+1
(119)
until ¢ = \/ep/c when it approaches the value
1 22 +e+1
Esp(p,03t) = : (120)

© 2meppd e(e2 — 1)

At this instant, the magnitude of the electric field Ea,(p, 0;¢) increases
momentarily to infinite and decreases to the value

1
E 0t) = ————. 121
2P(p7 3 ) 27T€0(€+ 1)p3 ( )

The second pulse has travelled at ¢ = y/ep/c along the boundary in
Region 1 (the dielectric) with the velocity cy/e.



Progress In Electromagnetics Research, PIER 55, 2005 277

5. TIME-DEPENDENT COMPONENT B,y DUE TO A
HORIZONTAL DIPOLE WITH A DELTA-FUNCTION
EXCITATION

When the horizontal electric dipole is excited by a unit moment that

is a d-function pulse in time, the vertical magnetic field, which is real,
can also be given by the following Fourier transform.

1 oo L~
Bo.(p,7/2;t) = —Re/ dw e ™' By, (o), 7/2;w). (122)
™ 0
With (14), it follows that

BQZ(pla 77/2; t)

2 2/ dw e—zwt
7T C

Ji(N'p')
) AN \? . (123
/0 Vw2 = N2 + Vw2e — N2 (123)

With the definition N = w¢, d\ = wdf, (123) reads as

, ipg 02 £2d¢
B2z(pa7r/2;t) = 271' i26t2 / \/€_§2+\/1_£2
/ dw efzwtjl(wfp)_ (124)
0

Taking into account the relationship in (19), it is obtained readily.

2
BQZ(p/7W/2§t) = Zuo / Ve — S i

2#202 8752 241 -¢2&p
(1- m)
o £d¢
= 27202 latQ \/6 — 52 + \/1 — 52

_i/oo £d¢
Pl (Ve y1-8) i/ P—¢2|

Following the same procedures in evaluation of Is, the evaluations
of the integrals (125) can be carried out readily. When t/p" < 1,

(125)

B2z(p/> 7T/2; t) =0. (126)
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When 1 < t/p" </,

):_i/oo §dg ]
plo (Ve +iJE 1) /2] — &2

_ Ho 1 92 [ t JEe-1
- _277-202p/6_—1@/0 Edgl\/€2_ —_W]

Bzz(plv 77/27 t

(127)
With ¢ = €2,
1 9% [t /e VE—1
Bo, ! 2:t Mo _/ VST (12
200, 7/28) = 2m2c2p € — 1012 [p’ 1 dg\/tQ/prTC (128)

The integral in (128) had been evaluated in (104). Thus

1 9% |t /¢t ¢
Bo: (o, m/25t) = i [_(W_1>1, 1<;<\/E.

drep e —1082 | p\p
(129)
When t/p" > /€,
! H &dg
Baslp'sm/28) = %2722’6252 [ Ve— & +iJe2—1
_t /ﬁ £dg
o (Ve—+i/E—1) 12/ =&
> £dg

e crivE 1

L edg ]
pIve (V&€ —e+i/E—1) /B ]p? =&

1o 1 9?2 Ve
T T on2 c_2p"—1@ [/0 déy/€2 — 1

L[ = tg/pa
+/ §d§<\/§2—1—\/g2_6)

——/ gde %i/;lﬂ#_e ] (130)
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Then

o 1 0
2m2c2p) e — 1 0t2

xl/o cdgyJer—1- L /“W

00 t oo 2 _
T ede e L [Teae— Y= | 131
Ve prlve” VR p? =&
In terms of the variable ¢ = &2, d¢ = 2¢d¢, it follows

N R S L L
BQZ(paTr/2at) - 27.[.202/) € — ]_atZ [;(A dc /t2/0/2—c

Bou(p/, m/25t) = —

t2/p12 —
,/ ac— Yo Vge) . (132)
¢ Vi /p"* = ¢
The above two integrals have been evaluated in (104) and (110). Then,
we get
wo 1 02 [t ] t
Bo.(p),7/2; —(e—1 — (1
Q(paﬂ-/at) 47r62 6—10t2 /(6 ) ) ,0/>\/E (33)
With substitutions (126), (129), and (133) into (125), we get
52
Ho 1
By, 2;t 134
ldm/2) = o (), (134)
where
t
0 , =<1
t I
Z) = - ¢ L _ — 1
f7<p,> g ) 1, 1< <\/ (135)
t
e—1 , — > \/_
o

Since f(1-) = f(14) = 0 and f(\e—) = f

everywhere continuous.

—~

Vet) = Ve falt/p') is

0 , =<1
P
t 1 3t t
f;(;)zm ﬁ_l , 1<—<\/E. (136)
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Since f7(1-) = 0, fi(1+) = 2/[(e — 1)p], f'(t/p") has a step
discontinuity of 2/[(e — 1)p/] at 4 = 1. Similarly, f'(\/e—) =

(e —1)/[(e = 1)p'], f'(Ve+) 1/p’p7 f/(t/p') has a step discontinuity
of —2¢/[(e — 1)p] at t/p' = \/e. Thus
0 . 5 <1
1 t
él(é)zm 6t 1<;<ﬁ. (137)
0 y Ty > €

With substitution (137) into (134) and p’ = p/c, the final formula for
the vertical magnetic field is expressed as follows:

po 1 p \@pﬂ
B 2:t) = _ )= _ v
elpm/20) = ot = 2) — a1
ct
—<1

)

1] 3et t
Hoe 1< e (139)
P

C2mpde—1 p .
c

, — > /e
P

)

6. DISCUSSIONS AND CONCLUSIONS

We start this paper with the Fourier-Bessel integral representations for
the electromagnetic field due to a delta-function current in a horizontal
electric dipole located on the planar boundary between air and a
homogeneous dielectric. Similar to the case of the vertical dipole, the
tangential electric field components due to a horizontal dipole consist
of a delta-function pulse travelling in the air with the velocity ¢, the
oppositely directed delta-function pulse travelling in the dielectric with
the velocity ¢/ €!/2 for the component E, and the velocity ce'/? for the
component Ey, and the final static electric fields due to the charge left
on the dipole. The structures of the three field components Es,(p, 0;1),
Esy(p,m/2;t), and Ea.(p,m/2;t) between the two delta-function are
different each other. Also the structures of the field components are,
of course, different from those of the field components for the case of
the vertical dipole.

As addressed in [16], the time-dependent component FEs,(p,t)
due to a vertical dipole can not be expressed in terms of elementary
functions.  Similarly, also the three time-dependent components
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Es.(p,05t), Boy(p,m/2;t), and Bag(p,m/2;t) due to a horizontal
electric dipole with a delta-function excitation are not expressible in
terms of elementary functions.
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