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Abstract—An analytical solution for the radiation by a prolate
hemispheroidal dielectric resonator antenna (DRA) over an infinite
ground plane excited by a rectangular slot is presented. The dyadic
Green’s functions pertaining to a magnetic-current source are used in
a form convenient for numerical computations. The dyadic Green’s
functions are then employed to formulate the electromagnetic fields
radiated by the DRA. The electromagnetic far field is expressed
analytically in a compact form. The far field patterns for different
design parameters are computed and plotted.

1. INTRODUCTION

Since the early experimental study of dielectric resonator antenna
(DRA) by Long, McAllister and others [1–3], the dielectric resonator
antennas have been studied extensively. It has been shown that DRAs
can be used as effective radiators at microwave frequencies where ohmic
losses become a serious problem for conventional metallic antennas.
DRAs offer a number of advantages such as small size, lightweight, low
cost, ease of excitation, and ease of integration with active circuitry.
Furthermore, they offer wider bandwidth than the microstrip patch
antennas commonly used at the same frequency range [4].

Various shapes of the DRA have been investigated in the past
two decades such as hemispherical DRAs [5–9], cylindrical DRAs [10–
14], rectangular DRAs [2, 15, 16] and triangular DRAs [17, 18]. One
of the most useful DRAs is the hemispherical DRA. Compared with
hemispherical DRAs, hemispheroidal DRAs are potentially attractive.
They add one more design parameter in terms of different semi-
axes dimensions and may lead to a simple feeding mechanism for



116 Song and Sebak

generating circularly polarized waves. Another parameter that may
lead to a better performance is the diversity of mode excitation
than hemispherical DRAs. Canonical structures, including spheroidal
geometries, require no magnetic wall assumption in the problem
formulation and hence an accurate solution can be obtained. The
analysis of the radiation characteristics of hemispheroidal DRA is very
complicated. The difficulty is mainly due to two aspects. One is
the very complicated calculation of the spheroidal angular and radial
functions. The other is the lack of orthogonality of spheroidal vector
wave functions. This is part of the reason that there have been
fewer reports about the applications of spheroidal wave functions in
computational electromagnetic than those related to other canonical
geometries.

In this paper, we present an analytical solution for the radiation
by a prolate hemispheroidal DRA over an infinite ground plane using
a dyadic Green’s function technique. The aperture-coupled prolate
hemispheroidal DRA excited at the fundamental broadside TE111

mode is shown in Fig. 1. In Section 2, the dyadic Green’s functions
pertaining to a magnetic-current source located in a dielectric prolate
spheroid is briefly presented. The modal series is represented as
a sum of unbounded and scattering solutions. Both solutions are
expressed in terms of proper vector spheroidal wave functions with
unknown scattering expansion coefficients. The unbounded solution
alone represents the source radiating in the unbounded dielectric
medium, while the scattering solution accounts for the presence of
the dielectric discontinuity. The unknown scattering coefficients of
the dyadic Green’s functions are obtained by enforcing the boundary
conditions. The scattering coefficients of each of the scattering dyadic
Green’s functions are coupled with one another. The coupled system
of linear equations satisfied by these coefficients is obtained. The
unknown scattering coefficients are expressed in terms of integrals
of the current source on the slot. In this paper the slot current
distribution is assumed and approximated by a dominant TE111 mode.
The formulation of electromagnetic far fields are expressed in terms of
dyadic Green’s functions and simplified using the asymptotic form of
the spheroidal radial function. A compact form of the electric far
field is obtained. In Section 3, the antenna radiation patterns are
computed numerically for different design parameters. The accuracy of
the solution is checked by comparing with Ansoft HFSS [19] simulation
results and published data for the special case of a hemispherical DRA
[9] when the axial ratio b/a of the hemispheroid approaches one. In
Section 4, conclusions are summarized.
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Figure 1. Configuration of the hemispheroidal DRA excited by a slot.

2. FORMULATION

The geometry of the hemi-spheroidal DRA is shown in Fig. 1, where a
and b are the semi-minor and major axes. The slot length is L and its
narrow width is W . The dyadic Green’s function technique is usually
adopted to analyze the electromagnetic radiation from an arbitrary
current distribution located in a layered homogeneous medium, For
the spheroidal geometry, the representation of dyadic Green’s function
(DGF) in the spheroidal coordinate system is most convenient. When
the source current distribution is known, the electromagnetic fields can
be integrated directly from DGF, which plays an important role as
the response function of multi-layered dielectric media. If the source
is an unknown current distribution, the method of moments can be
employed. In this case, the DGF is considered as a kernel of the
integral; and the unknown coefficients of the basis functions can be
obtained by enforcing the boundary conditions.

In this work, the dyadic Green’s functions pertaining to a slot
source inside a dielectric prolate hemi-spheroid, as shown in Fig. 1,
is used. The ground plane in Fig. 1 is assumed infinite. The half
space is divided by the interface of ξ = ξ0 into region 1 and region 2.
Region 1 is characterized by permittivity ε1 and permeability µ1, and
region 2 is characterized by permittivity ε2 and permeability µ2. Image
theory permits the removal of the ground plane by placing a virtual
image source on the other side of the ground plane. The equivalent
problem of Fig. 1 is obtained by applying the image theory, and is
shown in Fig. 2. The dyadic Green’s functions G e

m2
(r, r′) pertaining

to a magnetic-current source are called the electric and magnetic dyadic
Green’s function of the second kind according to Tai [20]. The EM
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Figure 2. Equivalent problems for the hemispheroidal DRA in Fig. 1,
excited by a slot.

fields inside and outside the spheroid can be expressed in terms of the
spheroidal dyadic Green’s functions and an arbitrary current source
distribution.

Using the principle of scattering superposition [21], the dyadic
Green’s functions can be considered as the sum of the unbounded
dyadic Green’s function and scattering dyadic Green’s functions. The
unbounded solution represents the source radiating in the unbounded
dielectric medium, while the scattering solution accounts for the
presence of the dielectric discontinuity. The unbounded dyadic Green’s
functions under prolate spheroidal coordinates are formulated in terms
of prolate spheroidal vector wave functions M

a(i)
e
omn

and N
a(i)
e
omn

(a =

x, y, z; and i = 1, 2, 3). The scattering dyadic Green’s functions
are formulated using the method originally developed by Tai [20] and
later by Li et al., [20]. Scattering coefficients of each of the scattering
dyadic Green’s functions are coupled with one another. The coupled
system of linear equations satisfied by these coefficients is constructed
under the requirements of the boundary conditions, and can be solved
numerically.

2.1. General Formula

The EM radiation fields Ef and Hf in region f (f = 1, 2), due to
magnetic current source M s located in region 2 are expressed by

∇×∇× Ef − k2
fEf = (−∇× M s)δf2 (1)

∇×∇× Hf − k2
fHf = (iωεfM s)δf2 (2)
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where δf2 is the Kronecker delta (δf2 = 1 for f = 2 and 0 for f = 1);
kf = ω

√
µfεf is the propagation constant in region f . The time

dependent factor e−iωt is assumed throughout this paper.
The EM field excited by a magnetic current source M s in region

2 can be expressed in term of dyadic Green’s functions as

Ef (r) = −
∫∫∫

v
G

(f)
m2(r, r′) · M s(r′)dv′ (3)

Hf (r) = iωεf

∫∫∫
v
G

(f)
e2 (r, r′) · M s(r′)dv′ (4)

where denotes the coordinates (ξ, ν, φ) at the field point; r′ denotes
the coordinates (ξ, ν, φ) of the magnetic current source M s; v denotes
the volume occupied by the source in region 2; G

(f)
m2(r, r′) denotes

the magnetic dyadic Green’s function of the second kind; G
(f)
e2 (r, r′)

denotes the electric dyadic Green’s function of the second kind. The
superscript (f) denotes the dyadic Green’s function in region 1 or
region 2.

The electric and magnetic Dyadic Green’s functions of the second
kind G

(f)
m2(r, r′) and G

(f)
e2 (r, r′) are related as

∇× G
(f)
e2 (r, r′) = G

(f)
m2(r, r′) (5)

∇× G
(f)
m2(r, r′) = k2

fG
(f)
e2 (r, r′) + Iδ(r, r′) (6)

where I is the unit dyad and δ(r, r′) is the three-dimensional Dirac
delta function.

Since the electric dyadic Green’s functions G
(f)
e2 (r, r′) can

be obtained simply from the magnetic dyadic Green’s functions
G

(f)
m2(r, r′) using equation (5) or (6), we need only to solve the

magnetic dyadic Green’s functions G
(f)
m2(r, r′). The magnetic dyadic

Green’s function of the second kind G
(f)
m2(r, r′) satisfies the following

boundary conditions at the spheroid interface (ξ = ξ0):

ξ̂ × G
(1)
m2 = ξ̂ × G

(2)
m2 (7)

1
ε1
ξ̂ ×∇× G

(1)
m2 =

1
ε2
ξ̂ ×∇× G

(2)
m2. (8)

At the spheroid interface (ξ = ξ0), the tangential components
of both electric and magnetic fields are continuous. The boundary
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conditions can be expressed as

ξ̂ × E1 = ξ̂ × E2 (9)
1
µ1
ξ̂ ×∇× E1 =

1
µ2
ξ̂ ×∇× E2. (10)

Substituting equations (3) into equations (9) and (10), the result is

ξ̂ ×
∫∫∫

v
G

(1)
m2(r, r′) • M s(r′)dv′ =

ξ̂ ×
∫∫∫

v
G

(2)
m2(r, r′) • M s(r′)dv′ (11)

1
µ1
ξ̂ ×∇×

∫∫∫
v
G

(1)
m2(r, r′) • M s(r′)dv′ =

1
µ2
ξ̂ ×∇×

∫∫∫
v
G

(2)
m2(r, r′) • M s(r′)dv′. (12)

Using the principle of scattering superposition, the dyadic Green’s
function can be considered as the sum of the unbounded Green’s dyadic
and the scattering dyadic Green’s functions to be determined. The
dyadic Green’s functions are therefore given by

G
(1)
m2(r, r′) = G

(2)
ms(r, r′) (13)

G
(2)
m2(r, r′) = Gm0(r, r′) + G

(2)
ms(r, r′) (14)

where the scattering dyadic Green’s function G
(f)
ms(r, r′) represents

the scattered-wave portion of the field due to the discontinuity of the
boundary while the unbounded dyadic Green’s function, Gm0(r, r′),
represents the contribution of the direct waves from radiating sources in
an unbounded medium. The subscript (s) denotes the scattering dyadic
Green’s functions. Detailed expressions for the above types of dyadic
Green’s functions are given in [21, 22]. The dyadic Green’s functions
are then used to determine the unknown scattering coefficients of the
dyadic Green’s functions as shown in the next section.

2.2. Calculation of the Scattering Coefficients

In equations (13) and (14), the dyadic Green’s functions in terms
of appropriate prolate spheroidal vector wave functions using the
principle of scattering superposition are formulated. Because of the
lack of general orthogonality of the spheroidal vector wave functions,
the dyadic Green’s functions are expressed in a different way, where
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the coordinate unit vectors also combined in the construction of the
solution. The unknown scattering coefficients can be determined from
the boundary conditions (11) and (12) on the spheroidal interface
(ξ = ξ0). By substitute equations (13) and (14) into equations (11)
and (12), the coupled unknown coefficients can be solved uniquely.

The spheroidal angular function Smn(c, η) depends not only on the
angular variable η but also on the characteristics of the medium c = kd,
where k is the propagation constant and d is the semi-focal length of
the spheroid. Therefore, the equations used to determine the unknown
coefficients constitute an infinite system of coupled linear equations.
The procedure of obtaining such a system of linear equations for the
unknown coefficients starts by applying the boundary conditions. Then
the dyadic Green’s functions equations (13) and (14) are substituted
into the boundary conditions (11) and (12), respectively. The resulting
equations based on (11)–(14) must hold for all allowed values of
0 ≤ φ ≤ 2π and −1 ≤ η ≤ 1. We can make use of the orthogonality of
the trigonometric functions by multiplying throughout by sin(m+ 1)φ
or cos(m+1)φ where m ≥ 0, and then by integrating them with respect
to φ from 0 to 2π. Next, to remove the η-dependence of the equations,
we make use of the orthogonal properties of the spheroidal angular
functions. This is done by multiplying both sides of η-components by

(
ξ20 − η2

) 2
5

√
(1 − η2) /

(
ξ20 − 1

)
=[(

ξ20 − 1
)

+
(
1 − η2

)] 2
5

√
(1 − η2) /

(
ξ20 − 1

)
. (15)

The equations that stand for the continuity of φ-components are
multiplied by

(
ξ20 − η2

) √
(1 − η2) =

[(
ξ20 − 1

)
+

(
1 − η2

)] √
(1 − η2). (16)

These multipliers are positive in the full range of η. Replace all the
factors that are functions of η by series of the associated Legendre
functions of the first kind, which are orthogonal functions in the
interval −1 ≤ η ≤ 1 [22, 23]. After integrating both sides over the
complete range of η ∈ [−1, 1], an infinite system of equations satisfied
by an infinite set of unknown scattering coefficients is obtained.

With these parameters, the equations for determining the
unknown coefficients of the dyadic Green’s functions in the prolate
spheroidal system are now written for each value of m, in the following
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forms:
∞∑

n=m

K e
omn

×




∓u
+(3), t
e
o mnη

(c1) ν
+(3), t
o
e mnη

(c1) ±u
+(1), t
e
o mnη

(c2) −ν
+(1), t
o
e mnη

(c1)

u
+(3), t
e
o mnϕ

(c1) ∓ν
+(3), t
o
e mnϕ

(c1) −u
+(1), t
e
o mnϕ

(c2) ±ν
+(1), t
o
e mnϕ

(c1)

ν
+(3), t
e
o mnη

(c1) ±u
+(3), t
o
e mnη

(c1) −ρν
+(1), t
e
o mnη

(c2) ∓ρu
+(1), t
o
e mnη

(c1)

±ν
+(3), t
e
o mnϕ

(c1) u
+(3), t
o
e mnϕ

(c1) ∓ρν
+(1), t
e
o mnϕ

(c2) −ρu
+(1), t
o
e mnϕ

(c1)







A+xM
e
o mn

A+xN
o
e mn

B+xM
e
o mn

B+xN
o
e mn




=
∞∑

n=m

K e
omn




∓u+(3), t
e
omnη

(c2)

u
+(3), t
e
omnϕ

(c2)

ρν
+(3), t
e
omnη

(c2)

±ρν+(3), t
e
omnϕ

(c2)




(17)

∞∑
n=m

K e
omn

×




±u
−(3), t
e
o mnη

(c1) ν
−(3), t
o
e mnη

(c1) ∓u
−(1), t
e
o mnη

(c2) −ν
−(1), t
o
e mnη

(c1)

u
−(3), t
e
o mnϕ

(c1) ±ν
−(3), t
o
e mnϕ

(c1) −u
−(1), t
e
o mnϕ

(c2) ∓ν
−(1), t
o
e mnϕ

(c1)

ν
−(3), t
e
o mnη

(c1) ∓u
−(3), t
o
e mnη

(c1) −ρν
−(1), t
e
o mnη

(c2) ±ρu
−(1), t
o
e mnη

(c1)

∓ν
−(3), t
e
o mnϕ

(c1) u
−(3), t
o
e mnϕ

(c1) ±ρν
−(1), t
e
o mnϕ

(c2) −ρu
−(1), t
o
e mnϕ

(c1)







A−xM
e
o mn

A−xN
o
e mn

B−xM
e
o mn

B−xN
o
e mn




=
∞∑

n=m

K e
omn




±u−(3), t
e
omnη

(c2)

u
−(3), t
e
omnϕ

(c2)

ρν
−(3), t
e
omnη

(c2)

∓ρν−(3), t
e
omnϕ

(c2)




(18)

In equations (17) and (18), ρ denotes
√
ε1/ε2; ci(i = 1, 2)

denotes kid, where ki is the propagation constant of region i
and d is the semi-focal distance of the spheroid; K e

omn denotes∫ ∫ ∫
v

2−δm0
Nmn

ψ
(1)
e
omn

(c2, r′)M s(r′)dv′, where δm0 is the Kronker delta,
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Nmn = 2
∑∞

k=0, 1
′ (k+2m)!(dmn

k )2

(2k+2m+1)k! is the normalization factor of the
angular function of the first kind [22, 25], and ψ e

omn(c2, r′) =

Smn(c2, η′)R
(1)
mn(c, ξ′)cossinmφ

′ is the scalar spheroidal eigenfunctions; the
elements of the matrices are given as follows [22]:

u
±(i), t
e
omnη

(c) =

[
dR

(i)
mn(c, ξ0)
dξ0

∓ mξ0
ξ20 − 1

R(i)
mn(c, ξ0)

]

×
[(
ξ20 − 1

)2
Imn
t, 1 (c) + 2

(
ξ20 − 1

)
Imn
t, 2 (c) + Imn

t, 3 (c)
]

(19)

u
±(i), t
e
omnφ

(c) =
dR

(i)
mn(c, ξ0)
dξ0

Imn
t, 5 (c) + ξ0R

(1)
mn(c, ξ0)Imn

t, 8 (c) (20)

ν±i, t
e
omnη

(c) =
1
c

{[((
ξ20 − 1

) (
λmn − c2ξ2 +

m2

ξ20 − 1

)
− 2m (m± 1)

)

· R(i)
mn(c, ξ0) − ξ0

(
ξ20 − 1

) dR(i)
mn(c, ξ0)
dξ0

]
· Imn

t, 5 (c)

∓
[
(m± 1)

(
ξ20 − 1

)
·R(i)

mn(c, ξ0)
]
Imn
t, 7 +

[(
λmn − c2ξ2

∓ m

ξ20 − 1

)
R(i)

mn(c, ξ0) + ξ0
dR

(i)
mn(c, ξ0)
dξ0

]
· Imn

t, 6 (c)

+

[
ξ0

(
ξ20 − 1

) dR(i)
mn(c, ξ0)
dξ0

− (3 ± 2m)R(i)
mn (c, ξ0)

]

· Imn
t, 8 (c) +

[
ξ0
dR

(i)
mn(c, ξ0)
dξ0

+

(
2 ∓ m

ξ20 − 1

)
·R(i)

mn(c, ξ0)

]

· Imn
t, 9 (c) −

[
m(m± 1)(ξ20 − 1)R(i)

mn(c, ξ0)

]
· Imn

t, 4 (c)

}
(21)

ν
±(i), t
e
omnφ

(c) =
1
c

{ [
m (m± 1)R(i)

mn(c, ξ0)
]
Imn
t, 0 (c)

+

[
(1 ±m)R(i)

mn(c, ξ0)

]
Imn
t, 10(c) −

[
c2R(i)

mn(c, ξ0)

]

· Imn
t, 2 (c) +

[(
− c2

(
ξ20 − 1

)
+
m(m± 1)
ξ20 − 1

)
R(i)

mn(c, ξ0)

]
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· Imn
t, 2 (c) −

[
(1 ±m) ξ0

dR
(i)
mn(c, ξ0)
dξ0

]
· Imn

t, 1 (c)

}
(22)

u
z(i), t
e
omnη

(c) = mR(i)
mn(c, ξ0)

·
[ (
ξ20 − 1

)2
Imn
t, 4 (c) + 2

(
ξ20 − 1

)2
Imn
t, 5 (c) + Imn

t, 6 (c)
]

(23)

u
z(i), t
e
omnφ

(c) = R(i)
mn(c, ξ0) · Imn

t, 11(c) −
[
ξ0
dR

(i)
mn(c, ξ0)
dξ0

]
· Imn

t, 2 (c) (24)

ν
±x(i), t
e
omnη

(c) =
1
c

{[ (
ξ20 − 1

)2 dR
(i)
mn(c, ξ0)
dξ0

]
· Imn

t, 10(c)

+

[ (
ξ20 − 1

) dR(i)
mn(c, ξ0)
dξ0

+ 2ξ0R(i)
mn(c, ξ0)

]
· Imn

t, 11(c)

−
(
ξ20 − 1

) [
ξ0

(
λmn − c2ξ2 − m2

ξ20 − 1

)
R(i)

mn(c, ξ0)

−
(
ξ20 − 1

)
· dR

(i)
mn(c, ξ0)
dξ0

]
· Imn

t, 1 (c)

−
[
ξ0

(
λmn − c2ξ2

)
R(i)

mn(c, ξ0)+
(
ξ20 − 1

)
×dR

(i)
mn(c, ξ0)
dξ0

]

· Imn
t, 2 (c) +

[
m2ξ0

(
ξ20 − 1

)
·R(i)

mn(c, ξ0)
]
· Imn

t, 0 (c)

}
(25)

ν
z(i), t
e
omnφ

(c) =
m

c

{[
ξ0

ξ20 − 1
R(i)

mn(c, ξ0)

]
· Imn

t, 8 (c)

+

[
dR

(i)
mn(c, ξ0)
dξ0

]
· Imn

t, 5 (c)

}
(26)

where the coefficients Imn
t, l (c) (t = 0, 1, 2, . . . , 11 and l =

0, 1, 2, . . . , 11) are provided in a closed form in [21–23].
The system of linear equations (17) and (18) are valid for each

value of t, so that taking t sufficiently large an adequate number of
relations between unknown coefficients is generated. The convergence
of the infinite series is expected both physically and mathematically.
Practically, the infinite system of equations is truncated to a finite
number of equations. According to Sinha and MacPhie [24], this
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truncated number is taken as Nt =Integer (|kb| + 4) (where k is the
propagation constant in the media, b is the major semi-axial length
of the spheroid). In other words, there exist 4 × Nt scalar unknowns
for each of the above matrix systems. Assuming that the index t in
the equations is taken as 0, 1, . . . , Nt − 1, we can obtain a 4Nt × 4Nt

matrix system, and determine accurately these 4 ×Nt unknowns.
Because of the non-existence of orthogonality of spheroidal wave

functions, the unknown scattering coefficients are coupled to each
other. By using the method of functional expansion, the coupled
unknowns are then determined explicitly from the matrix system of
the linear equations. It should be noted that the source information
is also included in the coupled equations. And the unknowns cannot
be obtained analytically from the equations without evaluating the
integrals of the slot current. This is different from the spherical
case, where the transmitting and scattering coefficients are integrals
of source currents and decoupled from each other.

The configuration of the prolate hemispheroidal DRA, shown in
Fig. 1, is excited by a narrow slot. The narrow rectangular slot is
parallel to the x-axis at the centre of the dielectric spheroid. At the
opening, the field is approximated by the dominant TE111 mode. The
electric field Es in the slot along the x-axis is assumed to be y-directed,
and vanishes at the ends of the slot. Also, the electric field is assumed
not to vary across the narrow width of the slot. Thus

Es = ŷE0 cos
(
π

l
x′

) {
−l/2 ≤ x′ ≤ l/2
−w/2 ≤ y′ ≤ w/2

(27)

As discussed in Section 2, image theory is used to remove the
ground plane to obtain an equivalent problem of a full dielectric prolate
spheroid, excited by M s = 2M , as shown in Fig. 2. The equivalent
magnetic current is x-directed and only varies in x-direction. It is

M s =




−2ẑ × Es = x̂2E0 cos
(
π

l
x′

) {
−l/2 ≤ x′ ≤ l/2
−w/2 ≤ y′ ≤ w/2

0 elsewhere
(28)

Since the source current distribution has only the x-component,
only the x-component of the dyadic Green’s functions is needed.

2.3. Far Field Expression

For electromagnetic far field, we can simplify the expression (3) of the
radiated field using the asymptotic form of spheroidal radial function
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when cξ → ∞ [25]. After some tedious manipulation, the electric far
field can be expressed as

Eη =
−ik2

πdc21ξ

∞∑
n=0

n∑
m=0

{ (
c21Smn + c1Smn + 1

)
· ei[c1ξ− 1

2
(n+1)π]

·
[
A+xM

e · sin ((m+ 1)φ) −A−xM
e · sin ((m− 1)φ)

−A+xN
o · sin ((m+ 1)φ) · (ρ1 + ρ2) +A−xN

o

· sin ((m+ 1)φ) · (ρ1 + ρ2)
]
·
∫∫∫

v
ΓmnMx

(
r′) dv′} (29)

Eφ =
−ik2

πdc21ξ

∞∑
n=0

n∑
m=0

{ (
−c21ηSmn + c1ηSmn + 1

)
· ei[c1ξ− 1

2
(n+1)π]

·
[
A+xM

e · cos ((m+ 1)φ) −A−xM
e · cos ((m− 1)φ)

−A+xN
o · cos ((m+ 1)φ) · (ρ3 + ρ4) +A−xN

o

· cos ((m+ 1)φ) · (ρ3 + ρ4)
]
·
∫∫∫

v
ΓmnMx

(
r′) dv′} (30)

where the prime symbol denotes the source point location; Mx is the
magnetic current distribution (28); A+xM

e , A−xM
e , A+xN

e , and A−xN
e

are scattering coefficients, which can be determined by equations (17)
and (18); Γmn, ρ1, ρ2, ρ3, ρ4, ρ5, and ρ6 are given by

Γmn =
2 − δm0

Nmn
ψ

(1)
e
omn

(c2r′) (31)

ρ1 =
m

ξ2
· dSmn

dη
+

mη

ξ2(1 − η2)
Smn (32)

ρ2 = (c1 + 1)
(
1 − η2

) dSmn

dη
+

[
c21η

2 +
m2η

ξ2(1 − η2)

]
Smn (33)

ρ3 =
η

ξ2
· dSmn

dη
+

[
c21 +

m2

ξ2(1 − η2)

]
Smn (34)

ρ4 =
mη

ξ2
· dSmn

dη
+

mη2

ξ2(1 − η2)
Smn (35)

ρ5 = −(c1 + 1)η(1 − η2)
1
2
dSmn

dη

+
m2(ξ − 1) − (c1 + 1)(1 + η2)ξ

ξ2(1 − η2)
1
2

Smn (36)
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ρ6 =
m+mξ(c1 + 1)

ξ(1 − η2)
1
2

Smn. (37)

3. RESULTS AND DISCUSSION

In this section, radiation patterns of the hemispheroidal DRA excited
by slot aperture with different parameters are presented. To check the
validity of the formulation and associated software, numerical results
when the axial ratio approaches one are compared with published data
[9] of the corresponding hemispherical DRA. Also, the validity of the
solution is examined by comparing the numerical results with Ansoft
HFSS [19] simulation results.

Figure 3. Radiation patterns (in dB) of DRAs with a = 2.975 cm, L
= 5.0 cm, W = 0.06 cm, = 6.49, and f = 1.375 GHz. Solid line denotes
patterns of hemispheroidal DRA (b/a=1.001) of this work, and dash
line denotes patterns of a hemispherical DRA [9].

The relative radiation patterns calculated for the special case of
b/a ≈ 1 are shown in Fig. 3. Also shown are the corresponding
hemispherical DRA results calculated by Kishk et al. [9]. It can be
noted that our results are in a good agreement with Kishk’s results.
Another test case for the validity and accuracy of the solution is shown
in Fig. 4 for a spheroidal DRA with b/a = 1.15. The calculated
radiation patterns are in very good agreement with Ansoft HFSS
simulation results.

To examine the effects of the axial ratio b/a on the radiation field,
H-plane and E-plane patterns for the prolate hemispheroidal DRA
with different values of b/a are shown in Fig. 5. All the calculated
patterns are normalized using same normalized factor. It can be noted
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Figure 4. Radiation patterns (in dB) of a hemispheroidal DRA
excited by a slot aperture, with a = 2.975 cm, b/a = 1.15, L= 5.0 cm,
W = 0.06 cm, εr = 6.49, and f = 1.375 GHz. Solid line denotes
results of hemispheroidal DRA of this work, and dash line denotes
HFSS simulation results.

(a) H-plane patterns.

(b) E-plane patterns.

Figure 5. Calculated radiation patterns (in dB) of a hemispheroidal
DRA excited by a slot aperture, with a = 2.975 cm, L= 5.0 cm, W =
0.06 cm, εr = 6.49 and f = 1.375 GHz for different values of b/a.
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(a) H-plane patterns.

(b) E-plane patterns.

Figure 6. Calculated radiation patterns (in dB) of a hemispheroidal
DRA excited by a slot aperture, with a = 2.975 cm, b/a = 1.15, W =
0.06 cm, ε = 6.49 and f = 1.375 GHz for different values of L.

that the beam width becomes wider when the ratio of b/a becomes
larger. Therefore, when the slot length L is fixed, increasing the ratio
of b/a increases the radiated power.

To examine the effects of the slot length (L) on the radiation
field, H-plane and E-plane patterns for the prolate hemispheroidal
DRA with different values of L are illustrated in Fig. 6. Again, all
the calculated patterns are normalized using same normalized factor.
These figures show that when the axial ration b/a is fixed, decreasing
the slot length L decreases the radiated power.
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(a) H-plane patterns.

(b) E-plane patterns.

Figure 7. Calculated radiation patterns (in dB) of a hemispheroidal
DRA excited by a slot aperture, with a = 2.975 cm, b/a = 1.5, W =
0.06 cm, = 6.49, L = 5 cm for different frequencies (f0 is the resonant
frequency).

Radiation patterns of the hemispheroidal DRA are calculated at
resonant frequency (f0) and other frequencies (0.95 f0 and 1.05 f0). H-
plane and E-plane patterns are shown in Fig. 7. It can be seen that
the antenna radiates the most power at the resonant frequency with a
variation of about 1 dB over the selected two frequency values.
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4. CONCLUSION

In this work, the problem of radiation from a prolate hemispheroidal
dielectric resonator antenna above an infinite ground and excited
by a slot has been investigated using dyadic Green’s function
technique. The dyadic Green’s functions are expressed in terms of the
vector spheroidal wave functions with unknown scattering expansion
coefficients. The unknown scattering coefficients of the dyadic Green’s
functions are obtained by enforcing the boundary conditions. Simple
and compact far field expressions for the electric field are derived for
a prolate hemispheroidal DRA excited by a slot with TE111 magnetic
current distribution.

The validity of the solution was examined by comparing
with HFSS simulation results and for the special case where the
hemispheroid approaches the hemispherical shape (b/a ≈ 1). Selected
radiation pattern results were obtained for different parameters. The
effect of the slot length and the shape of the spheroid on the radiation
pattern were considered.
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