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Abstract—Four-dimensional differential-form formalism is applied to
define the duality transformation between electromagnetic fields and
sources. The class of linear media invariant in any non-trivial duality
transformation is labeled as that of self-dual media. It is shown that
the medium dyadic of a self-dual medium, which represents a mapping
between the two electromagnetic field two-forms, satisfies a quadratic
algebraic equation. Further, it is shown that fields and sources in
a self-dual medium can be decomposed in two uncoupled sets each
self-dual with respect to a duality transformation. Also, for each
of the decomposed fields the original medium can be replaced by a
simpler effective medium. Splitting the electromagnetic problem in
two self-dual parts can be used to simplify the solution process because
differential equations for fields are reduced to those with second-order
scalar operators. This is applied to find plane-wave solutions for the
general self-dual medium.

1. INTRODUCTION

Differential forms is a mathematical formalism [1–3] which can be used
to replace classical Gibbsian vector and dyadic analysis [4, 5]. While
the latter is associated with the three-dimensional space, the former has
no such a limitation and can be applied to a space of any dimension.
In practice, though, physical interest lies in the Minkowskian four-
space. In particular, the Maxwell equations can be given a compact
form in terms of the four-dimensional differential form representation
[6–10]. Recently, it has been demonstrated that, in addition to the
basic electromagnetic laws, classes of linear electromagnetic media
whose analytical treatment with Gibbsian formalism leads to quite
complicated expressions can be defined and analyzed with less effort
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in terms of the four-dimensional multivector and dyadic algebra
associated with the differential-form formalism [11, 12]. Also, new
concepts like the perfect electromagnetic conductor (PEMC) have
emerged through the four-dimensional representation [13].

The notation applied here follows that of [10]. A short summary
has been given in the appendices of [11] and [12]. The basic Maxwell
equations are given in the simple form

d ∧ Φ = γm, d ∧ Ψ = γe, (1)

where the three-dimensional expansions of the electromagnetic two-
forms Φ,Ψ, members of the space F2, are

Φ = B + E ∧ ε4, Ψ = D − H ∧ ε4. (2)

In terms of a dual-vector basis {εi} ∈ F1 the differential operator is
represented as

d =
4∑

i=1

εi∂xi , (3)

where x1, x2, x3 are the three spatial coordinates and x4 = τ = ct is
the (normalized) temporal coordinate. The reciprocal vector basis is
denoted by {ei} ∈ E1 and it satisfies

ei|εj = εj |ei = δij . (4)

The electric and magnetic source three-forms γe, γm ∈ F3 are

γe = 	e − Je ∧ ε4, γm = 	m − Jm ∧ ε4. (5)

They satisfy the charge conservation equations

d ∧ γe = 0, d ∧ γm = 0. (6)

Magnetic sources are here assumed to be equivalent sources without
any assumptions on the existence or non-existence of the magnetic
monopole.

Any linear electromagnetic medium is defined through a medium
dyadic M ∈ F2E2 which maps two-forms to two-forms and, thus, has
36 scalar parameters in general. The relation is written as

Ψ = M|Φ. (7)

A number of classes of media, defined by certain restrictions on the
medium dyadic, have been recently under study. The present effort
defines another class of media through the duality transformation.
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2. DUALITY

Historically, duality in electromagnetics was introduced by Oliver
Heaviside [7, 10] in 1886 to reflect the formal symmetry of the Maxwell
equations in electric and magnetic quantities. In its general form, it
can be defined through a linear transformation Ψ → Ψd, Φ → Φd

with four parameters as [10](
Ψd

Φd

)
=

(
A B

C D

) (
Ψ
Φ

)
. (8)

It is more convenient to define the duality transformation in terms of
another set of four parameters λ, Zd, Z and θ, in the form(

ZdΨd

Φd

)
= λR(θ)

(
ZΨ
Φ

)
, (9)

where

R(θ) =
(

cos θ sin θ

− sin θ cos θ

)
(10)

is a rotation matrix. When the electric and magnetic source three-
forms are transformed as(

Zdγed

γmd

)
= λR(θ)

(
Zγe

γm

)
, (11)

the Maxwell equations are invariant in form:(
Zdd ∧ Ψd

d ∧ Φd

)
= λR(θ)

(
Zd ∧ Ψ
d ∧ Φ

)

= λR(θ)
(

Zγe

γm

)
=

(
Zdγed

γmd

)
, (12)

or
d ∧ Φd = γmd, d ∧ Ψd = γed. (13)

Assuming that the transformed fields satisfy medium equations of the
form (7)

Ψd = Md|Φd, (14)

and writing
ZdΨd = λ(sin θI(2)T + cos θZM)|Φ, (15)

Φd = λ(cos θI(2)T − sin θZM)|Φ, (16)
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after eliminating Φ we obtain the following transform rule for the
medium dyadic [10]

ZdMd = (sin θI(2)T + cos θZM)|(cos θI(2)T − sin θZM)−1. (17)

The unit dyadic I ∈ E1F1 maps vectors to themselves and I(2)T ∈ F2E2

does the same for two-forms. Because the medium dyadic describes
ratios of fields, its transformation rule (17) does not involve the
magnitude parameter λ of the duality transformation.

3. SELF-DUAL MEDIUM

The electromagnetic medium is self-dual if it does not change in some
duality transformation, so that Md = M is satisfied. From (17) we then
obtain a restricting equation for the medium dyadic M:

sin θZZdM
2 + (Z − Zd) cos θM + sin θI(2)T = 0. (18)

However, here we must exclude the set of trivial transformations with
Z = Zd and sin θ = 0 for which (18) is satisfied by any dyadic M.
In such a trivial duality transformation all fields and sources are just
multiplied by the same scalar.

Because (18) is a quadratic equation in the dyadic M, for any
self-dual medium there exist two scalars M+, M− such that M satisfies

(M−M+I(2)T )|(M−M−I(2)T ) = (M−M−I(2)T )|(M−M+I(2)T ) = 0. (19)

Conversely, one can show that, for a medium satisfying (19), one can
define a duality transformation in terms of which the medium is self-
dual. Such a transformation is not unique. For example, we could
choose any value for λ, assume θ = π/4 and solve Z, Zd from

M+ + M− =
Zd − Z

ZdZ
, M+M− = 1/ZdZ (20)

in the form

Z = − 1
2M+M−

(M+ + M− +
√

(M+ + M−)2 + 4M+M− ), (21)

Zd =
1

2M+M−
(M+ + M− −

√
(M+ + M−)2 + 4M+M− ). (22)
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For a self-dual medium, the inverse of the medium dyadic can be
expressed from (19) as a linear combination of M and I(2)T ,

M−1 = − 1
M+M−

M +
M+ + M−
M+M−

I(2)T , (23)

For the modified (metric) medium dyadic defined as Mg = eN	M ∈
E2E2 [10], the condition (23) can be shown to take the form

Mg + M+M−M−1
g 

eNeN = (M+ + M−)eN	I(2)T . (24)

4. THREE-DIMENSIONAL REPRESENTATION

The modified medium dyadic Mg corresponding to the general bi-
anisotropic medium can be expressed in terms of Gibbsian three-
dimensional medium dyadics εg, ξg, ζg, µg ∈ E1E1 as [10]

Mg = −e123e123		µ−1
g − e4 ∧ ξg|µ−1

g 
e123

+ e123	µ−1
g |ζg ∧ e4 + (εg − ξg|µ−1

g |ζg)
∧
∧e4e4, (25)

and, the inverse satisfies

eNeN		M−1
g = e123e123		ε−1

g − e4 ∧ ζg|ε−1
g 
e123

+ e123	ε−1
g |ξg ∧ e4 − (µg − ζg|ε−1

g |ξg)
∧
∧e4e4. (26)

Writing (24) in the form

Mg +M+M−M−1
g 

eNeN = (M++M−)(e123	ITs ∧e4−e4∧(e123	I(2)Ts )),

(27)
it can be used to derive the corresponding self-dual conditions for the
four Gibbsian medium dyadics. Here

Is =
3∑

i=1

eiεi = I − e4ε4 (28)

denotes the three-dimensional (spatial) unit dyadic. Equating spatial-
spatial, spatial-temporal, temporal-spatial and temporal-temporal
parts separately, leads after lengthy but straightforward manipulations
to the following three conditions between the Gibbsian medium
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dyadics:

εg = M+M−µg, (29)

ξg + ζg = (M+ + M−)µg, (30)

ξg|µ−1
g |ζg = M+M−ζg|ε−1

g |ξg. (31)

It is quite easy to show that the third condition is valid whenever the
first and the second ones are valid. The conclusion is that, for a self-
dual medium, the three Gibbsian dyadics εg, µg and ξg + ζg must be

multiples of the same dyadic, while ξg − ζg may be a multiple of any
other dyadic. Thus, we can write

µg = Q, εg = M+M−Q, (32)

ξg =
M+ + M−

2
(Q − T), ζg =

M+ + M−
2

(Q + T), (33)

for some dyadics Q,T ∈ E1E1. This result corresponds to that obtained
through Gibbsian dyadic analysis in [14].

5. AB-MEDIA

As a special case of a self-dual medium let us consider the class of media
previously defined in [15] and labeled as that of AB-media (for affine
bi-anisotropic). Such media have the property that their 3D medium
dyadics are form-invariant in any spatial affine transformations. The
medium dyadic of an AB-medium was expressed the form

M = αI(2)Ts + ε′B ∧ e4 +
1
µ

ε4 ∧ B−1 + βε4 ∧ ITs ∧ e4, (34)

where α, ε′, µ, β are scalars. B ∈ F2E1 is a three-dimensional dyadic
mapping vectors to two-forms and B−1 ∈ F1E2 its three-dimensional
inverse satisfying

B|B−1 = I(2)Ts , B−1|B = ITs . (35)

To prove that AB-media are actually self-dual, it is sufficient to show
that the medium dyadic (34) satisfies a quadratic equation. To see this,
the square of (34) consisting of eight non-null terms can be compressed
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as

M2 = (α2 − ε′

µ
)I(2)Ts + (αε′ − ε′β)B ∧ e4

+ (
α

µ
− β

µ
)ε4 ∧ B−1 + (

ε′

µ
− β2)ε4 ∧ ITs ∧ e4

= (α − β)M + (αβ − ε′

µ
)I(2)T , (36)

which has the required form (18). Actually, a self-dual medium falls to
the class of AB-media if the dyadic T in (33) happens to be a multiple
of the dyadic Q. A medium whose four Gibbsian medium dyadics are
multiples of the same dyadic was previously studied in [16].

6. EIGENSOLUTIONS

It was shown in [15] that electromagnetic problems associated with an
AB-medium could be decomposed in terms of eigenexpansions into two
simpler problems involving simpler media. It is now shown that the
decomposition method can be generalized to self-dual media. The dual
eigenbivectors Φi of the medium satisfy

M|Φi = MiΦi, (37)

with corresponding eigenvalues Mi. Applying the left-hand side of (19)
on Φi leaves us with the scalar equation

(Mi − M+)(Mi − M−) = 0, (38)

from which we see that, for a self-dual medium, there are only two
eigenvalues M+ and M−. Let us denote the corresponding dual
eigenbivectors by Φ+,Φ−.

Assuming now M+ �= M−, let us define two dyadics P± as

P+ =
M − M+I(2)T

M− − M+
, P− =

M − M−I(2)T

M+ − M−
, (39)

satisfying

I(2)T = P+ + P−, M = M−P+ + M+P−. (40)

From (19) we can easily check the properties

P2
+ = P+, P2

− = P−, P+|P− = P−|P+ = 0. (41)
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whence P+ and P− are projection dyadics. Because they satisfy

P+|Φ+ = 0, P+|Φ− = Φ−, (42)

P−|Φ− = 0, P−|Φ+ = Φ+, (43)

we can decompose any given dual bivector Φ as

Φ = Φ+ + Φ−, (44)

defining
Φ+ = P−|Φ, Φ− = P+|Φ. (45)

In fact, the component fields satisfy the eigenequations

P±|Φ± = P±|P∓|Φ = 0 ⇒ (M − M±I(2)T )|Φ± = 0. (46)

One can further show that the eigen-two-forms Φ± and Ψ± are
actually self-dual fields, i.e., each of them is invariant in a duality
transformation. To see this, we first apply (18) to Φ± whence we
obtain the scalar equation

sin θZ ZdM
2
± + (Z − Zd) cos θM± + sin θ = 0 (47)

or
cos θ − ZM± sin θ =

Z

Zd
cos θ +

1
ZdM±

sin θ. (48)

From (15), (16), the duality transformation of eigenfields can be
written as

(Ψ±)d =
λ

Zd
(sin θI(2)T + cos θZM)|Φ±=λ(

1
ZdM±

sin θ +
Z

Zd
cos θ)Ψ±,

(49)

(Φ±)d =λ(cos θI(2)T − sin θZM)|Φ±=λ(cos θ − sin θZM±)Φ±,

(50)

which are not yet of self-dual form. However, the factor λ in (9) can
be freely chosen because its value does not affect the self-dual property
of the medium. Actually, we can choose λ = λ± separately for each of
the eigen-two-forms Φ±. Taking (48) into account, we can set

1
λ±

= cos θ − ZM± sin θ =
Z

Zd
cos θ +

1
ZdM±

sin θ. (51)
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Denoting now the two duality transformations thus defined by the
subscripts d±, we have

(Ψ±)d± = Ψ±, (Φ±)d± = Φ±, (52)

and, indeed, the eigenfields are self-dual with respect to the
corresponding duality transformation. With respect to the other
transformation the rules are

(Ψ±)d∓ =
λ∓
λ±

Ψ±, (Φ±)d∓ =
λ∓
λ±

Φ±. (53)

7. EFFECTIVE MEDIA

The condition for the eigenfields

Ψ± = M|Φ± = M±Φ± (54)

can be decomposed in its three-dimensional components as

D± = M±B±, H± = −M±E±. (55)

From the medium relation satisfied by the eigenfields,

e123	D± = εg|E± + ξg|H±, (56)

we obtain a relation between the eigenfields B± and E±,

e123	B± =
1

M±
(εg − M±ξg)|E± = X±|E±. (57)

The dyadic X± ∈ E1E1 can be expressed in terms of (32) and (33) as

X± =
εg

M±
− ξg = ±M− − M+

2
Q +

M+ + M−
2

T. (58)

(57) corresponds to the conditions (46). It shows how the eigenfields
are related in the self-dual medium and will be called the polarization
condition.

Because the eigenfields are not general fields but restricted by the
polarization condition, for each eigenfield one can replace the original
medium by an effective medium which is simpler than the original
medium. The effective Gibbsian permittivity and permeability dyadics
denoted by εg±, µg± can be introduced by applying (55) in the Gibbsian
medium equations as

e123	D± = εg|E± + ξg|H± = (εg − M±ξg)|E± = εg±|E±, (59)
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e123	B± = ζg|E± + µg|H± = (µg − M−1
± ζg)|H± = µg±|H±. (60)

Thus, the four Gibbsian medium dyadics can be replaced by the four
effective medium dyadics(

εg± ξg±

ζg± µg±

)
=

(
εg − M±ξg 0

0 µg − M−1
± ζg

)

=
(

M± 0
0 −M−1

±

)
X±. (61)

The effective Gibbsian medium dyadics satisfy the relation

εg±/M± = −M±µg± = X±. (62)

Obviously, the effective self-dual media are simplified special cases of
the AB-medium. Green dyadics in 3D representation for such media
have been previously studied in [14].

In four-dimensional representation, the effective medium dyadics
take the form

M± = εg±
∧
∧e4e4 − e123e123		µ−1

g± = εg±
∧
∧e4e4 −

µ
(2)T
g±

e123e123||µ(3)
g±

= M±

(
X±

∧
∧e4e4 +

X
(2)T
±

e123e123||X(3)
±

)
. (63)

8. DECOMPOSED FIELDS

For a self-dual medium, the two Maxwell equations

d ∧ Φ = d ∧ Φ+ + d ∧ Φ− = γm, (64)

d ∧ Ψ = d ∧ M|Φ = M+d ∧ Φ+ + M−d ∧ Φ− = γe, (65)

can be decomposed to two uncoupled equation sets as

d ∧ Φ± = γm±, (66)

d ∧ Ψ± = γe±, (67)

with

γm± = ± 1
M+ − M−

(γe − M∓γm), γm+ + γm− = γm, (68)
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γe± = ± M±
M+ − M−

(γe − M∓γm), γe+ + γe− = γe. (69)

The sources γe±,γm± can be easily shown to be self-dual with respect
to the same duality transformations defined by (51) as the fields
Φ±,Ψ±. The decomposed sources are related by

γe± = M±γm±, (70)

whence the equations (67) are actually the same as (66). Thus, it is
sufficient to take only one of the equations, say (66), together with the
polarization condition (46) or (57) into account.

To be able to solve the fields due to given sources in a self-dual
medium, we expand (66) in three-dimensions as

d ∧ Φ± = (ds + ∂τε4) ∧ (B± + E± ∧ ε4) = �m± − Jm± ∧ ε4. (71)

Substituting the polarization condition

B± = ε123	X±|E± (72)

and eliminating B±, the spatial two-form equation for E± reads

ds ∧ E± + ∂τε123	X±|E± = −Jm±. (73)

Contraction by e123	 gives a vector-valued equation of the form

H±(ds, ∂t)|E± = −e123	Jm±, (74)

where the two operator dyadics H±(ds, ∂τ ) ∈ E1E1 are defined by

H±(ds, ∂τ ) = e123	(ds ∧ IT +ε123	X±∂τ ) = (e123	ds)	IT +X±∂τ . (75)

It is seen that the operators depend on the medium only through
the corresponding dyadics X±. If these are split in their respective
symmetric and antisymmetric parts as

X± = S± + (e123	α±)	IT , (76)

where the α± are two dual vectors, we can write

H±(ds, ∂τ ) = (e123	d±)	IT + S±∂τ , d± = ds + α±∂τ . (77)

Note that the differential operators d± involve both spatial and
temporal differentiation. The inverse operator dyadic can be expanded
as [10]

H−1
± =

1
H±

ε123ε123		H(2)T
± , H± = ε123ε123||H(3)

± , (78)
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whence the decomposed fields satisfying (74) are solutions to respective
equations with a scalar operator,

H±(ds, ∂τ )E± = −ε123	H(2)T
± (ds, ∂τ )|Jm±. (79)

The two scalar operators can be expanded as

H±(ds, ∂τ ) = ε123ε123||((e123	d±)	IT + S±∂τ )(3)

= ε123ε123||
(

((e123	d±)	IT )(3) + ((e123	d±)	IT )(2)∧∧S±∂τ

+ ((e123	d±)	IT )∧∧S
(2)
± ∂2

τ + S
(3)
± ∂3

τ

)
. (80)

Because of interplay of symmetric and antisymmetric dyadics, two of
the terms vanish. In fact, inserting

((e123	d±)	IT )(2) = e123e123		d±d±, (81)

((e123	d±)	IT )(3) = 0, (82)

ε123ε123||(((e123	d±)	IT )∧∧S
(2)
± ) = 0, (83)

the double operator takes the form

H±(ds, ∂τ ) = (S±||d±d± + ε123ε123||S(3)
± ∂2

τ )∂τ

= (S±||(ds + α±∂τ )(ds + α±∂τ ) + ε123ε123||S(3)
± ∂2

τ )∂τ ,

(84)

which is a second-order operator multiplied by ∂τ . Obviously, scalar
Green functions corresponding to these operators can be formed and
the solutions for (79) corresponding to the decomposed sources Jm±
can be expressed in integral form. Instead of studying the general
problem in more detail, let us consider plane waves in a self-dual
medium.

9. PLANE WAVES

Plane-wave fields are solutions for source-free Maxwell equations of the
form

Φ(x) = Φo exp(ν|x), (85)
where ν ∈ F1 is the dual wave vector. In a self-dual medium, the
plane waves are decomposed in two self-dual sets corresponding to the
subscripts ±. Let us use three-dimensional expansion

ν = β + kε4, (86)
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where β is the spatial part of ν and k is the wavenumber of the wave.
In this case, the equation for the decomposed fields requires

H±(β, k) = 0, (87)

which from (84) has the form

S±||(β + kα±)(β + kα±) + k2ε123ε123||S(3)
± = 0. (88)

This is known as the dispersion equation which gives the relation
between the plane-wave quantities β and k. For a given β, the
wavenumbers k = k±(β) corresponding to the two eigenwaves can be
readily solved from the quadratic equation

k2
± + 2k±

β|S±|α±

ε123ε123||S(3)
±

+
S±||ββ

ε123ε123||S(3)
±

= 0. (89)

After solving the wavenumbers k±(β), the eigenfields E±
satisfying the equations

H±(β, k±)|E± = 0, (90)

corresponding to a given β, can be found. In fact, applying the identity
[10]

H
(2)
± 	E± = (H±|E±) ∧ H±, (91)

valid for any dyadics H± ∈ E1E1, we obtain

H
(2)
± (β, k±)	E± = 0. (92)

At this point we can apply another identity [10]

C±
(E± ∧ Π±) = E±(C±|Π±) + Π±	(C±	E±), (93)

valid for any bivector C±, dual vector E± and dual bivector Π±.
Choosing C± = Γ±|H(2)

± for some dual bivector Γ± ∈ F2 and noting
that the spatial trivector E± ∧ Π± is a scalar multiple of ε123, from
(93) and (92) we can solve E± in the simple form

E± = Γ±|H(2)
± 	ε123. (94)

The magnitudes of the two eigenfields E± depend on the two dual
bivectors Γ± which must be chosen so that the right-hand side of (94)
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does not vanish. This is always possible if H
(2)
± �= 0. The converse

(degenerate) case is omitted here.
The expression (94), whenever nonzero, gives the 3D eigenfields

E± of the plane wave. The corresponding 4D eigen-two-forms Φ± can
be found from

Φ± = B± + E± ∧ ε4 = (ε123	X± − ε4 ∧ IT )|E±

= (ε123	X± − ε4 ∧ IT )|(Γ±|H(2)
± (β, k±)
ε123).

= (ε123ε123		X± − ε4 ∧ IT 
ε123)|(Γ±|H(2)
± (β, k±)) (95)

and, finally, the other two-forms as Ψ± = M±Φ±.

10. CONCLUSION

Using differential-form representation, the class of self-dual media was
defined in four-dimensional formalism as consisting of media which are
invariant in a duality transformation other than the trivial one. It
was shown that a medium is self-dual exactly when its 4D medium
dyadic M ∈ E2F2 satisfies an algebraic equation of the second degree.
Corresponding conditions for the four 3D (Gibbsian) medium dyadics
were shown to coincide with those obtained earlier through Gibbsian
vector analysis. It was further shown that, in a self-dual medium, any
electromagnetic field can be decomposed in two noncoupled self-dual
parts corresponding to decomposed self-dual sources. It is possible
to define two effective media which can replace the original self-dual
medium for the respective decomposed fields. Because the effective
media are simpler than the original medium, problem solution can be
simplified through the self-dual decomposition of fields and sources.
As an example, plane-wave solutions were considered for the general
self-dual medium.
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