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Abstract—Effective permittivity of mixtures of lossy dielectric are
important quantities to be studied in microwave remote sensing of
soil moisture, sea ice, dry and wet snow, in geophysical probing
of properties of porous rocks and in composite materials. In
this paper, these quantities are studied with large-scale numerical
solutions of Maxwell equations in the electroquasistatic limit using
fast electromagnetic algorithms. The preconditioned EFIE method
instead of scalar potential scattering method for the simulation of the
relative permittivity of the mixture with conducting particles in quasi-
static environment is introduced. Furthermore, Algorithm IMLMQRF,
which is kernel independent for quasi-static problems with a complexity
of O(N logN), is implemented to accelerate the matrix-vector multiply
when CG iteration is applying on this preconditioned EFIE system.
Subsequently, numerical examples, viz., the permittivity extractions
from two lattice structures and one random distribution structure with
the unknowns from about 1,000 to 50,000 are efficiently simulated by
our method in this paper. The numerical results demonstrate the
efficiency of this hybrid method.

1. INTRODUCTION

Effective permittivity of mixtures of lossy dielectric are important
quantities to be studied in microwave remote sensing of soil moisture,
sea ice, dry and wet snow, in geophysical probing of properties of
porous rocks. In microwave remote sensing of soil moisture, it is
important to determine the permittivity of soil as a function of soil
moisture and soil types [1, 2]. Sea ice is a mixture of ice and saline
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water and the effective permittivity determination is a critical issue
[3–5]. The permittivities of dry and wet snow continue to draw interest
[6–8]. In geophysical exploration, the permittivity of fluid filled porous
rocks has to be studied [9]. The effective permittivity extraction of the
composite materials becomes more and more important for material
design. Analytic formulas such as Maxwell-Garnett mixing formula,
the Polder Van Santern mixing formula, the quasi-static approximation
and the quasi-static approximation with coherent approximation have
been used with limitations on the domain of validity [10–12]. However,
if the material is very complex, for instance, the particle distribution
in the material is not periodic and the particles are very complex in
shape, these analytic methods don’t work. With the advent of modern
computers, the use of numerical solutions of Maxwell equation has
become an attractive method. The problem is inherently large-scale
numerical simulations because a large number of particles need to
be used to provide a valid statistical sample. Thus, fast numerical
algorithms become necessary. A number of numerical methods, such
as FDTD or FDM [13, 14], scalar-potential scattering method [15–
17], etc., have been reported in the literature for solving this kind
of problems. As FDTD is a time domain method, it can obtain a wide
frequency response of the material effective permittivity in a single
computer run. However, it requires a volumetric discretization, thus,
the number of unknowns grows rapidly when the size of the problem
increases.

If only the low frequency permittivity is needed, the scalar
potential method based on the following equation

φinc(r) + φsca(r) = φtotal(r) (1)

solving by the T-matrix method is a valid solution [15–16]. However,
it is only applicable to a certain class of geometries such as the sphere
and cylinder. An alternate method to solve (1) is the MoM [17]. The
scalar potential can be written as

φsca =
1

4πεb

∫
Σ
dS′G(r, r′)ρ(r′), (2)

where G(r, r′) is the Green’s function for the specific problem, ρ(r′)
is the charge density on the surfaces of the particles, while Σ denotes
the particle surfaces of all the particles. Assume that there are Nt

particles. By meshing the surface of particle j (j = 1, · · · , Nt) into
nj quadrilateral patches, one can obtain Np = ΣNt

j=1nj patches for
this particle system. Choosing the pulse base Pj, i(r′) = 1

�j, i(r′) , i =
1, · · · , nj , where �j, i(r′) is the Jacobian factor on patch i of particle
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j, ρ(r′) can be expanded as ρ(r′) = ΣNt
j=1Σ

ni
i=1Pj, i(r′)Qj, i. For

convenience, we denote the global index set of the supports of these
pulse bases as {Sk}Np

k=1. Hence, the corresponding pulse base set can
be written as {pk}Np

k=1, where pk = Pj, i(r′), while the global index of
patch i on particle j is k. To make all of the particles to be charge
neutral, the restriction condition

∫
Ωj

dSρ(r) = 0 is used, where Ωj is
the surface of particle j.

nj∑
i=1

Qj, i = 0, j = 1, · · · , Nt. (3)

The matrix form of (3) is

[L][Q] = [0] (4)

The k th entry qk in Np — by — 1 vector [Q] is expressed as

qk = Qj, i, if the global index of patch i on particle j is k. (5)

The entries in Nt — by — Np matrix [L] is expressed as

Llk =
{

1, if Sk is on particle l,
0, otherwise.

(6)

Applying the Galerkin’s method on (1), one obtains
[
Φinc

]
= −

[
Z

] [
Q

]
+

[
L

]T [
Φ

]
, (7)

where Np — by — Np matrix [Z] has entries

Zmk =
1

4πεb

∫
Sm

dSpm(r)
∫

Sk

dS′pk(r′)
1
R

≈ 1
4πεb

(
1
R

) ∣∣∣∣ r = centre of Sm

r′ = centre of Sk
, (8)

where R = |r − r′|. Combining (7) with (4), we can obtain a
constrained linear system

[ −[Z] [L]T

[L] 0

] [
[Q]
[Φ]

]
=

[
[Φinc]

0

]
, (9)

By solving this equation we can obtain the charge distribution of
arbitrary conducting particle set.
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Obviously, this system is very ill conditioned. As a result, if the
conjugate gradient (CG) method is applied to solve this system, it
will converge slowly. Matrix inversion method can be used to avoid
this problem. However, if the system size increases, the computation
time will increase drastically as the matrix inversion scheme has
a complexity of O(N3) where N is the number of unknowns. In
order to attack this problem, here we present a method based on
the preconditioned EFIE with and improved matrix QR factorization
(IMLMQRF). The low frequency currents in EFIE are expanded
by the tree bases [18] and the preconditioning technique is then
applied. As a result, the spectrum property of the corresponding
MoM matrix is improved and, hence, the convergence is very fast
when the CG method is used. When the system of equation becomes
very large, the traditional MoM method is replaced by the IMLMQRF
[19] with the complexity of O(N logN) for accelerating matrix-vector
multiplications in the CG iterations. The organization of this paper is
as follows. In Section 2 and Section 3, the preconditioned EFIE with
tree base expansion are introduced and a detailed method for solving it
is addressed. In Section 4, an improved kernel independent multilevel
matrix QR factorization method (IMLMQRF) is implemented to
accelerate the full matrix-vector multiplication arising from (26) with
a complexity of O(N logN). Section 5 is the numerical validation of
the preconditioned EFIE by the examples of permittivity extractions
from the cubic and spherical lattices, and the numerical application of
the IMLMQRF on the preconditioned EFIE in large-scale simulation
of mixture with random distributed spheres. A conclusion is given
in Section 6. In the Appendix, a new algorithm is presented for
efficiently solving the two sparse matrix equations [K][x] = [y] and
[K]T [x] = [y] encountered on Section 3, where [K] is a sparse matrix
used to precondition the full matrix [B]T [Z][B] in the L. H. S. of (26).

2. EFIE AND ITS TREE BASE EXPANSION IN LOW
FREQUENCIES

The tangential E fields on the surfaces of these particles satisfy

−Esca · t̂ = Einc · t̂, (10a)

where t̂ is any an unit tangential vector on these conducting surfaces.
The researched problems in this paper are the low frequency near
field problems. In very low frequencies, the vector potential part of
the Mixed Potential Integral Equation (MPIE) can be ignored when
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calculating the near scattered E field, thus Esca can be written as

Esca = −∇φ = − 1
4πεb

∇
∫

Σ
dS′∇′ · J(r′)/(iωR) (10b)

where εb is the background media, J(r′) is the electric currents, R is
the distance between source point and observation point, and ω the
angle frequency. Combining (10a) and (10b), we get the low frequency
Electric Field Integral Equation (EFIE).

It is known that the current vector is the combination of the
solenoidal part and the non-solenoidal part [18]. However, from (10b),
we see that the influence of the solenoidal part to the near E field is
ignored. Thus only the non-solenoidal part of the current should be
taken into account. It is known that the tree bases can be chosen as a
set of non-divergence-free bases, although any of them contains a small
bit of solenoidal component. Hence, in this paper, we chose tree bases
as the basis functions to expand the EFIE.

The tree base has the same form as the conventional rooftop
base. However, the number of the tree bases is different from that
of the conventional rooftop bases. According to the graph theory, the
Np patches on the Nt particles can be viewed as the Np nodes of a
graph, while each two adjacent patch nodes are connected by a branch.
Because the support of each rooftop base consists of two adjacent patch
nodes, thus the number of rooftop bases N ′

b is the same as the number
of branches of this graph. On the other hand, each particle can be
viewed as a sub-graph of this graph. Thus, there are Nt sub-graphs.
For these sub-graphs, we can find their corresponding Nt spanning
trees by the Depth First Search Algorithm [20]. Because in a spanning
tree, no loop exists, thus any branch on this tree can be viewed as a
non-divergence-free base. Hence the number of tree bases Nb equals
the numbers of the branches of these Nt spanning trees. From the
graph theory, the number of branches of spanning tree j equals the
number of patch nodes on this tree subtracting one, viz., nj −1, hence,
Nb =

∑Nt
j=1(nj − 1) = Np −Nt. Obviously, Nb < N ′

b. Fig. 1 shows two
meshed particles and the corresponding graph.

Let the tree base set and its corresponding support set be
{jk(r′)}Nb

k=1 and {(Sk1 , Sk2)}Nb
k=1, respectively. Fig. 2 is the illustration

of a tree base where Sk1 and Sk2 denote the global indices of the
first patch node and the second patch node of jk(r′), respectively.
The mathematical form of jk(r′) can be found in [21]. Here a brief
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Figure 1. Two meshed particles and their graph presentations. The
tree bases and the patches are globally indexed.
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Figure 2. The real space and topologic presentation of the support
of a tree base.

introduction is given.

jk(r′) =




ℵk, 1

�k1

T k, 1, r′ ∈ Sk1

ℵk, 2

�k2

T k, 2, r′ ∈ Sk2

. (11)

Tk, 1 and Tk, 2 are two polynomials having the forms as ξi
∂r′
∂ξj

or

(1 − ξi)∂r′
∂ξj

, (i=1 or 2, j=1 or 2), where the pair (ξ1, ξ2) is the
parameter coordinate of point r′. One should note that different tree
base has different choices of the values of i and j. ℵk, i (i=1 or 2) is
the normalization factor used to ensure the normal current continuity
on the common edge of support patch 1 and support patch 2 of jk.
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Its expression can be found in [21]. Thus the current J(r′) can be
expanded as J(r′) =

∑Nb
k=1 jk(r′)Ik, where Ik is the current coefficient.

It is not difficult to obtain the identity

∇′ · jk =




ℵk, 1

�k1

, r′ ∈ Sk1

ℵk, 2

�k2

, r′ ∈ Sk2

. (12)

Applying Galerkin’s method on (10a), one obtains the following
matrix equation

[Z ′][I] = [V ], (13)

where the entries in the Nb — by — 1 excitation vector [V ] can be
written as

Vt =
2∑

i=1

∫
Ski

dSji(r) · Einc(r). (14)

The entry Z ′
lk in the Nb — by — Nb matrix [Z ′] is expressed as

Z ′
lk =

−1
iω4πεb

2∑
i=1

2∑
j=1

∫
Sl1

dS

∫
Sk1

dS′∇ · j(r)∇′ · j(r′)
1
R
. (15)

One can easily observe that the computational complexity in
(15) is about four times of that in (9). For the sake of reducing its
complexity, we do the following transform steps. Substituting (12)
into (15), one obtains

Z ′
lk =

i

ω

2∑
i=1

2∑
j=1

ℵl, iℵk, jZlikj
. (16)

The matrix form of (16) can be written as

[Z ′] =
i

ω
[B]T [Z][B]. (17)

The entries in this Np — by — Nb sparse matrix [B] can be written as

Bmn =




ℵn, l, Sm is the first support patch of tree base n,
ℵn, 2, Sm is the second support patch of tree base n,
0, otherwise.

(18)
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Thus (13) can be rewritten as

i

ω
[B]T [Z][B][I] = [V ]. (19)

Instead of computing [Z ′], we calculate [Z], which has less
computational complexity. Obviously, because matrices [B] and [B]T
are very sparse, when CG iteration is applied to solving (19), the
additional time consumed in matrix-vector multiplications [B][x] and
[B]T [x] can be ignored.

However, matrix [Z ′], viz., [B]T [Z][B] is still ill-conditioned. This
means that a large number of steps are still needed to solve (19) or
(13) iteratively. Fortunately, in [18], this problem has been solved by
introducing a sparse matrix [K].

3. THE PRECONDITION MATRIX [K] AND THE NEW
ALGORITHM FOR CALCULATING [K]−1[y]

According to [18], the main reason that causes the ill-conditioned
matrix [Z ′] is the divergence of the tree base. However, it is known
that the matrix equation for electrostatic problem based on pulse basis
converges rapidly. Hence, the relation matrix between the current
bases and the pulse bases can be used as a precondition matrix for
(19) or (13). The current continuity equation is given by

∇ · J(r) = iωρ(r). (20)

We should note that, although as mentioned in section 1, the
charge density can be expanded as ρ(r′) =

∑Nt
j=1

∑ni
i=1 Pj, i(r′)Qj, i,

the charge neutral property of each particle, i.e., (3), will cause the
number of independent pulse bases to be Nb = Np−Nt, a number that
equals the number of tree bases. By combining (3) with this charge
density expansion, we can obtain another form of the charge expansion

ρ(r) =
Nt∑
j=1

nj∑
i=1

Pj, iQj, i =
Nt∑
j=1

nj−1∑
i=1

(Pj, i − Pj, nj )Qj, i =
Nb∑
k=1

p′kq
′
k. (21)

From (21), we can see that the support of an independent charge
base consists of two patch nodes. Hence, let its globally indexed
support set be {(S∗

k1
, S∗

k2
)}Nb

k=1. The second patch node is the last
locally indexed patch nodes in the spanning tree, while the first patch
node is corresponding to the support of a tree base. Hence a one-
to-one correspondence can be found between the first support patch
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node of each charge bases and the support of each tree bases. For
instance, in Fig. 1, the support set of the tree bases is {(Sj1 , Sj2)}6

j=1

= {(n1, n2), (n2, n3), (n3, n4), (n5, n6), (n6, n7), (n6, n8)}, while
the corresponding support set of the independent charge bases is
{(S∗

j1
, S∗

j2
)}6

j=1 = {(n1, n4), (n2, n4), (n3, n4), (n5, n7), (n6, n7),
(n8, n7)}, where nj denotes the global index of patch node j of
this graph. Here the global indices of the patch nodes, the tree
bases and the independent charge bases are all generated by Depth
First Searching the spanning trees once. Subsequently, substituting
J(r′) =

∑Nb
k=1 jk(r′)Ik into (20) and performing the surface integral

on the first support patch node of each independent charge base, we
get

Nb∑
k=1

∫
S∗

l1

dS∇ · jk(r) = iω

∫
S∗

l1

dSρ(r) = iωq′l, l = 1, · · · , Nb.

(22a)

Its matrix form is

[K][I] = iω[Q′]. (22b)

Note that in equation (22b), Matrix [K] is an Nb — by — Nb sparse
matrix that will be used as a precondition matrix. Its entries are given
by

Klk =




ℵk, 1, if S∗
l1

= Sk1 ,

ℵk, 2, if S∗
l1

= Sk2 ,

0, otherwise.
(23)

Multiplying the inverse of [K] on the two sides of (22a)–(22b), one
obtains

[I] = iω[K]−1[Q′]. (24)

Substituting (24) into (13) and (19) one obtains

[K]−T [Z ′][K]−1(−[Q′]) = [K]−T [V ], (25)

and

[K]−T [B]T [Z][B][K]−1(−[Q′]) = [K]−T [V ], (26)

where [K]−T is used to make the matrix product on the L. H. S. of
(26) symmetric. It has been proved that matrix [K]−T [Z ′][K]−1, viz.,
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Figure 3. The matrix [K] of the example in Fig. 1. The dash blocks
correspond to two particles. The asterisks denote the nonzero entries
of the sparse matrix.

[K]−T [B]T [Z][B][K]−1 has a good spectrum property, thus (25) and
(26) converge very fast [18]. Fig. 3 is the illustration of the matrix [K]
of the two particles in Fig. 1.

However, to obtain the inverse of [K] is a problem. If the number
of tree bases in each spanning tree is small enough, the matrix can be
viewed as a block diagonal matrix, while each block corresponds to a
spanning tree, or say, a particle. Thus the inverse of matrix [K] can
be fast calculated by inverting each of the diagonal block. However,
if the volume fraction increases, the mesh density may also increase,
so does the number of tree bases. The direct inverse of [K] becomes
time consuming. In fact, if we want to obtain vector [x] = [K]−1[y],
we only need to solve the equation [K][x] = [y]. In [18], an efficient
method has been provided. The main idea is to solve the equation with
the recursive elimination method with O(Nb) complexity. However, in
[18], the base reorder and complex matrix operations, such as matrix
divisions and matrix multiplications have been used. This makes its
realization very cumbersome.

Instead of using the algorithm in [18], we provide, in the Appendix,
two very simple algorithms for solving [K][x] = [y] and [K]T [x] = [y]
with the same computational complexity, in which no complex matrix
operation is needed. Here, we give an example to describe the basic
idea of our algorithm for solving [K][x] = [y]. Let matrix [K] be
that shown in Fig. 3. We observe that row one of [K] has only one
diagonal non-zero entry. This means that the unknown x1 can be
directly obtained. Subsequently, the off-diagonal non-zero entries in
column one can be eliminated. It is obvious that each row has at most
two non-zeros, where one of them is the diagonal entry. Because the
off-diagonal non-zeros in column one have been eliminated, thus, in
each of their corresponding rows, only one non-zero entry, viz., the
diagonal entry remains. Consequently, the unknown value in these
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rows can be directly obtained. Thus, we can obtain all the entries
in [x] recursively. In order to evaluate their performance, we have
generated a system of 27 sphere particles with 4,077 unknowns. We
use a computer with 2.53 GHz CPU to solve equation [K][x] = [y] and
equation [K]T [x] = [y] each for 10,000 times, with only 3 seconds and
4 seconds, respectively. This means that the time used in them can be
ignored. The results have been compared with the results obtained by
the direct inverse of the block diagonal matrix [K], no difference has
been found between them.

4. THE IMLMQRF FOR ACCELERATING THE
MATRIX-VECTOR MULTIPLICATIONS

Here, we choose the popular CG method to solve (26). In CG
the matrix-vector multiplications [K]−T [B]T [Z][B][K]−1[x] should be
performed in 5 steps. They are [y] = [K]−1[x], [x] = [B][y], [y] = [Z][x],
[x] = [B]T [y], and [y] = [K]−T [x]. Just as mentioned before, the CPU
time consumed in step 1, 2, 4, and 5 can be ignored. Thus, the only
time consuming step is [y] = [Z][x], which has a complexity of O(N2

p ).
In [22] and [23], the method IES3 based on Multi-Level Matrix

QR Factorization is developed, which can rapidly solve all kinds of
low-frequency problem and is kernel independent. Its complexity for
matrix-vector multiplication is O(N logN).

It is known that QR factorization of an n — by — n matrix [A]
results in one n — by — r unitary matrix [Q] and one r — by — n upper
triangular matrix [R] , where r is the numerical rank of [A] [24]. This
satisfies the identity [A] = [Q][R] with certain accuracy. The storages
for these two matrices Q and R are nr and rn, respectively. Usually,
if the numerical rank of [A] is much less than its size, i.e., r << n, the
total storage of [Q] and [R] will be much less than that of matrix [A]
as 2rn << n2. Furthermore, the CPU time consumed in matrix-vector
multiplications of [Q][R][x] will be much less than that in [A][x] due to
the fact that O(nr + rn) << O(n2), despite both operations yielding
the same result. This is the basic idea of IES3.

Although the moment matrix [Z] must be full rank, the ranks of
its submatrices can be very low. In IES3, the geometry is firstly divided
into multilevel groups shown in Fig. 4. Let these subscatterer groups
form a set denoted as {Gl

j}, where l is the level index, while j is the
jth subgroup at level l. Hence the moment matrix [Z] is correspondly
divided into some square-like submatrices according to a multilevel
matrix division scheme [22]. These matrices form a submatrix set
{Al

ij}, where each submatrix Al
ij denotes the interaction from group
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Figure 4. The illustration of complete multi-level division of an
object.

 

 

 

 

 

 

 

 

Figure 5. An example of the incomplete multi-level matrix division,
which only shows an incomplete 3-level matrix division.

Gl
j to group Gl

i at level l. Fig. 5 is the illustration of the multilevel
matrix division. From Fig. 5, we can see that the multilevel matrix
division is incomplete.

For any submatrix Al
ij , if its two corresponding subscatterer

groups Gl
i and Gl

j are well separated, the numerical rank r of this
submatrix will be very low. It is obvious that, for a moment matrix, the
more low rank submatrices it has, the more efficient we can compute
the matrix-vector multiplication. Fig. 6 shows the rank map of a
6448-by-6448 matrix of a mixture of 124 randomly distributed spheres
with a fractional volume of 0.05. In this rank map, the largest square
denotes the moment matrix [Z], while the small rectangles denote the
submatrices this moment matrix contains. The number in each frame,
i.e., each submatrix denotes the numerical rank of it. We can see that
there are a lot of low rank submatrices.

In IES3, for any low rank submatrix Al
ij in [Z], instead of

calculating all of its entries, a sampling algorithm is developed to
compute only a few selected rows and columns of it and the Modified
Gram-Schmidt Algorithm is used to obtain its QR representation, viz.,
Al

ij = Ql
ijR

l
ij . As a result, the computational complexity decreases

to O(N logN) [22, 23]. However, the sampling scheme depicted in
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Figure 6. Rank map of the moment matrix of 124 randomly
distributed sphere particles with volume fraction of 0.05.

[23] is straightly mathematical and not necessarily efficient. In it, a
large number of vector operations with least square method were used
for the sampling, making it time consuming. In this paper, we use
the alternate algorithm developed in [19], viz., the Improved Multi-
Level Matrix QR Factorization (IMLMQRF). In IMLMQRF, a new
sampling methodology is presented in which a physics-based column
and rigorous Gram-Schmidt row selection process are introduced. This
makes the sampling more stable and efficient. In [19], large-scale RFIC
is simulated. Here, IMLMQRF will be applied to solve the large-scale
low frequency random particles scattering problem. The sampling
method of IMLMQRF is given in [19] and a brief introduction is given
here.

For any submatrix Al
ij in moment matrix [Z], we develop two

algorithms for sampling its sl
ij rows and sl

ij columns, and subsequently
reconstruct matrix Al

ij by its QR factorization representation, viz.,
Al

ij = Ql
ijR

l
ij .

Based on the interpolation principles, the reconstruction of matrix
Al

ij via its sampled rows and columns is just the same as the
reconstruction of a two-dimensional graph with the sampled points
as the interpolation points. But if we do not know the variations
of colors in the graph before interpolation, the only thing that we
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distance 

l
iG
l

l
jG

Figure 7. The illustration of the distance from a source point (the
hollow circle) in Gl

j to the center point (the black dot) of observation
region Gl

j .

can do is to fully sample all its points. However if we have some
prior information, the number of sampled points can be drastically
decreased. For instance, if we have previously known that there is
a blue-sky area, the point density in this area can be reduced. On
the contrary, the point density should be increased in the fast varying
regions such as the hills, the grasses and the trees. Numerically, we
should sample those points with the largest second order derivatives.
But none of the entries of Al

ij are known so as their second derivatives.
Fortunately, some approximations can be used to model the average
variations of entries in Al

ij along the column directions. The algorithm
steps are described in Algorithm 1.
Algorithm 1

Step 1. Find the center points of the observation point Gl
i (Fig. 7).

Step 2. Find the approximations of Green’s function values from the
source points in Gl

j to this center point (see Fig. 7). For free
space problem, the reciprocal of the distance shown in Fig. 7 can
be viewed as the approximation of the Green’s function. Hence
store all these values to an array d, where dk is its kth element.

Step 3. Solve for the second order difference along the array index axis
and overwrite them to the array d. The formula of the kth element
is dk−1 + dk+1 − 2dk.

Step 4. Employ the quick sort algorithm [25] to choose the sl
ij indices

of, d for which their values are the largest.
Step 5. Hence, the corresponding sl

ij columns are sampled from Al
ij.

It is obvious that the CPU time consumed in Algorithm 1 is neg-
ligible. Assume that we have sampled sl

ij columns from submatrix Al
ij

and then calculated and stored them in Ac. The remaining problem
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is to sample some rows from Al
ij . Obviously, the same manner can

be used in sampling these rows. However, we had designed a rigorous
algorithm described below.

Algorithm 2

Step 1. Sample sl
ij columns from submatrix Al

ij based on Algorithm 3
and calculate them. These sampled columns form a new temporary
matrix Ac of ml

ij—by—sl
ij. The number of operations is ml

ij ×sl
ij.

Step 2. QR factorize matrix Ac and obtain a temporary unitary matrix
Qc of ml

ij—by—rl
ij. Hence, Ql

ij = Qc The number of operations
is ml

ij × sl
ij × rl

ij.

Step 3. Find the rl
ij rows of orthogonal bases that span the rows

of matrix Qc by using the modified Gram-Schmidt Algorithm
described in [24]. At the same time, record the indices of these
corresponding rows of matrix Qc in an index set. Subsequently,
sample and calculate rl

ij rows from Al
ij according to the index set.

All of these sampled rows are stored in matrix Ar of rl
ij—by—nl

ij.
The number of operations is ml

ij × rl
ij × rl

ij.

Step 4. Sample rl
ij rows from Qc according to the index set. These

sampled rows form a new temporary matrix Q′
c of rl

ij—byrl
ij.

The number of operations can be neglected, because Qc has been
calculated in Step 2.

Step 5. Solve the equation Q′
c × R = Ar, where Q′

c is invertible (no
least square solution is needed). Hence we had obtained Rl

ij = R.
The complexity is about O(rl

ij × rl
ij × nl

ij).

In numerical practices, sl
ij ∝ rl

ij and ml
ij ≈ nl

ij . Thus, the total
computational complexity of this of sampling algorithm is O(rl

ij ×rl
ij ×

ml
ij). Comparing the row sampling algorithm in [23], we see that no

distance between two multi-dimensional vectors (columns or rows) is
computed here and no least square solution is used. Furthermore, the
number of sampled rows is rl

ij , not sl
ij . Hence, the sampling efficiency

has been drastically increased and we can obtain (Ql
ij , R

l
ij) with much

less computing time.

5. NUMERICAL RESULTS

To validate the accuracy and efficiency of our method, here we apply
the preconditioned EFIE with the IMLMQRF implementation to
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calculate the effective permittivity of the periodic and the disordered
mixture. If the macroscopic mixture sample is spheroid, the following
formulation can be used to extract the effective permittivity [26]

P eff =
3εb(εeff − εb)
εeff + 2εb

Einc, (27)

where the effective dipole moment is the assemble average of the dipole
moment, viz.,

P eff =

∫
V dV P (r)

V
. (28)

For the conducting particles,∫
V
dV P (r) =

∫
Σ
dSρ(r)r, (29)

where ρ is obtained by (26).
In this paper, for simplicity, all of the samples are cubic shaped.

Cube sample can be viewed as an approximation of sphere sample.
This will not affect the accuracy so much [17].

5.1. The Permittivity Extraction from Lattice

To validate the preconditioned EFIE devised in this paper, we had
simulated the effective relative permittivity of a sphere centered cubic
lattice and a cube centered cubic lattice in free space. They are shown
in Fig. 8. Because the lattice sample consists of a large number of
periodically arranged micro-cells, thus V can be replaced by the volume

   
(a)                                         (b) 

Figure 8. The illustration of cubic lattice. (a) Sphere centered. (b)
Cube centered.
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Figure 9. The effective relative permittivity of (a) the sphere centered
cubic lattice and (b) the cube centered cubic lattice.

of a cell Vcell and the periodic Green’s function can be used in (10a–
10b) or (2) [17] for reducing the computational complexity.

Fig. 9(a) shows the permittivity curves of the sphere centered
cubic lattice. In the Volume fraction between 0 and 0.4, 1950 patches
are employed to model the surface of the sphere, while in the fractional
volume between 0.4 and 0.5, 3780 patches are used. The number
of spheres used to calculate the periodic Green’s functions is 125
(5 × 5 × 5) [17]. The comparison has been made between our method
and Doyle’s interpolation formula for simple cubic lattice εr, eff =
(1 − 0.5π ln(1 + 6f/π)) [12], a good agreement is observed between
them.

Our method can be used to solve the problems with different
particle shapes. The permittivity of the cube centered cubic lattice
has also been calculated and is shown in Fig. 9(b). Here, 3750 patches
are used to model the surface of the cube and 729 cubes are used
to calculate the periodic Green’s function in the fractional volume
between 0 and 0.8 [17]. Maxwell-Garnet solution εr, eff = 1+3f/(1−f)
is also plotted as a comparison. The numerical results by our method
are slightly larger than the Maxwell-Garnett results.

5.2. The Permittivity Extraction from Random Distributed
Mixtures

In this paper, for simplicity, we only studied the randomly distributed
mixture with identical sized and shaped conducting spheres, although
the sizes and shapes of the particles in a mixture can be nonuniform.
The surface of each sphere shown in Fig. 10 is modeled by 52 patches.
The spheres are randomly distributed in a cubic volume filled with the
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Figure 10. The illustration of the uniformly randomly distributed
particles in a cubic volume filled with the background media εb.

background medium εb. Here we choose εb = ε0 for convenience. We
distribute these particles randomly in two steps. At first, the cube
is divided into 10 × 10 × 10 cubic grids. Subsequently, the particles
will be uniformly randomly located in these grids one by one. The
random location generator is a slight modification of the quasi-random
generator in [27].

To check the convergence of our method, we have calculated the
effective permittivity of a specific distribution of 51 spheres in the
cubic volume with the fractional volume equals to 0.02. Two methods
have been used. The first method is the scalar potential method, i.e.,
solving equation (8), while the second method is our method of solving
equation (26). The numbers of unknowns for these two methods are
51 × 52 + 51 = 2704 and 51 × (52 − 1) = 2601, respectively. Fig. 11
shows the CG convergence comparison between these two methods.
We can observe that equation (26) converges very fast, while equation
(8) becomes stagnated after 20 iterations. This means that the matrix
in (8) is very ill-conditioned. Because the problem is small enough, we
can use the direct matrix inversion in solving (8). The effective relative
permittivity obtained by our method is 1.06062, while the result
obtained by solving (8) using matrix inversion method is 1.06596. They
agree well with each other. However, when the number of particles
increases, the number of unknowns increases. Subsequently, the direct
matrix inversion becomes intractable and our proposed method based
on preconditioned EFIE prevails.

When the fractional volume approaches 0.4, the number of
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Figure 11. CG iteration convergence comparison for the system of 51
randomly distributed spheres with a fractional volume of 0.02.

randomly distributed spheres and the number of unknowns are 984 and
50,184, respectively. For this case, if the conventional MoM method
is used, a huge amount of memory (20.1 GBytes) and CPU time are
needed. Fortunately, the IMLMQRF with O(N logN) computational
complexity only requires about 800 MBytes of memory. The CPU
time for computing the reduced-rank matrix and 565 CG iterations
for the normalized L-2 norm of the residual below 2.5×10−2 are about
107 seconds and 1689 seconds, respectively. Note that the entries in
matrix [Z] given in (10a) are very simple, thus the matrix filling time
in IMLMQRF method is very fast. In this paper, all the mixture
permittivity results are calculated by IMLMQRF.

As we are primarily concerned with the mean value of the
permittivity, here we use the formula 〈εr, eff 〉 = (

∑Nr
i=1 εr, eff i

)/Nr to
calculate it, where Nr is the number of realizations for a specific
fractional volume. Fig. 12 shows the calculated permittivity versus
fractional volume from 0.1 to 0.4. Results obtained by Maxwell-
Garnett formula are also plotted in this figure for comparison. We
can see that the Maxwell-Garnett curve acts as a lower bound of the
mixture permittivity. Note that for each fractional volume, only 10
realizations are averaged. The total CPU time used is about 19 hours
for the whole curve.

It is obvious that only 10 realizations for each fractional volume
are insufficient. In order to obtain higher accuracy, more realizations
should be used. Here, we have performed the ensemble average of the
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Figure 12. The calculated permittivity of the randomly distributed
spherical particles versus fractional volume. The number of realization
for each volume fraction is 10.
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Figure 14. The distribution of the effective relative permittivity.

effective relative permittivity of the system for 1,000 realizations for
the fractional volume of 0.2. The number of unknowns is 25143. The
total CPU time used is about 75 hours. Fig. 13 shows the average value
of the effective relative permittivity versus the number of realizations.
We can see that the average value converges at 1.82151.

Fig. 14 shows the distribution of the effective relative permittivity
of these 1,000 realizations. Here, the Gaussian distribution
with mean value µ = 1.82151, and standard deviation σ =√

(
∑Nr

i=1(εr, eff i
− µ)2)/Nr = 0.107272 is also plotted.

6. CONCLUSION

The aim of this paper is to find an efficient integral equation method to
solve the static mixture problem. For this purpose, the preconditioned
EFIE method, i.e., (26) instead of scalar potential scattering method,
i.e., (8) is used to simulate the relative permittivity of the mixture with
conducting particles in quasi-static environment. Hence, the matrix
arising from (26) is well-conditioned, leading to a more stable solution.
To accelerate the matrix-vector multiplication [Z][x] arising from (26),
the kernel independent algorithm IMLMQRF for quasi-static problems
with the complexity of O(N logN) is applied. As a result, not only
the matrix-vector multiplies in CG iteration is accelerated, but also
the memory requirement is drastically reduced. Subsequently, some
numerical examples for the permittivity extractions from two kinds of
lattice structures and the randomly distributed spherical particles with
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different fractional volumes and different realizations are efficiently
simulated. The numbers of unknowns for these realizations range from
about 1,000 to 50,000. Numerical results demonstrating the efficiency
of this hybrid method are also given.

If the fractional volume is larger than 0.4, the mesh density should
be increased. Consequently, the number of unknown will increase
drastically. Hence, new method such as parallelized IMLMQRF should
be used to solve it. On the other hand, if the permittivity of the particle
is finite, the surface integral equation contains the integro-differential
operator acting on magnetic currents. Thus, a more complex treatment
should be implemented. However, our method in this paper still can
be efficiently used in it. Our next step of the research work is on this
aspect.
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APPENDIX A.

A.1. Solution of Equation [K][x] = [y]

Before solving [K][x] = [y], seven temporary arrays should
be defined. They are [D], [O], [I], [C], [TC], [x] and [y] where
Di, Oi, Ii, Ci, TCi, xi, and yi, i = 1, · · · , Nb, are their ith entries,
respectively. Di is the diagonal entry of column i of matrix [K]. Oi

is the off-diagonal non-zero entry of column i of matrix [K]. Ii is the
row index of the off-diagonal non-zero entry of column i of matrix
[K]. Ci is the number of non-zero entries of row i of matrix [K]. TCi

i = 1, · · · , Nb is used as a temporary counter. xi is the ith entry of
vector [x]. yi is the ith entry of vector [y]. Note that [D], [O], [I], [C]
and [y] are the input arrays, while [x] is the output solution and [TC]
is a temporary array. It is known that the off-diagonal non-zero entry
of a column of [K] is at most one. Hence, if the number of the off-
diagonal non-zeros of row i is zero, the value of Ii is set to be −1000.
The algorithm is given in Table A1.

Because in this algorithm, each non-zero entry of sparse matrix
[K] has been called only once, thus its complexity is O(Nb). Note that
Step 2.3 is the step for calculating the unknowns, while Step 2.5 is
the column elimination step. The main idea of this algorithm is to
eliminate the off-diagonal non-zeros recursively.
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Table A1. Algorithm 3.

A.2. Solution of Equation [K]T [x] = [y]

Before performing [K]T [x] = [y], we need another three integer arrays
[H], [S], and [E], where Hi, Si, Ei, i = 1, · · · , Nb are their entries,
respectively. The usage of [H], [S], and [E] is that the entries from
HSi to HEi store the column indices of the off-diagonal entries of row
i of matrix [K]. The Algorithm is given in Table A2.

Table A2. Algorithm 4.

In Algorithm 2, each non-zero of sparse matrix [K] has been called
only once. Thus, its computational complexity is O(Nb).

The function Eliminate is a recursive function. For simplicity,
here we set all the variables to be global variables. Thus no input
parameter is required for this function. This function is given in
Table A3.
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Table A3. Function Eliminate.
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