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Abstract—A method is proposed for analysis of arbitrarily loaded
lossy and dispersive nonuniform single or coupled transmission lines.
In this method, the transmission lines are subdivided to several uniform
sections, at first. Then the voltage and current distributions are
obtained using second order step-by-step numerical integration (second
order finite difference method). The accuracy of the method is studied
using analysis of some special types of single and coupled transmission
lines.

1. INTRODUCTION

Single and coupled nonuniform transmission lines (NTLs) are widely
used in RF and microwave circuits as resonators [1], impedance
matching [1, 2], delay equalizers [3], filters [4], wave shaping [5], analog
signal processing [6], VLSI interconnect [7] and etc. The differential
equations describing these structures have non-constant coefficients,
because of their length. The most used method is subdividing the
nonuniform lines into many short sections [8–13]. In each section a
uniform [8–11], linear [12], exponential [13] or other types of lines
may be inserted. In some efforts, an exact or approximate closed
form solution has been derived from the structures containing many
cascaded short sections [8, 9]. These nonlinear equations have been
solved analytically and without approximation only for a few special
types of NTLs such as linear [12], exponential [13], power-law [14, 15],
binomial [16], exponential power law [17] and hermite [18] types.

The subject of this paper is using second order step-by-step
numerical integration to analyze coupled or single NTLs. In this
proposed method, the transmission lines are subdivided to several
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uniform sections, at first. Then the voltage and current distributions
are obtained using step-by-step numerical integration. Some closed
relations, for which second derivative of the voltage has been
considered, are obtained for this purpose. This method is applicable
to all arbitrarily loaded lossy and dispersive coupled and single NTLs.
The accuracy of the method is studied using analysis of some special
kinds of single and coupled NTLs.

2. THE EQUATIONS OF SINGLE AND COUPLED NTLS

In this section, the frequency domain equations of loaded coupled or
single NTLs are reviewed. It is assumed that the principal propagation
mode of the lines is TEM or quasi-TEM. This assumption is valid
when the widths in the cross section are small enough compared to the
wavelength. Figure 1 shows typical coupled and single NTLs consisting
ofM (M = 1 for single NTLs) lines with length of d and with arbitrary
terminal loads of ZS,m(ω) and ZL,m(ω), in which m = 1, 2, . . . ,M .

The differential equations describing lossy and dispersive coupled

 
(a) 
 

 
(b) 

Figure 1. A typical nonuniform transmission line terminated by
arbitrary loads a) Coupled NTL with M lines b) Single NTL.
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NTLs in the frequency domain are given by

dV (z, ω)
dz

= −Ẑ(z, ω)I(z, ω) (1)

dI(z, ω)
dz

= −Ŷ (z, ω)V (z, ω) (2)

in which V and I are M × 1 voltage and current vectors, respectively.
Also we have

Ẑ(ω) = R(z, ω) + jωL(z, ω) (3)

Ŷ (ω) = G(z, ω) + jωC(z, ω) (4)

In (3)–(4), R,L,G and C are the per-unit-length matrices of the
coupled transmission lines, whose dimensions are M × M . These
matrices are reduced to the distributed primary parameters R, L, G
and C, for the single transmission lines. Also, the characteristic
impedance and the propagation coefficient of the single lines will be as
follows, respectively

Z0(z, ω) =

√√√√ Ẑ(z, ω)
Ŷ (z, ω)

=

√
R(z, ω) + jωL(z, ω)
G(z, ω) + jωC(z, ω)

(5)

γ(z, ω) = α(z, ω) + jβ(z, ω) =
√
Ẑ(z, ω)Ŷ (z, ω)

=
√

[R(z, ω) + jωL(z, ω)][G(z, ω) + jωC(z, ω)] (6)

Combining (1) and (2) with each other, gives the following differential
equations for the voltage and current vectors of coupled NTLs.

d2V (z, ω)
dz2

− f(z, ω)
dV (z, ω)
dz

− g(z, ω)V (z, ω) = 0 (7)

I(z, ω) = −Ẑ
−1

(z, ω)
dV (z, ω)
dz

(8)

Where

g(z, ω) = Ẑ(z, ω)Ŷ (z, ω) (9)

f(z, ω) =
dẐ(z, ω)
dz

Ẑ
−1

(z, ω) (10)

Furthermore, the terminal conditions for loaded coupled NTLs are as
follows

V (0, ω) + ZS(ω)I(0, ω) = V S(ω) (11)
V (d, ω) − ZL(ω)I(d, ω) = 0 (12)
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Where ZS and ZL are diagonal source and load matrices, respectively.
One sees from (7)–(12) that, analytically solving the equations of
general type coupled or single NTLs is a very hard problem.

3. ANALYSIS OF NTLS USING STEP-BY-STEP
METHOD

In this section, the analysis of arbitrary coupled or single NTLs using
step-by-step numerical integration is proposed. First, the transmission
lines are subdivided to N uniform sections with length of ∆z = d/N .
Then, two differential equations (7) and (8) are discretized to obtain
the following difference equations, respectively

V (d−(n+1)∆z, ω) ∼= 2V (d− n∆z, ω) − V (d− (n− 1)∆z, ω)

+
d2V (z, ω)
dz2

∣∣∣
z=d−n∆z

∆z2

=
(
2Id + g(d− n∆z, ω)∆z2 − f(d− n∆z, ω)∆z

)
V (d− n∆z, ω)

+(f(d− n∆z, ω)∆z − Id)V (d− (n− 1)∆z, ω);
n = 1, 2, . . . , N − 1 (13)

I(d− n∆z, ω) = −Ẑ
−1

(d− n∆z, ω)
dV (z, ω)
dz

∣∣∣
z=d−n∆z

∼= −Ẑ
−1

(d− n∆z, ω)(V (d− (n− 1)∆z, ω) − V (d− n∆z, ω))/∆z;
n = 1, 2, . . . , N (14)

To obtain (13)–(14), the forward difference and three points
approximations has been used for the first and second derivatives of the
voltage function, respectively. To use (13), the voltage at z = d− ∆z
is required. The voltage at this point can be found using (7)–(8) and
(12) in the power series expansion of the voltage function, as follows

V (d−∆z, ω) ∼= V (d, ω) − dV (z, ω)
dz

∣∣∣
z=d

∆z +
d2V (z, ω)
dz2

∣∣∣
z=d

∆z2/2

= V (d, ω)+Ẑ(d, ω)I(d, ω)∆z+(−f(d, ω)Ẑ(d, ω)I(d, ω)
+g(d, ω)V (d, ω))∆z2/2

=
(
Id + Ẑ(d, ω)Z−1

L ∆z + 0.5g(d, ω)∆z2

− 0.5f(d, ω)Ẑ(d, ω)Z−1
L ∆z2

)
V (d, ω) (15)

Using (13), the voltages of all sections are obtained step-by-step from
z = d to z = 0. However, the vector V (d, ω) is required to be known
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in this process. To find this vector, one may use an optimization
approach. In the optimization approach, the following defined error,
which is obtained from the terminal condition at z = 0, as in (11), has
to become minimum and near to zero.

Error =

√√√√ 1
M

M∑
m=1

|E(m)|2 (16)

in which
E = V S(ω) − (V (0, ω) + ZS(ω)I(0, ω)) (17)

Of course, for single lines, i.e., M = 1, the unknown voltage V (d, ω),
which behaves like a scale factor, can be assumed one volt, at first.
Then its correct value is obtained so that the defined error in (16)
becomes zero. In this way, we have

V (d, ω) =
VS(ω)

V (0, ω) + ZSI(0, ω)
(18)

4. EXAMPLES AND RESULTS

In this section, two special types of single and coupled transmission
lines (uniform and linearly nonuniform) are analyzed both using
analytical formulas and using the proposed method. The time
consumed for the examples was less than 1.0 sec. using a Pentium-4
PC and MATLAB program.

Example 1: (Uniform Single Transmission Line)
Consider a lossless and uniform single transmission line (M =

1, R = G = 0). Assume Z0 =
√
L/C = 50 Ω, γ = jβ = jω

√
LC =

jω/c (c is the velocity of the light), d = 20 cm, ZS = 50 Ω, ZL = 100 Ω
and VS = 1 V. Figures 2–3, shows the amplitude of voltage distribution
obtained from the proposed method considering N = 20 and N = 50
sections and assuming the excited frequency to be f = 1.0 or 2.0 GHz,
respectively. One sees a good agreement between the exact solutions
and the solutions obtained from the proposed method. It is seen
and also evident that, as the number of sections, N , increases the
accuracy of the obtained solution increases. Also, the error has been
spread along the whole length of the line. Furthermore, as the source
frequency (or equivalently the length of the line) increases, the accuracy
of the method decreases.

Example 2: (Uniform Coupled Transmission Lines)
Consider a lossless uniform coupled microstrip structure with

M = 2 strips. The substrate permittivity is εr = 10, the width of
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Figure 2. The amplitude of the voltage of uniform single line at
frequency of f = 1.0 GHz, obtained from exact formulas and from the
proposed method with N = 20 and N = 50 sections.

Figure 3. The amplitude of the voltage of uniform single line at
frequency of f = 2.0 GHz, obtained from exact formulas and from the
proposed method with N = 20 and N = 50 sections.
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strips and the gap between them are equal to the thickness of the
substrate. This inhomogeneous structure will has the following the
per-unit-length matrices.

L(z) = L0 =
[

425.6 74.83
74.83 425.6

]
nH/m (19)

C(z) = C0 =
[

174.9 −14.25
−14.25 174.9

]
pF/m (20)

R(z) = G(z) = 0 (21)

Assume that d = 20 cm, f = 1.0 GHz, ZS,1 = ZS,2 = 50 Ω, ZL,1 =
ZL,2 = 50 Ω, VS,1 = 1 V and VS,2 = 0. The exact voltages of this
structure can be determined using the modal decomposing method
[10]. Figures 4–5, compare the amplitude and the angle of voltages
of two lines, obtained from the modal decomposing method and from
the proposed method considering N = 20 and N = 50 sections. One
sees a good agreement between the exact solutions and the solutions
obtained from the proposed method.

Figure 4. The amplitude of the voltage of uniform coupled
transmission lines at frequency of f = 1.0 GHz, obtained from exact
formulas and from the proposed method with N = 20 and N = 50
sections.
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Figure 5. The angle of the voltage of uniform coupled transmission
lines at frequency of f = 1.0 GHz, obtained from exact formulas and
from the proposed method with N = 20 and N = 50 sections.

Example 3: (Linearly Nonuniform Single Transmission Line)
Consider a lossless and linearly varied single NTL with the

following distributed primary parameters

L(z) = L0(1 + k(z/d)) (22)

C(z) =
C0

1 + k(z/d)
(23)

R(z) = G(z) = 0 (24)

This type of transmission line will have the following secondary
parameters defined in (5)–(6)

Z0(z) =
√
L0/C0(1 + k(z/d)) (25)

γ = jβ = jω
√
L0C0 (26)

Assume that Z0(0) =
√
L0/C0 = 50 Ω, β = ω

√
L0C0 = ω/c, d =

20 cm, f = 1.0 GHz, ZS = 50 Ω, ZL = 100 Ω, VS = 1 V and k = 0.5,
1.0 or 1.5. Figure 6, compares the amplitude of voltage of the line,
obtained from (A1)–(A7) (in the Appendix) and from the proposed
method considering N = 100 sections. Again, a good agreement is
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Figure 6. The amplitude of the voltage of linearly nonuniform single
line at frequency of f = 1.0 GHz, obtained from exact formulas and
from the proposed method with N = 100 sections.

seen between the results from analytical solution and the results from
the proposed method. Of course, to have the same errors as in the
two previous examples, we had to use more sections. This may be
due to more variations of the linearly nonuniform lines with respect to
uniform lines.

Finally, one may conclude that the proposed method is applicable
to all arbitrary NTLs. Also, it is concluded that as the excitation
frequency, the length of the line (with respect to the wavelength)
and the variations of the primary parameters increase, the necessary
number of sections increases. To obtain a crude relation for the amount
of error, consider a lossless and uniform line. The relative error in (13)
will be as follows

E ∼= 1
12V

∣∣∣∣∣d
4V

dz4

∣∣∣∣∣ ∆z4 =
1
12

(ẐŶ )2∆z4 =
1
12
β4∆z4

=
1
12

(
2π

∆z
λ

)4

=
130
N4

(
d

λ

)4

(27)

in which λ is the wavelength. For example, to have the relative error
less than 10−4 for two cases of d/λ = 0.6 and 1.2 (as in Example 1),
N must be greater than 21 and 41, respectively.
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5. CONCLUSIONS

The second order step-by-step numerical integration was used to
analyze coupled or single Nonuniform Transmission Lines (NTLs).
In this proposed method, the transmission lines are subdivided to
several uniform sections, at first. Then the voltage and current
distributions are obtained using step-by-step numerical integration.
Some closed relations, for which second derivative of the voltage has
been considered, are obtained for this purpose. It was seen that, as
the variations of the primary parameters, the excitation frequency and
the length of the line (with respect to the wavelength) increases, the
necessary number of sections increases. The method is evaluated using
analysis of some special kinds of coupled and single lines. The method
is very simple and fast and can be used for all arbitrarily loaded lossy
and dispersive coupled or single NTLs.

APPENDIX A.

The exact voltage and current of lossless linearly varied single
nonuniform transmission lines are determined analytically. The exact
voltage and current distributions of this type of transmission line have
been determined as follows [12]

V (z, ω) = (1+k(z/d))
[
K1J1

(
βd

k
(1+k(z/d))

)
+K2Y1

(
βd

k
(1+k(z/d))

)]
(A1)

I(z, ω) =− 1
jβZ0(z)

dV (z, ω)
dz

(A2)

In (A1), J1(·) and Y1(·) are respectively the first and second type
of Bessel functions with degree of one. The coefficients K1 and K2

are determined using (A1)–(A2) in terminal conditions (11)–(12), as
follows

K1 =
a4

a1a4 − a2a3
VS = −a4

a3
K2 (A3)

in which

a1 =
(

1 + j
k

βd

ZS(ω)
Z0(0)

)
J1

(
βd

k

)
+ j
ZS(ω)
Z0(0)

J ′1

(
βd

k

)
(A4)

a2 =
(

1 + j
k

βd

ZS(ω)
Z0(0)

)
Y1

(
βd

k

)
+ j
ZS(ω)
Z0(0)

Y ′
1

(
βd

k

)
(A5)

a3 =
(

1 − j k

(1 + k)βd
ZL(ω)
Z0(d)

)
J1

(
(1 + k)βd

k

)
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−j ZL(ω)
Z0(d)

J ′1

(
(1 + k)βd

k

)
(A6)

a4 =
(

1 − j k

(1 + k)βd
ZL(ω)
Z0(d)

)
Y1

(
(1 + k)βd

k

)

−j ZL(ω)
Z0(d)

Y ′
1

(
(1 + k)βd

k

)
(A7)
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