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Abstract—The finite-difference time-domain (FDTD) method is used
to obtain numerical solutions of infinite periodic structures without
resorting to the complex frequency-domain analysis, which is required
in traditional frequency-domain techniques. The field transformation
method is successfully used to model periodic structures with oblique
incident waves/scan angles. Maxwell’s equations are transformed
so that only a single period of the infinite periodic structure is
modeled in FDTD by using periodic boundary conditions (PBCs).
When modeling periodic structures with the transformed fields, the
standard Mur second-order absorbing boundary condition cannot be
used directly to absorb the outgoing waves. This paper presents a new
implementation of Mur’s second-order absorbing boundary condition
(ABC) with the transformed fields in the FDTD method. For designs
that require multi-parametric studies, Mur’s ABCs are efficient and
sufficient boundary conditions. If more accurate results are needed, the
perfectly matched layer (PML) ABC can be used with the parameters
obtained from the Mur solution.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method has been widely
used for the analysis of electromagnetic scattering, radiation, and
propagation problems since it was first introduced by Yee [1]. The
FDTD method is simple and accurate without resorting to the
somewhat more complex traditional frequency-domain techniques,
such as Method of Moments (MoM). It has the capability to
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simulate electromagnetic interactions in complicated geometries that
are extremely difficult to analyze by other methods. Due to the
limitations of computational resources, the FDTD numerical solution
requires the use of radiation or absorbing boundary conditions (ABCs)
in order to accurately truncate an infinite computational domain.
One of the analytical ABC methods developed for open-boundary
problems is based on the one-way wave equations (OWWEs). Engquist
and Majda proposed the use of OWWEs for truncation of the
computational domain [2] and Mur introduced the discretization and
application of OWWEs to the Yee algorithm [3]. Before the Perfectly
Matched Layer (PML) ABCs were developed in [4], Mur’s second-order
ABC and its modifications were among the most widely used ABCs in
the FDTD method.

In many electromagnetic applications, the structures of interest
have a periodicity in one or two dimensions, such as frequency selective
surfaces (FSS) [5], electromagnetic bandgap (EBG) structures [6], or
infinite antenna arrays [7]. To apply the FDTD method to the oblique
incidence case for such structures, the field transformation method
was introduced in [8]. Its further extensions can be found in [9, 10].
One of the FDTD discretization methods for the transformed fields
is the split-field method [11–13]. The field transformation method is
applied to transform Maxwell’s equations from the E-H domain to
the mapped P -Q domain. In addition, this method can be used in
FDTD to overcome difficulties in the implementation of time-advance
and time-delay across the grid [14]. In this case, infinite periodic
structures are truncated into single-period structures with periodic
boundary conditions (PBCs) in one or two dimensions. The other sides
of the computational domain in FDTD must be truncated by ABCs
to avoid reflections. Due to structural periodicities, the ABCs should
have periodic properties so that they can properly absorb the outgoing
waves. In contrast, the standard Mur second-order ABC needs proper
adjustments in order to absorb the outgoing waves.

This paper proposes a new discretization method of Mur’s second-
order ABC with transformed fields in FDTD. A key feature of
the method is to separate the FDTD updating equations in Mur’s
second-order ABC into two parts. Each part is updated by different
components. In the normal incidence case, however, the proposed Mur
second-order ABC in the mapped P -Q domain retains its standard
form as in the E-H domain.
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2. FORMULATIONS AND EQUATIONS

Consider a periodic structure that may contain lossy, anisotropic
materials with periodicities in both the y- and z-directions, and which
is truncated by ABCs in the x-direction. In the frequency domain, the
field transformation method is applied to transform the electric and
magnetic field components from the E-H domain to the P -Q domain
as,

P̃x = Ẽxe
jkyy+jkzz, (1a)

P̃y = Ẽye
jkyy+jkzz, (1b)

P̃z = Ẽze
jkyy+jkzz, (1c)

Q̃x = η0H̃xe
jkyy+jkzz, (1d)

Q̃y = η0H̃ye
jkyy+jkzz, (1e)

Q̃z = η0H̃ze
jkyy+jkzz. (1f)

The tilde symbol “∼” is used to denote the field components in
the frequency domain. After substituting these transformed field
components into Maxwell’s equations and transforming them from the
frequency domain to the time domain, the modified time-dependent
Maxwell’s equations can be obtained [9, 10] (the drivation are given in
the Appendix for convenience,

∂
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(
εr

c
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c
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Λ = kyŷ + kz ẑ
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and θ, φ represent the incident/scan angles in the problem.
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Using the modified Maxwell’s equations (2) and following the
procedure presented in [2], the free-space one-way wave equation in
the mapped P -Q domain can be obtained as [8, 10],(
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(3)
where W represents field quantity that is tangential to the absorbing
boundary in the P -Q domain.

The computational domain in FDTD is truncated at x = 0 and
x = h in the x-direction with ABCs, and the ABCs with transformed
fields at these two planes become
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In the following, the absorbing boundary at x = 0 is discretized
in FDTD as an example. The other boundary is also developed in a
similar way.

2.1. Mur’s First-order ABCs

Because the first-order Mur ABC in FDTD removes both the y- and z-
derivative terms, the periodic properties of the structures in OWWEs
will also be removed. Therefore, the discretized form of the first-order
Mur ABC in FDTD at x = 0 will be the same as the standard one [14],
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where i, j, k represent the grid positions in the x-, y- and z-directions
in the computational domain, and n represents the iteration time step.

2.2. Mur’s Second-order ABCs

Following standard procedures in the discretization of Mur’s second-
order ABC in FDTD creates difficulties in discretizing some terms in
equation (3) that combine both the y- and z-derivative and the time-
derivative, that are introduced by the field transformation method.
Therefore, it is convenient to rewrite equation (3) as
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Equation (6a) is separated into two parts,
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In this case, f(W ) can be discretized by using the standard Mur
procedure to obtain(
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+
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In the field transformation method, we choose the dual-time
technique [9, 11] to update fields in FDTD. Thus, we can update g(W )
as
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By combining the two parts together, we obtain the final updating
equation for Mur’s second-order ABC,(
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3. NUMERICAL VERIFICATIONS

In this section, numerical validations based on the formulations
described in Section 2 are presented. In the first numerical experiment,
we consider a y- and z-periodic infinite infinitesimal-dipole array with
scan angle (normal scan angle). The grid sizes in the x-, y-, and z-
directions are 0.5 mm, and the time step is 0.77 ps. The computational
domain in the x-, y-, and z-directions is 15 cm × 25 cm × 25 cm
(30 × 50 × 50 cells). The dimensions in the periodic directions are
larger than in the absorbing direction so that the coupling fields from
neighboring unit cells arrive to the sampling positions later than fields
reflected from the ABCs. A larger benchmark domain (100 × 50 × 50
cells) truncated by a 10-layer PML is used as the reference for the
reflection studies of Mur’s ABCs. A horizontal infinitesimal dipole is
placed in the center of the computational domain, (15, 25, 25), with
a Gaussian waveform pulse peaking at time-step n = 73 with a peak
value of 1 as

Py(t) = exp

(
−(t− t0)2

τ2

)
(8)

where t0 is the time at which the pulse reaches its maximum and τ is a
parameter related to pulse width. To study the reflections from ABCs,
global error [14] is not used here due to the limitation of computer
resources and complexity of the field transformation method. Instead,
a local normalized error at the observation point (1, 15, 15) and an
averaged normalized error at the observation plane x = 1 are defined
in (9) and (10)

Local Error(t) =
|y(t) − yreference(t)|
max |yreference(t)|

(9)
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Avg Error(t) = Avg

(
|y(t) − yreference(t)|
max |yreference(t)|

)
|x=1. (10)

Since c∆t ≈ ∆x/2, the leading edge of the propagating wave generated
by the source requires approximately 116∆t to propagate from the
source to the observation point (1, 15, 15) and approximately 103∆t
to propagate over the 15∆t distance to the center of the plane grid
at x = 1, or (1, 25, 25). The strong coupling fields from the nearest
neighboring unit cells will arrive at approximately 167∆t. This allows
the outgoing wave to pass through the boundaries and excite the
possible reflections from the boundaries.
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Reference

2

1

0

-1

-2

-3

-4

Figure 1. Time-domain response from Mur’s first-order, second-order
ABCs and PML ABCs over the first 200 time steps for normal scan
angle.

Fig. 1 shows the time-domain responses from Mur’s first-order,
second-order ABCs and 10-layer PML ABCs for the case of normal
scan angle. In Fig. 1, the time-domain result obtained by using the
Mur second-order ABC is much closer to the reference result than that
of the Mur first-order ABC, as expected. Fig. 2 compares both the
local error and averaged error among the Mur first-order, second-order
ABCs and 10-layer PML ABCs over 200 time steps. The Mur second-
order ABC yields approximately 1/3 of local error and approximately
1/2 of averaged error of the Mur first-order ABC. After the coupling
fields from the neighboring unit cells become significant, the differences
between Mur’s first-order and second-order ABCs are smaller. The
computational time and memory requirement for Mur’s first-order,
second-order ABCs and 10-layer PML ABCs are listed as Table 1.
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Table 1. Computational resources required for Mur’s 1st order, Mur’s
2nd order ABCs and 10-layer PML ABCs.

Mur’s 1st order
ABCs

Mur’s 2nd order
ABCs

10-layer PML
ABCs

Memory (Mb) 24 25 38
CPU time (s) 37 38 58
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Figure 2. Reflection errors from Mur’s first-order, second-order ABCs
and PML ABCs over the first 200 time steps for normal scan angle:
(a) local errors, (b) averaged errors.

A second numerical validation is conducted at 45◦ scan angle
with the same computational domain, excitation form, and sampling
positions as in the previous case. The requirements for stability
condition and the dispersion relation in FDTD at this angle are
the most restrictive among all the scan angles [13]. The time step
is changed to 0.42 ps for this case in order to satisfy the stability
condition, which depends on the scan angle. The leading edge of
the propagating wave generated by the source requires approximately
210∆t to propagate from the source to the observation point (1, 15,
15) and approximately 187∆t to propagate over the 15∆t distance to
the center of the plane grid at x = 1, or (1, 25, 25). The strong
coupling fields from the nearest neighboring unit cells will arrive at
approximately 304∆t.

Fig. 3 shows the time-domain response of Mur’s first-order,
second-order ABCs and 10-layer PML ABCs for the case of the 45-
degree scan angle. The time-domain result obtained by using the Mur
second-order ABC is much closer to the reference result than the result
of the Mur first-order ABC, which is similar to the previous case. This
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Figure 3. Time-domain response from Mur’s first-order, second-order
ABCs and PML ABCs over the first 400 time steps for the 45-degree
scan angle.
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Figure 4. Reflection errors from Mur’s first-order, second-order ABCs
and PML ABCs over the first 400 time steps for the 45-degree scan
angle: (a) local errors, (b) averaged errors.

indicates that Mur’s second-order ABCs generate less reflection than
the first-order ABCs for the oblique scan angle. Fig. 4 compares both
the local error and averaged error among the Mur first-order, second-
order ABCs and 10-layer PML ABCs over 400 time steps. Mur’s
second-order ABC yields approximately 2/5 of the local error and
approximately 2/3 of averaged error of Mur’s first-order ABC. The
local and averaged errors at 45-degree scan angle are larger than those
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obtained in the case of the normal scan angle. At 45-degree scan
angle, the numerical value of wave velocity is not equal to the value
of free-space wave velocity, which is used in both Mur’s first-order
and second-order ABCs. From the updating equations, the effect on
Mur’s second-order ABCs is larger than that of the first-order. The
reflection errors from Mur’s second-order ABC can be reduced if the
actual numerical value of the wave velocity is used in the updating
equations. Another reason is that some weaker coupling fields have
already arrived at the sampling positions before 304∆t have affected
the reflection studies.

4. CONCLUSION

Mur’s first-order and second-order ABCs with periodic boundary
conditions have been implemented in the FDTD method in order to
analyze periodic structures. Based on the numerical experiments,
Mur’s first-order and second-order ABCs require 50% less memory,
50algorithm than a 10-layer PML ABCs with the same computational
domain. Mur’s second-order ABC is more accurate than the first-
order ABC and can be successfully applied for a multi-parametric quick
design with periodicities.
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APPENDIX A. MODIFIED MAXWELL’S EQUATIONS
IN THE P -Q DOMAIN

Define the transformed fields as

P̃x = Ẽxe
jkyy+jkzz, (A1a)

P̃y = Ẽye
jkyy+jkzz, (A1b)

P̃z = Ẽze
jkyy+jkzz, (A1c)

Q̃x = η0H̃xe
jkyy+jkzz, (A1d)

Q̃y = η0H̃ye
jkyy+jkzz, (A1e)

Q̃z = η0H̃ze
jkyy+jkzz, (A1f)
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which are used in the frequency domain Maxwells equations to yield

jωεxr

c
�Px + σxη0

�Px =
∂ �Qz

∂y
− ∂ �Qy

∂z
− j�ky

∂

∂t
�Qz + j�kz

�Qy (A2a)

jωεyr

c
�Py + σyη0

�Py = −∂ �Qz

∂x
+

∂ �Qx

∂z
− j�kz

�Qx (A2b)

jωεzr

c
�Pz + σzη0

�Pz =
∂ �Qy

∂x
− ∂ �Qx

∂y
+ j�ky

�Qx (A2c)

jωµxr

c
�Qx +

σ∗
x

η0

�Qx = −∂ �Pz

∂y
+

∂ �Py

∂z
+ j�ky

�Pz − j�kz
�Py (A2d)

jωµyr

c
�Qy +

σ∗
y

η0

�Qy =
∂ �Pz

∂x
− ∂ �Px

∂z
+ j�kz

�Px (A2e)

jωµzr

c
�Qz +

σ∗
z

η0

�Qy = −∂ �Py

∂x
+

∂ �Px

∂y
− �ky

�Px (A2f)

Transformation of equation (A2) from frequency domain into time
domain yields
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where k̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ = kxx̂ + kyŷ + kz ẑ.
By rewriting equation (A3), a compact form of the modified

Maxwell’s equations in time domain can be obtained as

∂

∂t

(
εr

c
�P +

1
c
Λ × �Q

)
= ∇× �Q− �R (A4a)

∂

∂t

(
µr

c
�Q− 1

c
Λ × �P

)
= −∇× �P − �Rm (A4b)
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