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Abstract—Based on the asymptotic method of averaging, an
approximate analytical solution of the integral equation concerning
a magnetic current in slot-hole coupling apertures of electrodynamic
volumes, which differ profitably from the known ones in literature,
has been obtained. The formulas for the currents and characteristics
scattering of transverse and longitudinal slots in common broad and
narrow walls of rectangular waveguides are given. The comparison to
results obtained by other methods and experimental data has been
done.

1. INTRODUCTION

The problem of electromagnetic coupling of two waveguides through
apertures in their common walls is a classical problem which attracted
the attention of many investigators starting from the paper written
by Bethe in 1944 [1]. The narrow slots with the length of 2L
commensurable with the operating wavelength of λ have especially
been studied [2–10]. The investigations of the slots located both in
broad and narrow walls of rectangular waveguides have been conducted
by different methods, namely: analytical [2, 3], variational [4, 5],
numerical [6–8], among which the most effective methods are the
moments method and its particular case known as Galerkin’s method,
the equivalent circuits method [9, 10], and also the finite elements
method and the moments method [11].

At present, commercial finite elements software (e.g., “Ansoft’s
HFSS and Designer”, “CST Microwave Studio”, “Zeland” and other)
is available to solve such problems. However, these programs need
intensive memory and sometimes they are very slow, for example, in
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electrically long slots and multi-slot systems analysis. That is why
there exists a need to develop approximate methods which provide fast,
sufficiently accurate calculations of simple waveguide-slot structures.

On the other hand, the approximate methods, mentioned above,
have some drawbacks. The known analytical solutions have a limited
range of applicability (kL ∼= π/2, where k = 2π/λ) and the
variational and equivalent circuits methods suppose the presence of the
information a priori about the distribution function of the equivalent
slot magnetic current. Even an approximation of this information is
unknown (for example, for electrically longitudinal slots) in some cases.

In this paper the asymptotic method of averaging has been used to
obtain the general approximate analytical expression for the magnetic
current in the slot applied both for the adjusted slots (kL = nπ/2, n =
1, 2, 3 . . .) and for the unadjusted ones (kL �= nπ/2) coupling two
waveguides of different cross-section sizes in a common case which are
exited by the arbitrary field of impressed sources. We also suggest
perfect functions for the induced magnetomotive forces method, which
provide a rather satisfactory current approximation in electrically long
longitudinal slots and in the system of transverse slots.

2. PROBLEM FORMULATION AND INITIAL
INTEGRAL EQUATIONS

Let two volumes (limited by ideally conducting flat surfaces) be
coupled between each other by the slot in the common unlimited thin
wall. Using the boundary condition of the tangential magnetic field
continuity on the Ssl surface of the coupling aperture, we obtain the
following integral equation concerning the equivalent magnetic current
(time dependence eiωt throughout the paper is used) [12]:

(graddiv + k2)
∫
Ssl

ĜΣ
m(�r, �r ′) �Jm(�r ′)d�r ′ = −iω �HΣ

0 (�r ). (1)

Here: �r is the observation point radius-vector; �r ′ is the source radius-
vector; �Jm(�r ) is the magnetic current surface density on the aperture;
ĜΣ

m(�r, �r ′) = Ĝe
m(�r, �r ′)+ Ĝi

m(�r, �r ′), Ĝe,i
m (�r, �r ′) are the magnetic dyadic

Green’s functions; ĤΣ
0 (�r ) = �H i

0(�r )− �He
0(�r ) are the impressed sources

fields in the internal (index “i” for the region 1 and 2) and the external
(index “e” for regions 3 and 4) volumes.

The Ĝe,i
m (�r, �r ′) functions are the following [13]:

Ĝe,i
m (�r, �r ′) = ÎG(�r, �r ′) + Ĝe,i

0m(�r, �r ′), (2)
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Figure 1. The problem formulation and the symbols used.

where Î is the unit dyadic, G(�r, �r ′) = e−ik|�r−�r ′|/|�r− �r ′| is the Green’s
free space function and Ĝe,i

m (�r, �r ′) are the regular everywhere dyadic
functions providing satisfaction of boundary conditions for Ĝe,i

m (�r, �r ′)
functions on the internal surface of the volumes coupled.

The equation (1) is rather difficult to analyze in a general case,
however, for the narrow slots (d/2L � 1, d/λ � 1), where d is the
slot width, the equation is sufficiently simplified. In this case the slot
current can be written in the following way (index “m” is omitted):

�J(�r ) = �esJ(s)χ(ξ), J(±L) = 0,
∫
ξ

χ(ξ)dξ = 1, (3)

where s and ξ are the longitudinal and transverse local slot coordinates
(Figure 1); �es is the unit vector; χ(ξ) is the set function accounting
the peculiarities of the electrostatic field on the slot edge [14]:

χ(ξ) =
1/π√

(d/2)2 − ξ2
. (4)

Thus, the �J(�r ) current problem in the �HΣ
0 (�r ) field given reduces to

the determination of the J(s) current distribution function.
Let us consider the slot to be rectilinear and the impressed field in

the external volume to be absent, that is �He
0(�r ) = 0. Then substituting
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(3) and (4) into (1) we get:

(
d2

ds2
+ k2

) L∫
−L

J(s′)
[
Ge

s(s, s
′) +Gi

s(s, s
′)

]
ds′ = −iωH i

0s(s), (5)

Ge,i
s (s, s′) = 2

e−ikR(s,s′)

R(s, s′)
+Ge,i

0s (s, s
′), R(s, s′) =

√
(s− s′)2 + (d/4)2.

(6)
Here we take into account the fact that for the sources on the flat sur-
face Ĝe,i(s, ξ; s′, ξ′) = 2ÎG(s, ξ; s′, ξ′) + Ĝe,i

0 (s, ξ; s′, ξ′) we have G(s, s′)
=

∫
ξ G(s, ξ; s′, ξ′)χ(ξ′)dξ′, Ge,i

0 (s, s′) =
∫
ξ G

e,i
0 (s, ξ; s′, ξ′)χ(ξ′)dξ′.

It must be noted that in the kernel (6) of the integral equation
(5) the approximate expression for |�r−�r ′| is the transverse coordinate
dependence is chosen in the form of (ξ − ξ′)2 ∼= (d/4)2, as it is usually
used in the vibrator antenna theory [15] and it is precisely the form
for the slots on metallic surfaces [14, 16].

Isolating the logarithmic peculiarity in the equation (5)
analogically with [2, 15] we obtain:

L∫
−L

J(s′)
e−ikR(s,s′)

R(s, s′)
ds′ = J(s)Ω(s) +

L∫
−L

J(s′)e−ikR(s,s′) − J(s)
R(s, s′)

ds′, (7)

where Ω(s) =
∫ L
−L

ds′
R(s,s′) . Suppose due to [2] Ω(s) ≈ Ω(0) = 2 ln 8L

d ,
we obtain the integral-differential equation with a small parameter:

d2J(s)
ds2

+ k2J(s) = α{iωH0s(s) + F [s, J(s)] + F0[s, J(s)]}, (8)

where α = 1
8 ln(d/(8L)) is the natural small (|α| � 1) parameter of the

problem; H0s(s) is the component of the field of the impressed sources
on the slot axis;

F [s, J(s)] = 4


−dJ(s′)

ds′
e−ikR(s,s′)

R(s, s′)

∣∣∣∣∣
L

−L

+
(

2dJ(s)
ds

+ J(s)
d

ds

)
1

R(s, s′)




+ 4
L∫

−L

[
d2J(s′)
ds′2

+k2J(s′)

]
e−ikR(s,s′)−

[
d2J(s)
ds2

+ k2J(s)

]

R(s, s′)
ds′

(9)
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is the slot own field in the infinite screen;

F0[s, J(s)] =−dJ(s′)
ds′

[
Ge

0s(s, s
′) +Gi

0s(s, s
′)

] ∣∣∣∣L
−L

+
L∫

−L

[
d2J(s′)
ds′2

+k2J(s′)

][
Ge

0s(s, s
′)+Gi

0s(s, s
′)

]
ds′ (10)

is the slot own field repeatedly reflected from the coupled volumes
walls.

We must note that the inequality |α| � 1 is valid in sufficiently
wide limits of the ratio (d/2L) variation: for example, for (d/2L) = 0.1
we have |α| = 0.034 and for (d/2L) = 0.3 we have |α| = 0.048.

3. ASYMPTOTIC SOLUTION OF AN INTEGRAL
EQUATION FOR CURRENT

Due to the constants variation method [17] let us change the variables:

J(s) = A(s) cos ks+B(s) sin ks,
dJ(s)
ds

= −A(s)k sin ks+B(s)k cos ks,(
dA(s)
ds

cos ks+
dB(s)
ds

sin ks = 0
)
, (11)

d2J(s)
ds2

+ k2J(s) = −dA(s)
ds

sin ks+
dB(s)
ds

cos ks

=
α

k
{iωH0s(s) + FN [s, J(s)]}.

The equation (8) goes to the next system of the integral-differential
equations for the unknown functions A(s) and B(s):

dA(s)
ds

= −α
k

{
iωH0s(s) + FN

[
s,A(s),

dA(s)
ds

,B(s),
dB(s)
ds

]}
sin ks,

dB(s)
ds

= +
α

k

{
iωH0s(s) + FN

[
s,A(s),

dA(s)
ds

,B(s),
dB(s)
ds

]}
cos ks,

(12)
where FN = F + F0 and it is the slot full own field.

The equations obtained are fully equivalent to the equation (8) and
they are the system of integral-differential equations of standard type,
unsolved for a derivative. The right-hand parts of these equations are
proportional to the α small parameter. Therefore, the A(s) and B(s)
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functions in the right-hand parts of the equations (12) can be regarded
as slowly changing functions. To solve the system of the equations
in (12), it is possible to use the asymptotic method of averaging the
application ground of which is given in [18, 19]. Then when we put the
system of the equations (12) in accordance with the simplified system
[18] where in the right-hand parts of the equations dA(s)

ds = 0, dB(s)
ds = 0.

When we make partial averaging in [19] along the s explicitly entered
variable, we obtain two equations of the first approximation:

dA(s)
ds

= −α
{
iω

k
H0s(s) + FN [s,A,B]

}
sin ks,

dB(s)
ds

= +α
{
iω

k
H0s(s) + FN [s,A,B]

}
cos ks,

(13)

where

FN [s,A,B] =
[
A(s′) sin ks′ −B(s′) cos ks′

]
GΣ

s (s, s′)
∣∣∣L
−L
,

GΣ
s (s, s′) = 4

e−ikR(s,s′)

R(s, s′)
+Ge

0s(s, s
′) +Gi

0s(s, s
′)

= Ge
s(s, s

′) +Gi
s(s, s

′).

(14)

Integrating the system (13) and substituting the obtained values
A(s) and B(s) as the approximating functions for A(s) and B(s) in
(11), we get the most general asymptotic expression for the narrow slot
current in the arbitrary position relative to coupled volumes walls:

J(s) = A(−L) cos ks+B(−L) sin ks

+α
s∫

−L

{
iω

k
H0s(s′) + FN [s′, A,B]

}
sin k(s− s′)ds′. (15)

To define the constants A(±L) and B(±L), it is necessary to
use the boundary conditions (3) and the symmetrical conditions [15]
which are uniquely connected with the slot excitation technique.
Then taking into consideration the symmetrical (index “s”) and
the antisymmetrical (index “a”) current components at arbitrary
excitation H0s(s) = Hs

0s(s) + Ha
0s(s) of the slot with accuracy not

more than the terms of α2 order, we finally have:

J(s) = Js(s) + Ja(s) = α
iω

k




s∫
−L

H0s(s′) sin k(s− s′)ds′
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−

sin k(L+ s)
L∫

−L

Hs
0s(s

′) sin k(L− s′)ds′

sin 2kL+ αN s(kd, 2kL)

−

sin k(L+ s)
L∫

−L

Ha
0s(s

′) sin k(L− s′)ds′

sin 2kL+ αNa(kd, 2kL)

}
, (16)

where N s(kd, 2kL) and Na(kd, 2kL) are the functions of the slot own
field which are equal, respectively:

N s(kd, 2kL) =
L∫

−L

[
GΣ

s (s,−L) +GΣ
s (s, L)

]
sin k(L− s)ds,

Na(kd, 2kL) =
L∫

−L

[
GΣ

s (s,−L) −GΣ
s (s, L)

]
sin k(L− s)ds,

(17)

and which are completely defined by Green’s functions of the coupled
volumes representing infinite and half-infinite waveguides, resonators
and etc.

It is necessary to note that near the resonance (sin 2kL ≈ 0)
of the main contribution to the current amplitude is made by the
functions of the slot own field N s(kd, 2kL) and Na(kd, 2kL) which take
into account both the basic oscillation mode and high wave modes in
the surroundings of the slot. Stevenson [2] obtained the expression
for the magnetic current in a case of the arbitrary oriented narrow
slot situated on the common wall of rectangular waveguides by the
iterations method, which King used for thin vibrators [15]. However,
in [2] (unlike the formula (16)) the kL = π/2 assumption was made
for the current distribution function and the slot own field function.

As an example, let us consider the coupling of two identical
rectangular waveguides by the {a × b} cross sections through the
symmetrical transverse slot in the common broad wall and via the
longitudinal slot in the common narrow wall. We also consider the
coupling of two mutually perpendicular waveguides in the H-plane
through the longitudinal/transverse slot in the common broad wall.
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3.1. Symmetrical Transverse Slot in a Common Broad Wall
of Waveguides

In this case H0s(s) = Hs
0s(s) = H0 cos(πs/a). Taking into account that

for coupling of two waveguides of equal sizes N s = 2W s, Na = 2W a,
we get:

J(s) = −αH0

iω

{
cos ks cos

(
πL

a

)
− cos kL cos

(
πs

a

)}
γ2 [cos kL+ α2W s

t (kd, kL)]
, (18)

where γ2 = k2− (π/a)2, H0 is the amplitude of the incident H10-wave,
falling from z = −∞ (a region 1).

The |S11| reflection coefficient, the |S12| transmission ones in the
first waveguide and the transmission coefficients |S13| and |S14| in the
second waveguide equal, respectively:

|S11| = |S13| = |S14| =
∣∣∣∣ 4παf(kL, πL/a)
abkγ[cos kL+ α2W s

t (kd, kL)]

∣∣∣∣ ,
|S12| =

∣∣∣∣1 − 4παf(kL, πL/a)
iabkγ[cos kL+ α2W s

t (kd, kL)]

∣∣∣∣ .
(19)

3.2. Longitudinal Slot in a Common Narrow Wall of
Waveguides

For a longitudinal slot, the field projection of impressed sources on the
slot axis equals H0s(s) = H0 exp(−iγs) and we have

J(s) = Js(s) + Ja(s)

= αH0
iω

(π/a)2

{
e−iγs − cos ks cos γL

cos kL+ α2W s
ln(kd, kL)

+ i
sin ks sin γL

sin kL+ α2W a
ln(kd, kL)

}
. (20)

For the reflection, transmission, and coupling coefficients we
obtain the following expressions:

|S11| = |S13| =

∣∣∣∣∣ 4πα
abkγ

{
fs(kL, γL)

cos kL+ α2W s
ln(kd, kL)

+
fa(kL, γL)

sin kL+ α2W a
ln(kd, kL)

− 2kL
sin 2γL

2γL

}∣∣∣∣∣ , (21)
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|S12| =

∣∣∣∣∣1 +
i4πα
abkγ

{
fs(kL, γL)

cos kL+ α2W s
ln(kd, kL)

+
fa(kL, γL)

sin kL+ α2W a
ln(kd, kL)

− 2kL

}∣∣∣∣∣ , |S14| = |S12 − 1|.

3.3. Longitudinal/Transverse Slot in a Common Broad Wall
of Waveguides

In this case, the current distribution depends upon where the
waveguide excitation sources are situated. If the H10 incident wave is
propagating in the waveguide for which the coupling slot is transverse,
then we get:

J(s) = −αH0

iω

{
cos ks cos

(
πL

a

)
− cos kL cos

(
πs

a

)}
γ2

{
cos kL+ α

[
W s

t (kd, kL) +W s
lb(kd, kL)

]} . (22)

If the slot for the exciting field is longitudinal, then we have:

J(s) = Js(s) + Ja(s)

= −αH0

iω cos
πx0

a
(π/a)2

{
(cos ks cos γL− cos kL cos γs)

cos kL+ α
[
W s

lb(kd, kL) +W s
t (kd, kL)

]
− i (sin ks sin γL− sin kL sin γs)

sin kL+ α
[
W s

lb(kd, kL) +W a
t (kd, kL)

]
}
. (23)

For the current in (22) the coupling coefficients are defined by the
expressions (19), where it is necessary to make the following change
2W s

t → W s
t +W s

lb. For the current in (23) they equal, respectively,
(the H10 incidence wave spreads from the region 3 into the region 4):

|S33|=

∣∣∣∣∣∣∣
4πα cos2

πx0

a
abkγ

{
fs1 (kL, γL)

cos kL+ α
[
W s

lb(kd, kL) +W s
t (kd, kL)

]

+
fa1 (kL, γL)

sin kL+ α
[
W a

lb(kd, kL) +W a
t (kd, kL)

]
}∣∣∣∣∣ , (24)

|S34|=

∣∣∣∣∣∣∣1 −
4πα cos2

πx0

a
iabkγ

{
fs(kL, γL)

cos kL+ α
[
W s

lb(kd, kL)+W s
t (kd, kL)

]
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− fa(kL, γL)
sin kL+ α

[
W a

lb(kd, kL) +W a
t (kd, kL)

]
}∣∣∣∣∣ ,

|S31|2 = |S32|2 =
1
2

(
1 − |S33|2 − |S34|2

)
.

The expressions for W s
t , W

a
t , W

s
ln, W

a
ln, W

s
lb, W

a
lb, f, f

s, fa, fs1 , f
a
1

functions are represented in Appendix A.

3.4. Finite Thickness of Coupling Region Account

The h finite thickness of the wall between coupled volumes can be
taken into account due to [20, 21] which introduces the de slot effective
width concept. Then at the (h/λ) � 1, precisely up to the terms of
the {(hd)/λ2} order, we have [20]:

h

d
� 1 : de = d

(
1 − 1

π

h

d
ln
d

h

)
;
h

d
>∼ 1 : de = d

(
8
πe
e−

π
2

h
d

)
.

(25)
The expression in [21] is a good approximation for both cases:

de ∼= d e−
πh
2d . (26)

The |S13| coefficient calculations using the approximate ratios of
(25) and (26) within the limits of 0 ≤ h/2L ≤ 0.2 coincide with
the results, obtained in [22], where the account of the rectangular
waveguide wall thickness has been made by solving two coupling
integral equations with method of moments.

4. NUMERICAL RESULTS AND DISCUSSION

The plots of the dependences of the |SΣ|2 = |S13|2 + |S14|2 coupling
coefficient from the length of the symmetrical transverse slot in
the common infinitely thin broad wall of two identical rectangular
waveguides are in Figure 2. The dependences have been calculated by
different methods. It is seen that the calculations made by means of
the averaging, variotional [4] and moments methods [6] give the values
of the slot resonance length (slot “shortening”) of 2L ∼= 0.47λ. The
results obtained by using the quasi-static [3] and equivalent circuits
(the “reaction” method [9]) methods lead to the resonance value of
2L = 0.5λ that does not correspond the reality. We note that Figure 2
gives the results of solving the problem with the help of the moment
method as a numerical experiment.
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Figure 2. The coupling coefficient dependence from the symmetrical
transverse slot length in the common broad wall of two rectangular
waveguides at: a = 22.86 mm, b = 10.16 mm, d = 1.5875 mm,
λ = 32.0 mm, h = 0.0 mm.

In Figure 3 there are the plots of the amplitude-and-phase
distribution of the J(s) = |J(s)|ei arg J(s) current along the transverse-
longitudinal slot in the common infinitely thin broad wall of two
mutually perpendicular waveguides. It is seen that if the slot for the
H10 excitation wave is transverse (Wt → Wlb), then the amplitude
distribution of current is purely symmetrical and the current phase
is constant along the slot length. For another case of the excitation
(Wlb → Wt), the amplitude distribution of the current is sufficiently
asymmetric and the current phase changes along the slot. The current
distribution curves are of the same kind in the case of two waveguides
coupling through the longitudinal slot in the common broad wall of
the finite thickness of the rectangular waveguides in Figure 4. The
calculations have been made according to the formula (23) (where
there is the W s,a

t → W s,a
lb change) and by Galerkin’s method: J(s) =

N∑
n=1

Jn sin nπ(L+s)
2L , taking into account 2, 6 and 12 basis functions. We

can see that the change of the external volume sufficiently increases
the contribution of the Ja(s) current antisymmetrical component into
the general distribution function.

Thus, the obtained asymptotic solution of the integral equation
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Figure 3. The current distribution along the transverse/longitudinal
(Wt and Wlb respectively) slots in the common broad wall of two
mutually perpendicular waveguides at: a = 22.86 mm, b = 10.16 mm,
d = 1.5875 mm, λ = 25.8 mm, 2L = 20 mm, x0 = 1.43 mm is the slot
axis position, h = 0.0 mm.
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Figure 4. The current distribution along the longitudinal slot in the
common broad wall of two rectangular waveguides at: a = 22.86 mm,
b = 10.16 mm, d = 1.5875 mm, λ = 25.8 mm, 2L = 20 mm, x0 =
1.43 mm is the slot axis position, h = 2.0 mm.
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concerning the magnetic current in slot-hole coupling apertures
allows us to obtain analytical expressions for the current to the
first approximation which is valid for various ratios between the
wavelength and a longitudinal size of the slot. The given numerical
results demonstrate the efficiency and the effectiveness of such a
solution. However, there are some quantitative differences between the
calculated values of electrodynamics characteristics of the slot coupling
apertures, which have been obtained by using the above-mentioned
asymptotic formulas and numerical methods. These differences may
be removed by using the magnetic current expression obtained from
asymptotic solution of the integral equation with the help of the
averaging method in combination with other analytical methods, for
example, with the induced magnetomotive forces method as it was
proposed by the authors in [23, 24].

5. INDUCED MAGNETOMOTIVE FORCES METHOD
WITH BASIS FUNCTIONS OF THE AVERAGING
METHOD FOR ANALYSIS OF COUPLING SLOTS IN
WAVEGUIDES

While applying the moments and Galerkin’s methods to analyse single
and multi-slot elements of the coupling of electrodynamic volumes,
different basis and weight functions can be used: the piecewise [6],
the piecewise linear and piecewise sinusoidal [25], the trigonometric
[7, 8, 28, 29] and Gegenbauer polynomials [26, 27]. In these cases it is
necessary to solve the system of linear algebraic equations (SLAE)
of the N -order, where N is a number of linearly independent basis
functions. The system matrix elements (N2-in all) cannot always be
obtained analytically, and calculation time increases proportionally to
N3 [30].

For slots system, the order of SLAE increases proportionally to the
number of slots. Therefore it is necessary, to our minds, to approximate
the distribution of the slot equivalent magnetic current by one or two
functions (it depends on an excitation character) as it was done, for
example, in [5, 9, 10]. When only one approximating function exists
for every slot in a multi-slot system, Galerkin’s method gets the name
“induced magnetomotive forces method” (IMMFM). In this case the
solution is more accurate when the approximating functions describing
the slot magnetic current distribution are more accurate. In [5, 9, 10]
the half-wave and wave sinusoidal functions were used for the slot with
the 2L ≤ λ length. For longer slots it is necessary to increase the
number of functions.

We suggest better functions of the current distribution for
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IMMFM that gives sufficiently satisfactory approximation of the
current in longer longitudinal slots and in the transverse slots system.
These functions have been obtained in Chapter 3 (formula (18) for
transverse slots and formula (23) for longitudinal slots) when we solved
the integral equation for the slot magnetic current by the asymptotic
method of averaging.

5.1. Longitudinal Slot in a Common Broad Wall of
Waveguides

Generally, the projection of the H0s(s) impressed field on the slot
axis and the J(s) magnetic current in it can be represented with two
components — symmetrical and antisymmetrical ones along the slot
with the respect to its center — H0s(s) = Hs

0s(s) + Ha
0s(s), J(s) =

Js(s) + Ja(s). Owing to this, we can have the following integral-
differential equation for the current (5) in a narrow linear slot:(

d2

ds2
+ k2

) L∫
−L

[Js(s′) + Ja(s′)][Ge
s(s, s

′) +Gi
s(s, s

′)]ds′

= −iω [Hs
0s(s) +Ha

0s(s)] . (27)

Let us represent the current as unknown amplitudes and
distribution functions fixed:

J(s) = Js0f
s(s) + Ja0 f

a(s), (28)

where the fs(s) and fa(s) functions must satisfy the following
boundary conditions: fs(±L) = 0, fa(±L) = 0. From (28) we have
only two unknown amplitudes Js0 and Ja0 . They can be obtained from
two independent equations with the respect of Js0 and Ja0 that we have
using IMMFM:

Js0
[
Y e
s (kd, kL) + Y i

s (kd, kL)
]

= Ms(kL),
Ja0

[
Y e
a (kd, kL) + Y i

a (kd, kL)
]

= Ma(kL),
(29)

where:

Y e,i
s,a (kd, kL) =

1
ω

L∫
−L

fs,a(s)




(
d2

ds2
+ k2

) L∫
−L

fs,a(s′)Ge,i
s,a(s, s

′)ds′


 ds
(30)

are the external and inner partial slot admittances and

Ms,a(kd, kL) = −i
L∫

−L

fs,a(s)Hs,a
0s (s)ds (31)
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are the partial magnetomotive forces.
For the longitudinal slot in the broad wall of the rectangular

waveguide due to (23), the fs(s) and fa(s) basis functions have the
following forms:

fs(s) = cos ks cos γL− cos kL cos γs,
fa(s) = sin ks sin γL− sin kL sin γs.

(32)

5.2. Two Symmetrical Transverse Slots in a Common Broad
Wall of Waveguides

For the two slots in a waveguide wall (Figure 5), one can obtain the
system of two coupled integral-differential equations for the J1(s1) and
J2(s2) magnetic currents in the first and the second slots:


(
d2

ds21
+ k2

) 


L1∫
−L1

J1(s′1)G
Σ
s1(s1, s

′
1)ds

′
1 +

L2∫
−L2

J2(s′2)G
Σ
s1(s1, s

′
2)ds

′
2




= −iωH0s1(s1),(
d2

ds22
+ k2

) 


L2∫
−L2

J2(s′2)G
Σ
s2(s2, s

′
2)ds

′
2 +

L1∫
−L1

J1(s′1)G
Σ
s2(s2, s

′
1)ds

′
1




= −iωH0s2(s2),
(33)

where: GΣ
s1,2

(s1,2, s′1,2) = Ge
s1,2

(s1,2, s′1,2) + Gi
s1,2

(s1,2, s′1,2), H0s1(s1)
and H0s2(s2) are the projections of the field of the impressed sources
to the slot axes.

As in a previous case the currents in every slot can be written in
the following way:

J1(s1) = J01f1(s1), J2(s2) = J02f2(s2); f1(±L1) = 0, f2(±L2) = 0.
(34)

Due to the induced magnetomotive forces method used for two slots
system, we transform (33) into the following algebraic equations system
relative to J01 and J02 unknown amplitudes:{

J01Y
Σ
11(kd1, kL1) + J02Y

Σ
12(kL1, kL2) =M1(kL1),

J01Y
Σ
21(kL2, kL1) + J02Y

Σ
22(kL2, kL2) =M2(kL2).

(35)

Here

Y Σ
mn(kLm, kLn)=

1
ω

Lm∫
−Lm

fm(sm)



(
d2

ds2m
+k2

)Ln∫
−Ln

fn(s′n)GΣ
sm

(sm, s′n)ds′n


dsm,
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Figure 5. The slots system in the waveguides common wall.

(m,n = 1, 2) (36)

are the eigen (m = n) and mutual (m �= n) slots admittances,
respectively;

Mm(kLm) = −i
Lm∫

−Lm

fm(sm)H0sm(sm)dsm, (m = 1, 2) (37)

are the magnetomotive forces.
In the case of two symmetrical transverse slots, the currents in

them are also symmetrical. They can be represented as (kc = 2π/λc, λc
is the cut-off H10 wavelength) due to (18):

fm(sm) = cos ksm cos kcLm − cos kLm cos kcsm, (m = 1, 2). (38)

Generally, slots can be located at the ϕ angle to the longitudinal
waveguide axis. Then according to the general solution of the integral
equation (16) for the current, the basis functions of IMMFM have the
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forms:

fs(s) =
cos ks cos k2L− cos kL cos k2s

(sinϕ+ (kc/γ) cosϕ)2
eikcx0

−cos ks cos k1L− cos kL cos k1s
(sinϕ− (kc/γ) cosϕ)2

e−ikcx0 ,

fa(s) =
sin ks sin k2L− sin kL sin k2s

(sinϕ+ (kc/γ) cosϕ)2
eikcx0

+
sin ks sin k1L− sin kL sin k1s

(sinϕ− (kc/γ) cosϕ)2
e−ikcx0 ,

(39)

where: k1 = kc sinϕ+γ cosϕ, k2 = kc sinϕ−γ cosϕ, x0 is the distance
between the narrow waveguide wall and the slot center. Let us note
that at ϕ = 0, the formulas (39) are transformed into (32) and at
ϕ = π/2 into (38).

If the coupling between the waveguides is made by the multi-
slot structure consisting of the M symmetrical transverse slots, then
the current distribution function in each of them is chosen due to
(38). Hence, the order of SLAE (35) increases relatively, the slots
conductivities and the magnetomotive forces can be calculated owing
to the same formulas (36) and (37) in this case.

5.3. Coupling Coefficients

Using (32) and (38) we can obtain unknown amplitudes Js0 , J
a
0 , J01, J02

from (29) and (35), respectively. It gives us the opportunity to obtain
energy characteristics of the coupling slot elements.

For the longitudinal slot in the common broad wall of rectangular
waveguides, we have:

|S11| = |S13| =

∣∣∣∣∣∣∣
4π3 cos2

πx0

a
ωa3bγ

[
J̃s0F

s(kL) + J̃a0F
a(kL)

]∣∣∣∣∣∣∣ ,

|S12| =

∣∣∣∣∣∣∣1 −
4π3 cos2

πx0

a
iωa3bγ

[
J̃s0F

s(kL)−J̃a0F a(kL)
]∣∣∣∣∣∣∣ , |S14| = |S12−1|,

(40)

where

J̃s0 =
F s(kL)

Y e
s (kd, kL) + Y i

s (kd, kL)
, J̃a0 =

F a(kL)
Y e
a (kd, kL) + Y i

a (kd, kL)
. (41)
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For two symmetrical transverse slots in the common broad wall of
rectangular waveguides, the following expressions have been obtained:

|S11| = |S13| =
∣∣∣∣ 4πγ
abk2

[
J̃1F (kL1) + e−iγz0 J̃2F (kL2)

]∣∣∣∣
|S12| =

∣∣∣∣1 − 4πγ
iabk2

[
J̃1F (kL1) + eiγz0 J̃2F (kL2)

]∣∣∣∣ , |S14| = |S12 − 1|,

(42)

where J̃1 = F (kL1)Y Σ
22−e−iγz0F (kL2)Y Σ

12

Y Σ
11Y

Σ
22−(Y Σ

12)2
, J̃2 = e−iγz0F (kL2)Y Σ

11−F (kL1)Y Σ
12

Y Σ
11Y

Σ
22−(Y Σ

12)2
.

The expressions for the Ys, Ya, Ymn admittances and the
F s, F a, F functions are given in Appendix B.

5.4. Numerical Results

The current distribution curves in the case of two rectangular
waveguides coupled through the longitudinal slot in the common
broad wall of the finite thickness are given in Figures 6a, b. The
calculations have been made according to the formulas (28), (32)
and by the Galerkin’s method taking into account 6 basis functions.
In the Figure 6c, the plots of the |SΣ|2 = |S13|2 + |S14|2 coupling
coefficients dependences of the longitudinal slot in the broad waveguide
wall due to its electrical length are presented. In the Figures 7, 8,
the coupling coefficients dependences are given for the system of two
identical, rectangular symmetrical transverse slots where the distance
between them equals z0. The calculations have been made with the
following representations of the magnetic current: a) in the form of

J(s) =
N∑

n=1
Jn sin nπ(L+s)

2L (Galerkin’s method), b) with the use of the

functions (32) and (38), c) using the following approximations:

J(s) = Js0 cos(πs/2L) + Ja0 sin(πs/L) (for the longitudinal slot [5]);
(43)

Jm(sm)=J0mcos(πsm/2Lm), m = 1, 2 (for two transverse slots system).
(44)

The Figure 6c also gives the calculated values obtained by using the
finite elements method (FEM) due to the program “CST Microwave
Studio”.

Hence, the approximation (32) when only two basis functions are
used, gives good match with the results obtained by using Galerkin’s
and the finite elements methods for the longitudinal slots with the
electrical length up to 2L/λ ≤ 2.75 (when it is necessary to use
12 basis functions for the Galerkin’s method); meanwhile the (43)
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Figure 6a, b. The current distribution along the longitudinal slot
in the common broad wall of two rectangular waveguides at: a =
22.86 mm, b = 10.16 mm, d = 1.5875 mm, λ = 25.8 mm, 2L = 20 mm,
x0 = 1.43 mm is the slot axis position, h = 2.0 mm.
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Figure 6c. The coupling coefficient dependence from the relative
length of the longitudinal slot in the common broad wall of two
rectangular waveguides at: a = 23 mm, b = 10 mm, d = a/15, x0 =
a/6, λ/λc = 0.625, h = 2.0 mm.

approximation is satisfactory for only up to 2L/λ ≤ 1.25. In the case
of two transverse slots, the (38) approximation is good, too. It gives
satisfactory coincidence with the results of Galerkin’s method and the
experimental data in different parts of the band of the operating length
of the H10-wave, especially at the resonance points. The (44) basis
functions change the resonance frequency values. We think that (43)
and (44) functions describe the slot current distribution less accurately
than the (32) and (38) functions because they do not have the λ, λc
and λg (wavelength in the waveguide) values in the distribution, the
ratios of which between each other, and the slot length supposes the
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Figure 7. The coupling coefficient dependence from the wavelength
for two symmetrical transverse slots in the common broad wall of two
rectangular waveguides at: a = 23 mm, b = 10 mm, d1 = d2 = 2.0 mm,
2L1 = 2L2 = 10.6 mm, z0 = 10.0 mm, h = 1.0 mm.
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Figure 8. The coupling coefficient dependence from the wavelength
for two symmetrical transverse slots in the common broad wall of two
rectangular waveguides at: a = 23 mm, b = 10 mm, d1 = d2 = 1.6 mm,
2L1 = 2L2 = 2L, z0 = 2λ/3, h = 0.0 mm.
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Figure 9. The coupling coefficient dependence from the relative length
of the longitudinal slot in the common broad wall of two rectangular
waveguides at: a = 23 mm, b = 10 mm, d = a/15, x0 = a/4, h =
2.0 mm.

formation of the magnetic current amplitude-phase distribution and
energy characteristics of the coupling slot holes.

The latter is proved by the plots given in the Figure 9 where
the curves of the coupling coefficient dependences of two identical
waveguides through the longitudinal slot in their common broad wall
from 2L/λ are represented at different values of λ/λc. It is clear that
if the λ/λc ratio increases then the Q-factor of the |SΣ|2 = f(2L/λ)
resonance curves decreases. At definite ratio between 2L/λ and λ/λc,
practically the full power of the initial wave from one waveguide to the
other one can be transmitted.

The important results have been obtained in the case of the multi-
slot coupling through transverse symmetrical slots. The Figure 10
gives the dependences of the |S11|, |S12|, |S13|, |S14| and |SΣ|2 coupling
coefficients from the wavelength for the system consisting of 16 slots
of equal length, the distance between which equals z0m = λresg /4,
where λresg is the waveguide wavelength, which corresponds to the
λres resonance wavelength of the single slot (λres = 33.7 mm for
2L = 16 mm). As it is seen from the plots, the power in this case,
entering the first shoulder of the main waveguide (a region 1) is
divided into 4 equal parts in sufficiently wide band of wavelengths
(∆λ/λres = 0.15). Note, that here we take into account full interaction
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Figure 10. The coupling coefficients dependence from the wavelength
for the system of 16 transverse slots in the common broad wall of two
rectangular waveguides at: a = 23 mm, b = 10 mm, dm = 1.6 mm,
2Lm = 16 mm, z0m = 12.4 mm, h = 0.2 mm.

between all slots for a finite thickness of waveguides walls and the
calculation time is far less then when Galerkin’s or the finite elements
methods are used.

6. CONCLUSION

This paper presents a new asymptotic solution of the integral equation
for the magnetic current in the problem of the electromagnetic coupling
between waveguides via the narrow slots in their common walls. As
a result, we have obtained the approximate analytical expressions
for the slot magnetic current for the adjusted and unadjusted slots
coupling two waveguides, generally, without concrete definition of the
exiting field of the impressed sources. The analytical formulas for
the current distribution function obtained by the averaging method
can be used with other calculation methods (for example, the induced
magnetomotive forces method) which suppose the availability of the
information a priory about the current distribution function. They are
groundless when this distribution is unknown even approximately.
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APPENDIX A.

The functions of the slot own field for the case of coupling of two
infinite rectangular waveguides are given below:

W s
t (kd, kL) =

8π
ab

∑
m,n

εne
−kzd/4

kz(k2 − k2
x)

sin2 mπ

2

× cos kxL(k sin kL cos kxL− kx cos kL sin kxL), (A1)

W a
t (kd, kL) = −8π

ab

∑
m,n

εne
−kzd/4

kz(k2 − k2
x)

cos2
mπ

2

× sin kxL(k cos kL sin kxL− kx sin kL cos kxL), (A2)

W s
lb(kd, kL) =

4π
ab

∑
m,n

εmεn cos kxx0 cos kx(x0 + d/4)
kz(k2

x + k2
y)

×e−kzL[kz cos kLshkzL+ k sin kLchkzL], (A3)

W a
lb(kd, kL) =

4π
ab

∑
m,n

εmεn cos kxx0 cos kx(x0 + d/4)
kz(k2

x + k2
y)

×e−kzL[kz sin kLchkzL− k cos kLshkzL], (A4)

W s
ln(kd, kL) =

4π
ab

∑
m,n

εmεn cos kyy0 cos ky(y0 + d/4)
kz(k2

x + k2
y)

×e−kzL[kz cos kLshkzL+ k sin kLchkzL], (A5)

W a
ln(kd, kL) =

4π
ab

∑
m,n

εmεn cos kyy0 cos ky(y0 + d/4)
kz(k2

x + k2
y)

×e−kzL[kz sin kLchkzL− k cos kLshkzL]. (A6)

f

(
kL,

π

a
L

)
= 2 cos

π

a
L

sin kL cos
π

a
L− π

ka
cos kL sin

π

a
L

1 − (π/ka)2

− cos kL
(2π/ka)

(
sin

2πL
a

+
2πL
a

)
. (A7)

fs(kL, γL) = 2 cos γL
sin kL cos γL− (γ/k) cos kL sin γL

1 − (γ/k)2
,

fa(kL, γL) = 2 sin γL
cos kL sin γL− (γ/k) sin kL cos γL

1 − (γ/k)2
.

(A8)
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fs1 (kL, γL) = fs(kL, γL) − cos kL
2(γ/k)

(sin 2γL+ 2γL),

fa1 (kL, γL) = fa(kL, γL) − sin kL
2(γ/k)

(sin 2γL− 2γL).
(A9)

In the (A1)–(A9) expressions there are the following symbols: kx =
mπ
a , ky = nπ

b , kz =
√
k2
x + k2

y − k2, (m,n = 0, 1, 2 . . .); γ =√
k2 − (π/a)2; εm,n = 1 at m,n = 0, εm,n = 2 at m,n �= 0; x0

and y0 are the slots axes coordinates.

APPENDIX B.

The longitudinal slot admittances:

Y i
s (kd, kL) =

4π
ωab

∞∑
m=0

∞∑
n=0

εmεn cos kxx0 cos kx
(
x0 +

d

4

)

×
{[

cos γL
(
k

kz
sin kL− cos kL

)]
F s(kzL)

− cos kL
k2
z + γ2

[(
k2
z + k2

) (
γ

kz
sin γL− cos γL

)
F s(kzL)

+
(
π

a

)2

F s(kL)

]}
, (B1)

F s(kL)=2cosγL
k sin kLcosγL−γ coskL sinγL

(π/a)2
− coskL

sin2γL+2γL
2γ

,

(B2)

F s(kzL) =
cos γL
k2
z + k2

[
kz cos kL

(
1 − e−2kzL

)
+ k sin kL(1 + e−2kzL)

]

− cos γL
k2
z + γ2

[
kz cos γL

(
1 − e−2kzL

)
+ γ sin γL(1 + e−2kzL)

]
(B3)

Y i
a (kd, kL) =

4π
ωab

∞∑
m=0

∞∑
n=0

εmεn cos kxx0 cos kx
(
x0 +

d

4

)

×
{[

− sin γL
(
k

kz
cos kL+ sin kL

)]
F a(kzL)

+
sin kL
k2
z + γ2

[(
k2
z + k2

) (
γ

kz
cos γL+ sin γL

)
F a(kzL)
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+
(
π

a

)2

F a(kL)

]}
, (B4)

F a(kL)=2 sinγL
k cos kL sin γL−γsin kL cos γL

(π/a)2
−sin kL

sin 2γL−2γL
2γ

,

(B5)

F a(kzL) =
sin kgL
k2
z + k2

[
kz sin kL

(
1 + e−2kzL

)
− k cos kL(1 − e−2kzL)

]

− sin kL
k2
z + γ2

[
kz sin γL

(
1 + e−2kzL

)
− γ cos kL(1 − e−2kzL)

]
.

(B6)

The eigen (m = n) and mutual (m �= n) slot admittances of the
transverse slots system:

Ymm(kdm, kLm) =
4π
ωab

∞∑
m=1

∞∑
n=0

εn(k2 − k2
x)

kz
e−kz

dm
4 sin2 mπ

2

× [I(kLm) cos kcLm − I(kcLm) cos kLm]2 , (B7)

Ymn(kLm,n, kLn,m) = Ynm(kLn,m, kLm,n)

=
4π
ωab

∞∑
m=1

∞∑
n=0

εn(k2 − k2
x)

kz
e−kzz0 sin2 mπ

2

× [I(kLm) cos kcLm − I(kcLm) cos kLm]
× [I(kLn) cos kcLn − I(kcLn) cos kLn] , (B8)

I(kL) = 2
k sin kL cos kxL− kx sin kxL cos kL

k2 − k2
x

;

F (kL) = 2 cos kcL
sin kL cos kcL−(kc/k) cos kL sin kcL

1 − (kc/k)2

− cos kL
sin kcL+ 2kcL

(2kc/k)
. (B9)

The rest symbols are the same as in the (A1)–(A9) formulas.
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