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Abstract—In this work the solution to the problem of electromagnetic
radiation from (pre-)fractal antennas is performed by means of Plane-
Wave field representation based on closed-form Fourier transforms
of the self-similar current patterns. The generalization to the case
of uniformly translating antennas is then accomplished through the
Frame-Hopping Method by exploiting special-relativistic covariance
properties of Plane-Wave spectra.

1. INTRODUCTION

Many fractal sets are built through the application of an Iterated
Function System (IFS), i.e., by applying a suitable contraction
sequence to a starting set; by iterating such application N times the
N th order prefractal set is obtained, whereas the fractal set at the limit
N → ∞ is reached. Such iterative generation scheme produces self-
similar sets, whose geometrical features are replicated at various (even
infinite) decreasing scales. When establishing a theoretical approach to
physical problems on (pre-)fractal lattices that are generated by IFSs,
it is important to express the intrinsic iterative nature in terms of the
involved mathematical operators in order to highlight solutions’ self-
similarity and to explicit efficient recursive procedures for describing
space-time distributions of the physical quantities at every iteration’s
increment N → N + 1.

(Pre-)fractal geometries have been recently pioneered in elec-
tromagnetic (EM) applications, especially for developing high-
performance multi-band antennas [1–6] and resonators [7, 8]; in fact,
the multi-scale self-similarity properties of the radiating structure in-
volve a substantial ‘invariance’ of the emitted field features with respect
to the wave-length.
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In this paper a spectral-domain approach for the theoretical
study of radiation by fractal shaped antennas is presented; radiating
geometries whose generating IFS is based on affinities (i.e.,
translations, rotations and dilations) are considered. Since this
kind of spatial transformations have simple analytical counterparts in
the Fourier domain, it is possible to establish an efficient iterative
procedure for a closed-form spectral description of the source current
distribution. For the same reasons the spectral properties of a self-
similar resonator bears enough information to compute the fractal
dimension of the cavity [8]. Then the evaluation of the EM field
radiated by the antenna is directly accomplished by integral-expanding
the Plane-Wave (PW) radiations originated by the various spectral
components of the source current. In this way we avoid direct
space-domain integral-differential computation on the fractal structure
(e.g., convolution between tensor Green function and currents), which
involves some ‘critical’ theoretical issues (e.g., tangent vectors cannot
be properly defined in classical way almost anywhere on the fractal
[9]).

Moreover, the resulting PW representation of the emitted EM
field admits an analytically-simple generalization to the case of moving
antennas (i.e., in the presence of relative motion, e.g., uniform
translation, between the current source lattice and the EM field
observer); this is fundamental in order to establish a theoretical
framework for the development of fractal-shaped devices to be
specifically employed in mobile telecommunication systems. In fact,
the special-relativistic extension is based on a two-step Frame Hopping
method [10, 11], i.e., the solution is at first evaluated in the reference
frame where the signal transmitter appears at rest (co-moving frame)
through the customary motionless technique and, secondly, the Field
Relativistic Covariance Transformation (FRCT) is applied to the
radiated EM field in order to compute its expression in the reference
frame where the signal receiver appears at rest; the analytic effort
involved by the FRCT would be cumbersome for a generic expression
of the EM field, but in our case it is minimized since the EM field is
represented in terms of a PW spectrum, resulting in a mere application
of manageable alteration formulas for the PW parameters (frequency,
propagation unit vector, amplitude) relevant to the various spectral
components implicated in the integral expansion [12, 13] (see also
[14–16] about the application of the PW spectral representation for
relativistic scattering).
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2. FOURIER TRANSFORM OF ITERATED FUNCTION
SYSTEMS

Let {w1, w2, . . . , wp} be an IFS defined in R
d (see Appendix for

mathematical background), i.e., each contraction mapping wj : R
d →

R
d is defined by d equations like y = wj(x):


y1 = wj, 1(x1, x2, . . . , xd)
y2 = wj, 2(x1, x2, . . . , xd)

...
yd = wj, d(x1, x2, . . . , xd)

,
||wj(x) − wj(x′)|| ≤ cj ||x − x′||,

∀x, x′ ∈ R
d.

(1)

The application of an IFS to a set in the Euclidean space can be
thought as mapping of the IFS to the characteristic function1 of the
set χE(x); its Fourier transform indicated as χ̆E(κ) :=

∫
eiκ·xχE(x)dx

(i =
√
−1). When the set is the N th prefractal EN = wN (E) under

the given contraction mapping of a ‘just-touching’ IFS

w(E) :=
p⋃

j=1

wj(E), (2)

and especially if {w1, w2, . . . , wp} are similarities, elementary Fourier-
transform properties can be applied to the magnification, reflection
and/or translation of the characteristic function for closed-form
computing purposes.

Suppose wj(x) = αjx + tj , where αj ∈ R
∗ and tj ∈ R

d, which is
a quite general form of affinity mapping; then:

χ̆w(E)(κ) =
∫
Rd

eiκ·xχw(E)(x)dx =
p∑

j=1

∫
Rd

eiκ·xχE(αjx + tj)dx

=
p∑

j=1

e−iκ·tjα−1
j χ̆E(α−1

j κ) (3)

This formula allows us the computation or the spectral Fourier
Transform of wN+1(E) as depending on wN (E)’s one:

χ̆Šd, N+1
(κ) =

p∑
j=1

e−iκ·tjα−1
j χ̆Šd, N+1

(α−1
j κ). (4)

1 The characteristic function χE : E → {0, 1} is defined as follows: χE(x) = 1 if x ∈ E,
otherwise χE(x) = 0 if x 	∈ E.
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For instance, let χŠd, N
(x) be the characteristic function of the d-

dimensional Sierpinski sponge’s N th prefractal Šd,N which, for d = 2
and N → ∞ coincides with the well-known Sierpinski carpet Š2. The
characteristic functions of the Sierpinski sponge prefractals can be
represented as the following finite sums of rectangular pulses [18, 19]:

χŠd, N
(x) = rect1d

x −
N∑
h=1

∑
ch∈Λd

h∩Šd, h−1

rect3−h1d
(x − ch),




Λh = Λ+
h ∪ Λ−

h

Λ±
h =

{
1 ± 2n
2 · 3h

}
n∈N

, (5)

where Ld, h is the set of even integer d-plets divided by 2·3h. A recursion
scheme can be extracted to compute the (N+1)th prefractal’s spectral
and characteristic functions from the N th prefractal ones:

χŠd, N+1
(x) =

∑
h∈Md

χŠd, N
(3(x + h)) ⇔

χ̆Šd, N+1
(κ) =

1
3
χ̆Šd, N

(3−1κ)
∑

h∈Md

e−ih·κ, (6)

with Md = {−1
2 , 0,

1
2}d \ {0d}.

Considering the spectral duality between ‘rect’ and ‘sinc’
functions2, the Fourier transform of Eq. (5) can be straightforwardly
evaluated:

χ̆Šd, N
(κ) =

∫
Šd, N

eix·κdx ≡
∫

RN

eix·κχŠd, N
(x)dx

= sinc
κ

2
−

N∑
h=1

3−nhsinc
( κ

2 · 3h
)
·

∑
ch∈Λd

h∩Šd, h−1

eich·κ (7)

By virtue of Cartesian symmetry with respect to 0d ∈ R
d and applying

2 For x = (xk)1≤k≤d, d-dimensional ‘rect’ and ‘sinc’ functions are defined as sincx :=
Πksincxk and rectα1d

x = Πkrectαxk, rectαx is the square pulse equal to 1 in [−a, a]/2
and 0 everywhere else. Also 1d = (1, 1, . . . , 1) and 0d = (0, 0, . . . , 0).
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Figure 1. Spectral function of Sierpinski two-dimensional sponge’s
1st and 2nd prefractal χ̆Š2, n

(κ), for κ ≡ (κ1, κ2) ∈ 30[−1, 1]2 (for
N = 1, 2, respectively). Normalized grayscale for absolute value is
used hereinafter.

elementary Euler’s formulas, one gets:

χ̆Šd, N
(κ) = sinc

κ

2
− 1

3d
sinc

κ

6

−2
N∑
h=2

3−dhsinc
( κ

2 · 3h
) ∑

ch∈Λ+d
h ∩Šd, h−1

cos(ch · κ), (8)

Sample plots for Fourier transforms of the prefractal Sierpinski carpet’s
(2D) and sponge’s (3D) characteristic functions are given in Fig. 1 and
Fig. 2, respectively.

3. PLANE-WAVE SPECTRAL TECHNIQUES FOR
RADIATION PROBLEMS

3.1. The Motionless Problem

For a EM radiation problem in vacuum, the EM field is solution of the
following Maxwell equations:

∇×
{

E

H

}
r, t

=
∂

∂t

{ −µ0H

ε0E

}
r, t

+
{

0
J

}
r, t

(9)
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Figure 2. Slices of the Sierpinski three-dimensional sponge 3rd

prefractal’s spectral function χ̆Š3, 3
(κ), for κ ≡ (κ1, κ2, κ3) ∈

100[−1, 1]2 × {5, 6.25, 30, 15, 75, 80}.

where E, H, J are the electric field, the magnetic field and the electric
current source distribution at position r = xmx̂m and time t relevant
to the space-time reference system Σ, respectively; {x̂m}m=1, 2, 3

and {xm}m=1, 2, 3 are the Cartesian unit vectors and coordinates,
respectively3; ∇ is the nabla operator with respect to the space
coordinates in Σ; ε0, µ0 are the vacuum permettivity and permeability,
respectively.

By introducing the following quadruple Fourier-transformation:

{
Ĕ, H̆, J̆

}
κ, ω

=
∫∫∫

R3

dr

+∞∫
−∞

{
E, H, J

}
r, t
ei(κ·r−ωt)dt, (10)

{
E, H, J

}
r, t

=
1

16π4

∫∫∫
R3

dκ

+∞∫
−∞

{
Ĕ, H̆, J̆

}
κ, ω
e−i(κ·r−ωt)dω, (11)

3 The Einstein convention on repeated indexes is used for brevity.
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where κ = κmx̂m, from Eq. (9) we can obtain the following spectral-
domain Maxwell equations:

−iκ ×
{

Ĕ

H̆

}
κ, ω

= iω

{
−µ0H̆

ε0Ĕ

}
κ, ω

+
{

0

J̆

}
κ, ω

. (12)

The solution of Eq. (12) is merely algebraic [18]:

{
Ĕ

H̆

}
κ, ω

=
1

κ · κ − ω2c−2


 −iωµ0

(
I − κ ⊗ κ

ω2c−2

)
·

−iκ×


 J̆(κ, ω), (13)

where I = δl,mx̂l⊗x̂m (δl,m is the Kronecker symbol) and c = 1/
√
ε0µ0

is the speed of light in vacuum.
By replacing Eq. (13) in the quadruple Fourier anti-transformation

formula (11), it is possible to obtain a ‘proper’ EM PW spectral
representation of the space-time domain fields {E, H}r, t in terms of
a triple integral expansion, provided that the integration with respect
to one of the four spectral variables (e.g., κ1) is performed through
residual calculation at the polar singularities of the integrand, i.e., at
||κ||2 − ω2c−2 = 0: for instance, the integration with respect to the
real variable κ1 can be evaluated by means of a contour integration
in the complex κ1-plane, where the contour shall be composed of
the real κ1-axis and the infinite semicircle, through the upper half-
plane (for x1 > 0) or the lower half-plane (for x1 < 0), with the
last condition stated by the Jordan’s lemma so that the semicircle
integration shall vanish at the infinite radius limit; in this way the
poles κ̃1 =

√
ω2c−2 − κ̃2

2 − κ̃2
3 (with Im κ̃1 < 0) or −κ̃1 have to be

considered for x1 > 0 or x1 < 0, respectively [20]. By evaluating the
corresponding residuals we get:

{
E

H

}
r, t

=
i

8π3

∫∫∫
R3


 −iωµ0

(
I − κ̃± ⊗ κ̃±

ω2c−2

)
·

−iκ̃±×




× J̆(κ̃±, ω)
2κ̃1

e−i(κ̃±·r−ωt)dκ2dκ3dω, (14)

with:

κ̃± = ±κ̃1x̂ + κ̃2ŷ + κ̃3ẑ = ±x̂
√
ω2c−2 − κ2

2 − κ2
3 + κ2ŷ + κ3ẑ, (15)

where upper and lower signs are valid for x1 > 0 and x1 < 0,
respectively.
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It is important to remark that each PW integrand term in Eq. (14)
is an individual solution of the source-less Maxwell equation, i.e.,
verifies Eq. (19) for J ≡ 0; in such sense this triple-integral formula
represents a ‘proper’ EM PW expansion.

3.2. Generalization to the Special Relativistic Case

At the outset we distinguish two reference frames: Σ, where the
antenna appears at rest, and Σ′, where the receiver is at rest. The
relative translation velocity of the antenna with respect to the receiver
is assumed to be βcx̂3.

As a first step of the FHM, by starting from the knowledge of
the source current distribution J(r, t) as measured by an observer at
rest with respect to the antenna we can solve the radiation problem
in the co-moving frame Σ on the ground of the approach depicted in
the previous section, obtaining the EM PW triple integral expansion
given by Eq. (14), that can be recast as follows (let ζ =

√
µ0/ε0):{

E

H

}
r, t

=
i

8π3

∫∫∫
R3

e−iωc
−1(κ̂±·r−ct)

2κ̂1

{
ζΨ

E

Ψ
H

}
κ̂±

· J̆(κ̃±, ω)dκ2dκ3dω,

(16)

where we defined the PW propagation unit-vector κ̂± , i.e.:

κ̂± = ω−1cκ̃± = ±κ̂1x̂1 + κ̂2x̂2 + κ̂3x̂3;

κ̂m = ω−1cκm, m = 2, 3; κ̂1 =
√

1 − κ̂2
2 − κ̂2

3; (17)

the “PW vector orientation tensors” {Ψ
E
, Ψ

H
}κ̂± define the

orientation of the various vector components of every spectral term
occurring in the PW integral expansion; in general for a non-specific
PW propagation unit-vector k̂ = x̂mk̂m(k̂ · k̂ = k̂mk̂nδm,n = 1) they
have the following expression4:{

Ψ
E
, Ψ

H

}
k̂

=
{(
δl,m − k̂lk̂m

)
x̂l ⊗ x̂m, εl, s,mk̂sx̂l ⊗ x̂m

}
. (18)

Then, as second step of the FHM, the Σ → Σ′ FRCT shall be applied
to the EM PW spectral expansion given by Eq. (16) in order to
obtain the expression of the EM fields {E′, H ′} as experienced by
a receiver at rest in frame Σ′ at position r′ = x′mx̂m and time t′, where

4 εl,s,m is Levi-Civita symbol, i.e., it is equal to +1 or −1 if {l, s, m} is an even or an odd
permutation of {1, 2, 3}, respectively; otherwise it is equal to 0.
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according to the Σ ↔ Σ′ Lorentz coordinate transformations we have
(let γ = +

√
1 − β2):

x′m = xm, m = 1, 2; x′3 = γ(x3 + βct); t′ = γ(t+ βc−1x3). (19)

When the EM field is expressed in terms of a superposition of
elementary terms the intrinsic linear nature of the FRCT can be
exploited; moreover, in the case of EM PW expansion given by Eq. (16)
each elementary term has individual relativistic covariance properties
since it is a special solution of the source-less Maxwell equations.
Therefore the Σ ↔ Σ′ FRCT of the PW integral summation shall be
expressed as the integral summation of the various Σ ↔ Σ′ covariance-
transformed plane waves.

It is well-known that the analytic action of the FRCT on PWs
can expressed through simple parameters alteration rules [10–13, 21].
In particular, the application of the Σ ↔ Σ′ FRCT to a given PW
term modifies its angular frequency ω and its unit PW-vector κ̂± as
follows:

ω → ω′ = γ(1 + βκ̂3)ω (20)
κ̂± → κ̂′

± = ±κ̂′1x̂1 + κ̂′2x̂
2 + κ̂′3x̂

3

=
±γ−1κ̂1x̂1 + γ−1κ̂2x̂2 + (κ̂3 + β)x̂3

1 + βκ̂3
. (21)

Eqs. (20) and (21) take into account the Doppler frequency shift and
the zenithal aberration, respectively. When covariance-transforming
PW terms in Eq. (16), the Doppler frequency shift ω → ω′ has to be
taken into account in the exponential phase term, whilst the zenithal
aberration, consequent to the κ̂± → κ̂′

± variation, has to be taken into
account both in the phase term and in the PW orientation tensors [17].

On the other hand, the FRCT does not alter the shape of the
polarization ellipse of the given PW term (Stokes parameters are
special-relativistic invariants [21]), but only produces an isotropic
amplitude expansion according to the factor γ(1 + βκ̂3) [17].

By exploiting the aforementioned results, the following EM PW
expansion of radiated fields in the observer rest frame Σ′ can be
obtained:{

E′

H ′

}
r′, t′

=
i

8π3

∫∫ ∫
κ2, κ3, ω∈R3

γ(1 + βκ̂3)
2κ̂1

e−iω
′c−1(κ̂′

±·r′−ct′)

×
{
ζΨ

E

Ψ
H

}
κ̂′
±

· J̆(κ̃±, ω)dκ2dκ3dω, (22)
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with upper and lower signs valid for x′1 > 0 and x′1 < 0, respectively.

3.3. Doppler Spectra

As one can see from Eq. (22), the Doppler effect phenomenon involves
that in frame Σ′ the PW expansion of the radiated field is always multi-
chromatic, even in the particular case of a mono-chromatic source
current distribution (i.e., if J̆(κ, ω) = j̆(κ)δ(ω − ω0), for ω > 0);
in the case of point, according to Eqs. (20) and (17) a PW spectral
component relevant to a specific value of the independent spectral
triplet {κ2, κ3, ω} is characterized by the following value of the angular
frequency:

ω′ = γ(ω + βcκ3). (23)

In fact, the EM field expansion (22) can be recast as follows:{
E′

H ′

}
r′, t′

=
i

8π3

∫∫ ∫
κ2, κ3, ω∈R3

{
η′

E

η′
H

}
r′;κ2, κ3, ω

eiγ(ω+βcκ3)t′dκ2dκ3dω, (24)

with:{
η′

E

η′
H

}
r′;κ2, κ3, ω

=
i

8π3

γ(1 + βκ̂3)
2κ̂1

e−iω
′c−1κ̂′

±·r′
{
ζΨ

E

Ψ
H

}
r′;κ2, κ3, ω

· J̆(κ̃±, ω),

(25)

where parameters κ̂′
±, κ̂1, κ̂3, κ̃± are related to the independent

spectral variables κ2, κ3, ω according to Eqs. (15), (17) and (21).
Long-term measurements by a spectrum analyser located at a

given fixed position r′ in frame Σ′ can be represented by means of
the Fourier frequency transform to the variable Ω′, i.e.:

{
e′

h′

}
r′,Ω′

=

+∞∫
−∞

{
E′

H ′

}
r′, t′
e−iΩ

′t′dt′, (26)

where Ω′ is the observation frequency. Such transform (hereinafter
named Doppler frequency spectrum) can be evaluated starting from
Eq. (24) in the following closed-form by exploiting some properties of
the Dirac-δ distribution (see Refs. [13, 21]):{

e′

h′

}
r′,Ω′

=
1
γβc

∫∫
κ2, ω∈R2

{
η′

E

η′
H

}
r′;κ2, κ3, ω

dκ2dω, (27)
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with:

κ3 = β−1c−1(γ−1Ω′ − ω). (28)

3.4. The Sierpinski Carpet Antenna

As an application we consider the specific case of a moving planar
antenna, whose 2-dimensional electric current pattern is the N th order
pre-fractal of the Sierpinski carpet, i.e., (in the antenna rest frame Σ):

J(r, t) = Jα̂χŠ2, N

{x1

∆
,
x3

∆

}
δ(x2) cosω0t, (29)

We assume, for simplicity5, that on every element of the carpet
— which lies on plane x2 = 0 and has width ∆ — the electric
current density has constant amplitude J and orientation along the
α̂ = x̂1 cosα + x̂3 sinα axis, and that the feeding signal is purely
monochromatic with wave-length λ (angular frequency ω0 = 2πc/λ).
Thus the spectral transform of the current distribution, that is needed
for evaluating the radiated EM field through to the above-mentioned
PW technique, reads as follows:

J̆(κ, ω) = Jα̂∆2χ̆Š2, N
(κ1∆, κ3∆)δ(ω − ω0) (30)

Then, an extensive numerical analysis of the Doppler spectra (relevant
to the Poynting vector 1

2e
′ × h′) was performed by varying all

the involved geometrical parameters6. The results show that the
bandwidth dΩ′ of the received signal depends only on β (d Ω′ ∼ 2βω0)
for low values of β); whereas the shape of the spectrum is mainly
dependent on the carpet width/wavelength ratio δ = ∆/λ and on
the pre-fractal order N . In the case of point, for low values of δ
(approximately δ < 1) Doppler spectra present an elementary shape
spread around the ‘nominal’ frequency ω0, with the presence of only
two principal peaks, corresponding to a ‘red-shifted’ (Ω′ < ω0) and a
‘blue-shifted’ (Ω′ > ω0) Doppler-tunes (see Fig. 3, left); this happens
for any value of N . On the other hand, for higher values of δ the
shape of the spectra gets more and more complex, with the presence

5 More general orientations of the antenna can be straightforwardly considered by
introducing auxiliary rotated coordinate system. Also, the additional presence of a
reflecting plane substrate can be taken into account by considering the reflection of the
free-space term given by Eq. (16) (static case) or Eq. (22) (relativistic case) on the ground
of Snell and Fresnell laws, see [13, 21].
6 By virtue of the similitude theorem, for a given choice of the observation point r′ =
λ · ξ′mx̂m and of the carpet width ∆ = δλ, results are a-priori independent of the value
of the wave-length λ. Also, by symmetry, Doppler spectra (26) evaluated on an infinite
time-window must be independent of coordinate x′3 = r′ · x̂3.
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Figure 3. Normalized spectral amplitude of the Poynting vector
Π′(Ω′) = P ′(Ω′)/maxP ′(ω′), P ′(Ω′) = ||12e′(r′, Ω′) × h′(r′, Ω′)|| vs.
normalized frequency shift &′

β = (Ω′/ω0 − 1)/β at fixed position
r′ = λ(4x̂1 + 3x̂2); relative velocity β = 10−6; α = π/4; carpet width
∆ = δλ, width δ = 0.5 (left) and δ = 1 (right); pre-factal order N = 3.
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Figure 4. The same as Fig. 3 except δ = 5, with pre-fractal order
N = 2 (left) and N = 3 (right).

of various in-band secondary peaks and minima; ceteris paribus, the
shape is more complex for higher order N (see Fig. 3, right, and Fig. 4).

For low values of β Doppler spectra appear to be symmetrical
with respect to ω0; on the other hand, asymmetry phenomena arise for
relativistic speeds, i.e for β → 1, with dΩ′ that gets larger than 2βω0

(see Fig. 5); such result is consistent with analogous data present in
the literature relevant to EM radiators and scatterers moving at speeds
close to the light velocity [13, 21].

3.5. Instantaneous Modulations

Doppler spectra furnish a description relevant to long-term signal
measurements (i.e., for an observation time-window τ ′ � ω−1

0 ) on the
EM field radiated by a moving antenna; on the other hand, for short-
term observations the signal associated to a generic scalar component
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Figure 5. The same as Fig. 4 except β = 0.3, with pre-fractal order
N = 2 (left) and N = 3 (right).
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ξ′(t

′) =
a′ξ′(t

′)/a′ξ′(0), relevant to the signal ξ′(t′) = H ′(r′, t′)·x̂3 vs. normalized
time βω0t

′, for β = 10−6 (left) and β = 0.4 (right); fixed observer
located at position r′ = 5λx̂2; carpet parameters: α = 0, ∆ = 3λ,
N = 3.

ξ′ of the EM field experienced at a fixed position r′, whose expression
is given by Eq. (22), presents instantaneous amplitude modulation a′ξ′
and frequency modulation ν ′ξ′ ; they correspond to the amplitude |Ξ′|
and to the argument sign-reversal time-derivative −∂ArgΞ′/∂t′ of the
complex modulation (with respect to the nominal frequency ω0) Ξ′,
respectively, i.e.,7 [22]:

Ξ(t′; ω0) ≡ ReΞ′(t′) + iImΞ′(t′);

(
ReΞ′(t′)
ImΞ′(t′)

)
=

(
cosω0t

′ sinω0t
′

− sinωot′ cosω0t
′

) (
ξ′(t′)

ξ′(t′) ©∗ 1
πt′

)
, (31)

As it can be seen in Fig. 6, the variation of the instantaneous amplitude
with time t′ is monotonic when the distance ||r′−βct′x̂3|| between the

7 Symbol ‘©∗ ’ represents the convolution product computed as Cauchy’s principal value.
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Figure 7. Normalized frequency shift Υ′
ξ′ = (ν ′ξ′/ω0 − 1)/β, relevant

to various values of β, for the same conditions of Fig. 6.

antenna and the observer is great (quasi-stationary far-field condition),
whilst, as the distance goes to the minimum, i.e., for t′ → 0, the
signal rapidly oscillates between maximum and minimum levels (non-
stationary near-field condition); a peculiar relativistic effect is that at
high velocities the symmetry between the amplitude values at opposite
instants t′ and −t′ (when the distances between antenna and observer
are the same) is lost, see [13]. An analogous high-velocity asymmetry
affects the frequency shift diagrams: as one can see in Fig. 7, negative
(‘red’) shift is present at some time interval t′ < 0, when the antenna is
still approaching the observer and then positive (‘blue’) shift would be
expected according to the non-relativistic theory, see [13, 23]; moreover
steady-state blue (t′ → +∞) and red (t′ → −∞) shifts assume non-
symmetric values8.

3.6. Far-field Properties

The PW spectrum given by Eq. (16), valid for observers in the antenna
rest frame Σ, is compound by waves of the uniform type and of the non-
uniform evanescent type for κ̂2

2 + κ̂2
3 ≤ 1 and κ̂2

2 + κ̂2
3 > 1, respectively.

In the far-field9 the last ones give negligible contributes to the integral
expansion and thus the sum can be restricted to the only PW terms
whose propagation unit vector κ̂ is real, i.e.:

κ̂ = x̂mκ̂m = x̂1 sin θ cosφ+ x̂2 sin θ sinφ+ x̂3 cos θ,

(θ, φ) ∈ [0, π] × [−π, π[. (32)

8 Instead lim
t′→±∞

Υ′
ξ′ (t

′) ≈ ∓1 for low values of β.

9 i.e., for x1 = x′1 � λ = 2πc/ω0 in the specific monochromatic case under exam.
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Figure 8. Chromatic plots of the far-field normalized radiation
patterns (relevant to the Poynting vector) in terms of polar angles.
Carpet parameters: α = π/2, ∆ = 4λ, N = 3. Left: motionless case.
Right: relativistic case for β = 0.6.

Thus, once recast the integral expansion (16) in terms of the
independent polar variables θ and φ the far-field radiation patterns
can be immediately obtained from the inspection of the amplitude of
the various PW terms. As it can be seen in Fig. 8 (left), the radiation
pattern relevant to the Sierpinski carpet-like current source given by
Eq. (29) exhibits zenithal and azimuthal symmetries with respect to
values θ = π/2 and φ = 0, respectively.

The aforementioned approach for evaluating far field diagrams
can be extended to the relativistic case; in fact, from Eq. (21) it is
straightforward to show that a PW, which appears to be uniform in
frame Σ with real PW unit vector κ̂ given by Eq. (32), still appears
to be uniform as seen in frame Σ′, and its PW unit vector becomes
[13, 21]:

κ̂′ = x̂mκ̂′m = x̂1 sin θ′ cosφ′ + x̂2 sin θ′ sinφ′ + x̂3 cos θ′ (33)

cos θ′ =
cos θ

1 + β cos θ
, sin θ′ =

sin θ
γ(1 + β cos θ)

, φ′ = φ, (34)

Therefore, by taking into account Eqs. (32), (33), (34) the integral
expression in Eq. (22) can be recast in terms of the new couple of
independent polar variables θ′ and φ′ and then far-field radiation
patters can be obtained. Since the antenna appears in motion in
frame Σ′, it is important to point out that such patterns have to be
understood as “instantaneous” ones [13]: in the case of point, they shall
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represent an instantaneous ‘photograph’ of the far-field distribution as
it could be virtually taken at time t′ by a fixed observer that would be
located at the current position of the center of the translating antenna,
i.e., at βct′x̂3 (i.e., the point βct′x̂3 shall act as “instantaneous” pole
of the angular reference system). From numerical analysis it appears
that for low velocities the shape of the normalized radiation diagrams
remains substantially unaltered with respect to the motionless case.
Whereas, as β is taken toward the relativistic limit β → 1 (practically
for β > 0.1), the pattern becomes more and more asymmetric with
respect to the zenithal angle θ′ = π/2 (see Fig. 8, right); on the other
hand no asymmetry is experienced for the azimuth10. The detection
of such high-speed phenomenon for the fractal antenna under exam
is coherent with data relevant to far-field properties of elementary
radiators in motion at velocity close to the relativistic limit [13].

4. CONCLUSIONS

This work presents a PW spectral approach to the study of EM (pre-
)fractal radiators: on the ground of an efficient iterative procedure
for the description of the source current distribution in the Fourier-
domain it can furnish closed-form solutions for the wide-ranging class
of geometries whose generating IFS is based on affinities. The integral
PW representation allows us a straightforward generalization to the
relativistic case, that is important in order to outline a theoretical
framework for the project of fractal radiators for mobile systems.
The example of a planar Sierpinski carpet antenna is studied in
details, providing analytical and numerical results on Doppler spectra,
instantaneous modulations and far-field radiation patterns.
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APPENDIX A. ITERATED FUNCTION SYSTEMS

Let (S, d) a metric space. An Iterated Function System (IFS) in S
is a set of p different contraction mappings, {w1, w2, . . . , wp}, with
wj : S → S and contraction ratios c1, c2, . . . , cp ∈ [0, 1[, 1 ≤ j ≤ p,
such that d(wj(x), wj(y)) ≤ cjd(x, y), ∀x, y ∈ S. It can be shown

10 In fact the relativistic transformation (34) involves a zenithal aberration but no
azimuthal aberration.
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that if ℘©C(S) is the set of all the compact subsets of S, ℘©C(S) is a
complete metric space with respect to the Hausdorff metric induced
from (S, d), and map w : ℘©C(S) → ℘©C(S) defined as follows

℘©C(E) � E �→ w(E) :=
p⋃

j=1

wj(E), (A1)

is a contraction and thus admits one fixed-point E∞ ∈ ℘©C(S), (which
is also called ‘attractor’ of the IFS as a subset E∞ ⊂ S) [18]. Formally,
this means that:

E∞ = lim
n
wn(E) =

∞⋂
n=0

wn(E). (A2)

Here wn means the composition of w with itself n times, i.e., the nth

iterate of w; wn(E) is also called the N th prefractal of the given IFS
(and of initiator E). Attractors of IFSs often show self-similarity
properties, i.e., they are made up of similar copies of themselves
at infinitely smaller and smaller length-scales. This is one of the
main features of ‘fractal’ sets, which is quantitatively represented by
their non-integer fractal dimensions. One of these, the Hausdorff
dimension dimHE∞, in the case of ‘just-touching’ IFSs (i.e., when
wi(E)◦ ∩ wj(E)◦ = �, 1 ≤ i ≤ j ≤ p), is given by the solution of the
following equation:

p∑
j=1

cdimH E∞
j = 1. (A3)

For more details on self-similarity, IFSs and fractal dimensions, cfr.
[18, 19].
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