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Abstract—This paper presents a hybrid technique, which combines
the desirable features of two different numerical methods, finite
difference frequency domain (FDFD) and the method of moments
(MoM), to analyze large-scale electromagnetic problems. This is done
by dividing the computational domain into smaller sub-regions and
solving each sub-region using the appropriate numerical method. Once
each sub-region is analyzed, independently, an iterative approach takes
place to combine the sub-region solutions to obtain a solution for
the complete domain. As a result, a considerable reduction in the
computation time and required computer memory is achieved.

1. INTRODUCTION

Numerical analyses of large-scale electromagnetic problems require
long computational time and large computer memory. One of
the goals of ongoing computational electromagnetics research is to
develop time and memory efficient algorithms in order to solve real
life problems. A class of time and memory efficient algorithms
is developed through which, the computational domain is divided
into smaller sub-regions and then the sub-regions solutions, after
introducing the effect of interactions between these sub-regions, are
used to provide the entire domain solution. A group of methods that
decomposes the computational domain into sub-domains is known as
the domain decomposition methods (DDM) [1–17]. These methods
in general require common boundaries between sub-domains and
boundary conditions are enforced on sub-domain interfaces. There
are usually two approaches used with the applications of the coupling



20 Al Sharkawy, Demir, and Elsherbeni

effects: the direct method imposes the continuity of the fields on
the partition interfaces and generates a global coupling matrix [17],
whereas the iterative method [1, 4] ensures the coupling between the
adjacent elements by the transmission condition (TC) as described in
[1]. It is possible to solve each sub-domain with the same method
such as with finite element method (FEM) [4] or finite difference
frequency domain method [8]. However, some DDM methods have
the flexibility that in each sub-domain the most efficient method can
be used independently to solve Maxwell’s equations [7]. Therefore the
complexity of the problem can be reduced, and a time and memory
efficiency algorithm can be achieved. Another advantage of the
DDM methods is that they are suitable to develop parallel processing
techniques [14–16], and thus enable highly scalable algorithms.

In order to economically provide efficient solution to large-
scale electromagnetic problems, especially those that involve open
boundaries such as the scattering from multiple objects, decomposing
the computation domain into separate sub-regions would be preferable.
It is then necessary to develop accurate procedures to support the
interaction between the unconnected sub-regions. Some hybrid-
techniques based on combinations of method of moments (MoM), finite
element (FE), finite difference time domain (FDTD), and physical
optics (PO) have been used to solve a class of these problems, in which
part of the problem is usually large compared to other parts [18–21].

This paper presents a hybrid technique, which combines the
desirable features of two different numerical methods, finite difference
frequency domain (FDFD) and the method of moments (MoM), to
analyze large-scale electromagnetic problems. This is done by using
them individually and then applying an iterative procedure between
the two solutions, simulating number of sub-regions, to calculate
the scattering from multiple objects similar to that described in
[22]. This iterative procedure is referred to as iterative multi-region
(IMR) technique, which requires the solution of fields in the sub-
regions a number of times instead of one solution of the complete
computational domain. This technique effectively reduces the size of
the required memory, especially for practical and three-dimensional
problems. Furthermore, the CPU time reduction can be achieved
if the separation between the sub-regions is relatively large and/or
coarser grids are used in some of the sub-regions, which may not
be possible if only one domain is used for the solution of the entire
problem. In this paper the presented technique is applied on two-
dimensional scatterers, and the bistatic echo widths are calculated.
This hybrid FDFD/MoM approach takes advantage of the capability
of the FDFD to analyze inhomogeneous bodies with arbitrary material
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properties and that of the MoM to model large metallic structures with
less computational memory requirements. Both numerical methods,
provide a much stable solution relative to other available methods and
a more convenient procedure for performing the interaction between
the sub-regions based on well-known theorems. This procedure is the
first step in the development of such a hybrid technique for the solution
of three dimensional real world problems with available computer
resources.

2. FDFD FORMULATION

Starting from Maxwell’s equations for the total electric and magnetic
fields

∇× E
tot = −jωµHtot

, ∇×H
tot = jωεE

tot (1)
and then by separating the total field components into incident and
scattered field components, we obtain

∇× (Ei +E
s) = −jωµ(H i +H

s), ∇× (H i +H
s) = +jωε(Ei +E

s).
(2)

The superscripts i and s are used to denote the incident and scattered
fields, where the incident field is the field that would exist in
the computational domain with no scatterers. This formulation is
independent on the type of incident field. If the computational domain
is free space then the incident field satisfies Maxwell’s equations, such
that

∇× E
i = −jωµ0H

i
, ∇×H

i = +jωε0E
i
. (3)

Substitution of equations (3) into (2) yields

H
s +

1
jωµ

∇× E
s =

(
µ0

µ
− 1

)
H

i (4)

E
s − 1

jωε
∇×H

s =
(
ε0
ε

− 1
)
E

i
. (5)

In this paper, the FDFD formulation for the two-dimensional TMz

case is briefly presented, where the details of such formulation can be
found in [23]. For an incident TMz plane wave the field components
can be given as

Ei
z(x, y) = E0e

jk0(x cos φi+y sin φi)

H i
x(x, y) = − sinφi

√
ε0
µ0
E0e

jk0(x cos φi+y sin φi) (6)

H i
y(x, y) = cosφi

√
ε0
µ0
E0e

jk0(x cos φi+y sin φi)
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where E0 is the magnitude of the incident electric field, k0 is the wave
number, ε0, and µ0 are the permittivity and the permeability of free
space. The incident angle with respect to the x-axis of the global
coordinates system is φi. Having defined the incident fields, equation
(5) can be written for the z-component of the scattered electric field
in the form

Es
z −

1
jωεzx

∂Hs
y

∂x
+

1
jωεzy

∂Hs
x

∂y
=

(
ε0
εzi

− 1
)
Ei

z. (7)

Using equation (4) and assuming that the electric field components
Es

y = 0 and Es
x = 0 (for the TMz case); the magnetic field components

Hx and Hy can be expressed in terms of the z-component of the
scattered electric field as

Hs
x = − 1

jωµxy

∂Es
z

∂y
+

(
µ0

µxi
− 1

)
H i

x

Hs
y = +

1
jωµyx

∂Es
z

∂x
+

(
µ0

µyi
− 1

)
H i

y

. (8)

In equations (7) and (8) the permittivity and permeability parameters
are indexed in such a way that these equations will be used for the
perfectly matched layer (PML), that will be used to truncate the
computational domain, and the non-PML regions as well in the FDFD
solution region. Equations (7) and (8) can thus be reduced to one
equation for TMz case, which can be written in terms of the z-
component of the scattered electric field as

Es
z −

1
jωεzx

∂

∂x

[
1

jωµyx

∂Es
z

∂x

]
− 1
jωεzy

∂

∂y

[
1

jωµxy

∂Es
z

∂y

]

=
(
ε0
εzi

−1
)
Ei

z+
1

jωεzx

∂

∂x

[(
µ0

µyi
− 1

)
H i

y

]
− 1
jωεzy

∂

∂y

[(
µ0

µxi
−1

)
H i

x

]
.

(9)

The central finite difference approximation is applied for the derivatives
in equation (9), leading to the following general form

a(i,j)E(i−1,j)+b(i,j)E(i,j−1)+c(i,j)E(i,j)+d(i,j)E(i,j+1)+e(i,j)E(i+1,j) =f(i,j)

(10)
where the subscript “z” and the superscript “s” are omitted for
simplifying the presentation of the equation, and the coefficients
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a, b, c, d, and e are defined for the (i, j) cell as

a =
1

(∆x)2ω2εzx(i,j)µyx(i− 1
2
,j)

b =
1

(∆y)2ω2εzy(i,j)µxy(i,j− 1
2)

d =
1

(∆y)2ω2εzy(i,j)µxy(i,j+ 1
2)

e =
1

(∆x)2ω2εzx(i,j)µyx(i+ 1
2
,j)

c = 1 − a− b− d− e

while the permeabilities around cell (i, j) are given by

µyx(i− 1
2
,j) =

1
2

(
µyx(i−1,j) + µyx(i,j)

)
µyx(i+ 1

2
,j) =

1
2

(
µyx(i+1,j) + µyx(i,j)

)
µxy(i,j− 1

2)
=

1
2

(
µxy(i,j−1) + µxy(i,j)

)
µxy(i,j+ 1

2)
=

1
2

(
µxy(i,j+1) + µxy(i,j)

)
.

A linear set of equations can be constructed using equation (10).
These equations can be arranged in a matrix form as [A][E] = [Y ],
where [A] is a highly sparse coefficients matrix of order N , where
N is the number of nodes in the computational domain, [E] is the
vector of unknowns, in which each element represents one of the Ez

scattered electric field components in the computation grid, and [Y ] is
the excitation vector representing the right hand side of equation (10)
and is a function of the incident field components, Ei

z, H
i
x, and H i

y.
The solution of this matrix equation for the vector [E] yields the Es

z
field components at the cells of the computational domain.

3. TMz MOM FORMULATION FOR PEC CYLINDERS

The MoM technique is used to analyze the problem of a two-
dimensional perfectly electric conductor (PEC) structures, by solving
the electric field integral equation (EFIE). The EFIE for the unknown
current density, J , induced on the surface of the analyzed structure, is
then solved by applying the boundary condition on the total tangential
electric field along a closed contour surrounding the object assuming
that the object was located in free space. Thus the EFIE can be written
as

−Ei
z(r) = −jωµ0

∫
c

Jz(�′)
[

1
4j
H

(2)
0

(
k0|ρ− ρ′|

)]
∂�′ẑ (11)
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where H(2)
0 is the Hankel function of the second kind and zeroth order,

ρ and ρ′ are the position vectors for the observation and source points,
respectively. Expanding the unknown current component, Jz(�′), and
using the point matching technique, the integral equation in (11)
reduces to [24]

N∑
n=1

InΠn(�′)


−ωµ0

4

∫
c

Jz(�′)H
(2)
0

(
k0|ρm − ρ′|

)
∂�′


 =

−E0e
jk0(xm cos φincx̂+ym sin φincŷ), m = 1, 2, . . . , N (12)

where ρm is the position vector of the matching points and {Πn(�′), n =
1, 2, . . . , N} is the set of pulse basis functions defined on the segments
∆Cn of the contour C by

Πn(ρ) =

{
1, ρ ∈ ∆Cn

0, otherwise
(13)

Equation (12) may be written in a matrix form as

[Zmn][In] = [Vm] (14)

where

Vm = −Ei
z(ρm) (15)

Zmn = −ωµ0

4

∫
∆Cn

H
(2)
0

(
k0|ρm − ρ′|

)
∂�′. (16)

4. HYBRID FDFD — MOM TECHNIQUE

The iterative technique developed here is based on dividing the original
electromagnetic scattering problem of a large domain into smaller
problems in separated sub-regions and then an interaction between the
small problems is to be taken into consideration. Dividing the original
problem into smaller problems provides the benefit of minimizing
the domain size and thus saving a huge memory in addition to the
saving in the computational time, especially with large separation
between some of the smaller domains. Therefore instead of dealing
with one large domain one would be dealing with multiple smaller
regions. In addition to this, one can also use the advantage of
different numerical approaches to solve each region separately. In
this paper for instance, a hybrid FDFD/MoM approach is presented,
which uses the advantage of the capability of the FDFD to analyze
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inhomogeneous bodies with arbitrary material properties and that of
the MoM to model large metallic structures with less computational
memory requirements. Thus less computational time and memory
consumption can be achieved.

Original domain 

Einc

Sub-region 1 Sub-region 2 

Scattering 
objects

Scattering 
objects 

Figure 1. Original domain of a large scattering problem showing
possible decomposition to two sub-regions.

Consider a problem of two scatterers apart from each other by
a distance equivalent to the wavelength λ, as shown in Fig. 1. The
first step is to divide the original computational domain problem into
sub-regions, namely in this case region 1 and region 2. Assuming that
the analysis for region 1 is performed using the MoM solution, while
that of region 2 is performed using the FDFD method. Since in this
paper the MoM is used to simulate conducting structures only, electric
current is calculated due to an incident plane wave excitation based
on equation (14). While the scattered electromagnetic fields due to an
incident wave are calculated on region 2 (FDFD solution). Based on
the equivalence principle, fictitious electric and magnetic currents are
calculated over imaginary surfaces surrounding the scatterers of region
2. As for region 1, once the electric current is computed using the MoM
solution, electromagnetic fields radiated by this current are calculated
over an imaginary surface where new electric and magnetic currents
are generated. Electromagnetic fields radiated by these currents are
then calculated at the other sub-regions grid nodes, for region 1 (MoM
solution), at the positions of the excitation vector. These fields are
considered as the new excitation for that region and the cycle of
calculation of scattered fields, fictitious currents and radiated fields are
repeated as a new iteration. The iteration process between sub-regions
continues until a convergence criterion is achieved. The sum of all
calculated scattered fields through iterations gives the total scattered
field, which is found to be equivalent to the scattered field calculated
from the solution of the original problem with acceptable tolerance.
This iterative procedure denoted as IMR technique is illustrated in
Fig. 2.
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Figure 2. Scheme for the iterative procedure applied by converting
the electric and magnetic currents to field components generated on
the other region.

5. NUMERICAL RESULTS

In this section, numerical results are provided to prove the validity
of this hybridization method (FDFD/MoM) using the IMR technique.
Figure 3 shows a test configuration to prove such idea, where two
cylinders placed along the x-axis are excited by a TMz plane wave
incident at φi = 180◦. A conducting cylinder of radius 0.5λ is placed
on the left side of a dielectric cylinder of radius 1λ, where the latest
has relative permittivity (εr) equals to 2.2 and relative permeability
(µr) equals to 1. The two cylinders are separated by 0.5λ. The
MoM solution is used to solve the scattered field from the conducting
circular cylinder, while the FDFD is used to solve that of the dielectric
cylinder. Once the currents are generated, the interaction between
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Figure 3. Geometry of one conducting and one dielectric cylinder.

the two cylinders takes place by applying the IMR technique in the
same manner described in Section 4. One of the advantages of using
the MoM technique is to reduce the computational time required to
solve for conducting structures, thus the consumed time by the hybrid,
IMR – FDFD/MoM, solution after some iteration is then going to be
less than that used for the same number of iterations by the IMR –
FDFD/FDFD solution. Figure 4 shows the far field calculations for the
problem defined in Fig. 3, where a comparison between three different
approaches is presented: the full domain solution based on FDFD, the
IMR – FDFD/FDFD solution, and the hybrid IMR – FDFD/MoM
solution. It can be clearly seen from the figure, the strong match
between the FDFD/FDFD and the hybrid FDFD/MoM solutions after
4 iterations, where both solutions approach the full domain solution
using the FDFD technique. Table 1 shows a comparison between
the three approaches, regarding the total computational domain size,
which is involved in constructing the matrix solution, as well as
the total computational time for each problem. Table 1 indicates
that the total computational size using the IMR – FDFD/FDFD
technique, for the problem defined in Fig. 3, is 30% less than solving
the classical FDFD solution applied to the whole problem; this is due
to the flexibility in discretizing each domain separately and thus no
obligation on using a smaller discretization when defining a simple
structure. As for the hybrid IMR – FDFD/MoM technique, the
required computational size is 60% less than that required to solve
for the whole problem, which proves the efficiency of using the hybrid
FDFD/MoM solution together with the IMR technique, regarding the
computational memory consumption. Concerning the computational
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Table 1. Comparison between the full domain solution, the IMR
– FDFD/FDFD, and the IMR – FDFD/MoM techniques, regarding
both the computational domain size and the computational time for
the problem illustrated in Fig. 3.

 Full domain 
(FDFD)  

 IMR  
FDFD/FDFD  

 
IMR ��  FDFD/MoM 

 
 Total Domain size 

(cells)  

 
9,163  

 
6,498  

 
3,694  

 Computational time   36 sec.  71 sec.  49 sec. 

−
−
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Figure 4. Bistatic echo width a conducting and dielectric cylinder
excited by a TMz plane wave incident at φi = 180◦.

time, the hybrid IMR – FDFD/MoM converged to the full domain
solution after 4 iterations in 49 seconds, while the IMR – FDFD/FDFD
converged after the same number of iterations in 71 seconds, both
compared to the full domain solution that took 36 seconds on a
Pentium 4 machine with a processor of 3.2 GHz and 2 GB RAM.

Figure 5 shows another configuration that consists of two different
scatterers, a conducting square of side 0.5λ, and a dielectric ellipsoid of
relative permittivity equals to 2.2 and relative permeability equals to 1.
The radius of the ellipsoid in the x-direction is equal to 0.25λ and in the
y-direction 0.5λ, the separation distance between the two scatterers is
0.25λ. The proposed structure in Fig. 5 is excited by a TMz plane
wave incident at φi = 90◦. Figure 6 shows a comparison between the
bistatic echo widths of the three approaches, as presented previously
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Figure 5. Geometry of a conducting square and a dielectric ellipsoid.
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Figure 6. Bistatic echo width a conducting square and dielectric
ellipsoid excited by a TMz plane wave incident at φi = 90◦.

in Fig. 4. Again, in the hybrid IMR– FDFD/MoM solution, the MoM
solution is used to solve the scattered field from the conducting square,
while the FDFD is used to solve that of the dielectric ellipsoid. Still a
strong match can be noticed between the FDFD/FDFD and the hybrid
FDFD/MoM solutions at 0 iteration and after 3 iterations, where both
solutions approach the full domain solution. Table 2 shows the total
computational size using the IMR – FDFD/FDFD technique, for the
problem defined in Fig. 5, to be 53% less than solving the classical
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Table 2. Comparison between the full domain solution, the IMR
– FDFD/FDFD, and the IMR – FDFD/MoM techniques, regarding
both the computational domain size and the computational time for
the problem illustrated in Fig. 5.

Full domain
(FDFD) IMR  FDFD/FDFD IMR  FDFD/MoM

Total Domain size
(cells)

15,776 7,392 4,416

Computational time 39 sec. 21 sec. 17 sec.

− −

FDFD solution applied to the whole problem. While for the hybrid
IMR – FDFD/MoM technique, the required computational size was
70% less than that required to solve for the whole problem. As for the
computational time, the full domain solution required 39 seconds to
finalize the simulation, while the IMR – FDFD/FDFD took 21 seconds
to converge to the full domain solution after 3 iterations, and for the
same number of iterations, the IMR – FDFD/MoM took 17 seconds.

6. CONCLUSION

In this paper an iterative multi-region technique is proposed to
solve large-scale electromagnetic problems by dividing a problem
into separate sub-regions and then using a hybrid MoM and FDFD
solutions. This procedure starts by dividing the original computational
domain into separate sub-regions where the solution is easily performed
using either the MoM or the FDFD techniques in each sub-region
followed by an iterative interaction process between the sub-regions.
The new approach proposed here is found to be efficient in producing
accurate results for the original problem with over 60% saving in
the computer memory usage and with no significant change in the
computational time.
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