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Abstract—The accurate analysis of scattering from objects with
dimensions large compared to the wavelength using rigorous methods
(finite element, FDTD, method of moments) with a personal computer
is almost impractical. In asymptotic methods, physical optics (PO),
geometrical theory of diffraction (GTD), the accurate modeling of the
object’s boundary is too cumbersome. The parabolic equation method
gives accurate results in calculation of scattering from objects with
dimensions ranging from one to tens of wavelengths. Solving parabolic
equation with the marching method needs limited computer storage
even for scattering calculations of large targets. In this paper, first the
calculation procedure of radar cross section using parabolic equation
in three dimension is studied and the necessary equations are derived.
In order to show the validity of the parabolic equation, the RCS of
a conducting sphere is calculated and the results are compared with
analytic results. The airplane RCS has been computed by using a
staircase model in the parabolic equation and the results are compared
with physical optics results.

1. INTRODUCTION

Parabolic equation is an approximation of the wave equation which
models energy propagating in a cone centered on a preferred direction,
the paraxial direction. The parabolic equation was first introduced by
Leontovich and Fock in order to study the diffraction of radiowaves
around the earth [1]. By the advent of advanced computers closed
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form solution of the parabolic equation was replaced by numerical
solutions. Since then, the parabolic equation is being applied to
radar, sonar, acoustic and wave propagation. The parabolic equation
has been recently used in scattering calculations in acoustics [2] and
electromagnetics [3].

2. THE PARABOLIC EQUATION FRAMEWORK

In this paper we concentrate on three dimensional analysis using
parabolic equation. In all equations, the time dependence of the fields
is assumed as exp(−jωt). For horizontal polarization, the electric field
�E only has non-zero component Ez, while for vertical polarization,
the magnetic field �H has the only one non-zero component Hz. The
reduced function u is defined as

u(x, y, z) = exp(−ikx)ψ(x, y, z) (1)

In which ψ(x, y, z) is the Ez component for horizontal polarization
and Hz component for vertical polarization. The paraxial direction
is assumed along the x axis. Assuming the refractive index of
the medium, n, the field component ψ satisfies the following three
dimensional wave equation

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
+ k2n2ψ = 0 (2)

Using equations (1) and (2), the wave equation in terms of u is

∂2u
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+
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+
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+ 2ik

∂u

∂x
+ k2(n2 − 1)u = 0 (3)
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√

1
k2

∂2

∂y2 + 1
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∂z2 + n2, (3) is reduced to

∂2u
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Which can be written as[
∂

∂x
+ ik(1 +Q)

] [
∂
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+ ik(1 −Q)

]
u = 0 (5)

Decomposing equation (5), the following pair of equations is obtained

∂u

∂x
= −ik(1 −Q)u (6a)

∂u

∂x
= −ik(1 +Q)u (6b)



Progress In Electromagnetics Research, PIER 57, 2006 267

The solution to (6a) corresponds to the forward propagating waves
while that of (6b) concerns backward propagating waves.

3. SCATTERED FIELDS CALCULATIONS

The simplest approximation of (6a) is obtained using the first order
expansion of Taylor series. Using this approximation, the standard
parabolic equation is obtained. We assume Q as

Q =
√
Y + Z + 1 (7)

In which

Y =
1
k2

∂2

∂y2
, Z =

1
k2

∂2

∂z2
+ n2 − 1

using the Feit and Fleck approximation to decouple Y and Z [4], we
will have

√
Y + Z + 1 ∼

√
Y + 1 +

√
Z + 1 − 1 (8)

Using the first order Taylor series of each radical of (8) and Substituting
in (6a) yields

∂u

∂x
=
ik

2
(Y + Z)u (9)

With regard to the definition of Y and Z, equation (9) is reduced to
the following form

∂u

∂x
− i

2k

(
∂2u

∂y2
+
∂2u

∂z2

)
− ik

2
(n2 − 1)u = 0 (10)

This equation is the standard parabolic equation. Equation (10)
is the narrow angle approximation of parabolic equation in three
dimension and calculates the total fields in forward direction. Scattered
field and RCS of object can be calculated by using equation (10).
Integration domain is considered as a box which embraces the object.
Integration domain must be truncated in the transverse plane. In
order to do this we used perfectly matched layer (PML) in transverse
plane. At first PML has been introduced as an absorbing boundary
condition to solve Maxwell’s equations. PML has been used as an
absorbing boundary condition to solve parabolic equation by Collino
[5]. Important advantage of PML is its efficiency for all incident angles
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Figure 1. Integration domain with PML absorbing boundary
condition.

by using it in a few grid points of integration domain. Integration
domain with PML absorbing boundary condition is shown in Figure 1.

We discretise equation (10) on rectangular grid by using finite
difference method. In order to discretise parabolic equation the Crank-
Nicolson scheme is usually utilized. In this paper we use another
scheme which shows better stability compared to the Crank-Nicolson
scheme [6]. We define region (m∆x, y, z) as range m. This scheme,
despite Crank-Nicolson’s scheme, in which second order derivatives
with respect to y and z are calculated by averaging between range m
and range m − 1, calculates second order derivatives just in range m.
This work decreases the accuracy of discretising scheme with respect
to the Crank-Nicolson and requires smaller ∆x. The boundary of the
object must be modeled accurately in scattering problems, therefore a
smaller ∆x is needed. Discretising equation (10) for free space yields

um
i,j − um−1

i,j

∆x

=
i

2k

(
um

i−1,j − 2um
i,j + um

i+1,j

∆y2
+
um

i,j−1 − 2um
i,j + um

i,j+1

∆z2

)
(11)

By using equation (11), we can calculate fields in range m versus range
m− 1. Positions of grid points, while can be determined regarding to
equation (11), are shown in Figure 2. In two dimensional analysis by
parabolic equation, we have to invert a triangular matrix to obtain
u at range xm. In three dimensional case matrix coefficient is a very
large sparse matrix and we can not solve resulting equations with direct
inversion. In this paper we used conjugate gradient method to calculate
u at range xm [7].

In order to calculate fields in all points of integration domain,
first, the fields should be determined at range x0. The incident field is
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Figure 2. Positions of grid points regarding to equation (11).

assumed as a plane wave with unit amplitude as

u(x, y, z) = exp (ik(x(cos θ − 1) + y sin θ cosϕ+ z sin θ sinϕ)) (12)

In which θ, ϕ are the angles of incident plane wave with x and y axis
respectively.

4. COMPUTATION OF RADAR CROSS SECTION

After the calculation of fields over the entire computational domain,
we can compute the fields within any arbitrary domain x as a function
of the fields in the domain x0 in free space as follows [8]

u(x, y, z) =

− 1
2π

+∞∫
−∞

+∞∫
−∞

u(x0, y
′, z′)

[
ik

(x− x0)
d(y′, z′)

− 1
d(y′, z′)

]
· e

ikd(y′,z′)

d(y′, z′)
dy′dz′ (13)

In which

d(y′, z′) =
√

(x0 − x′)2 + (y − y′)2 + (z − z′)2

The radar cross section is defined as

σ(θ, ϕ) = lim
r→∞ 4πr2

∣∣∣∣us(x, y, z)
ui(x, y, z)

∣∣∣∣
2

(14)

In which we have

x = r cos θ, y = r sin θ cosϕ, z = r sin θ sinϕ
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Figure 3. Amplitude of the scattered field us(m, i, j) from the
conducting sphere in x = 35 m in 300 MHz.

Tending (x, y, z) to infinity along a given direction in (13), and
assuming a unit amplitude for the incident wave, (14) yields [8]:

σ(θ, ψ) =
k2 cos2 θ

π

∣∣∣∣∣∣
+∞∫

−∞

+∞∫
−∞

us(x0, y
′, z′)e−ik sin θ(y′ cos ϕ+z′ sin ϕ)dy′dz′

∣∣∣∣∣∣
2

(15)
In which us(x, y, z) is the scattered field.

5. RCS RESULTS

In this section airplane RCS results which are calculated by the
parabolic equation is presented. In order to show the validity of the
parabolic equation solution, the RCS of a conducting sphere with
radius 10λ is calculated using narrow angle PE. The incident wave
is a plane wave with horizontal polarization and a wavelength equal
to 1 meter (corresponding to 300 MHz). The angle of incident wave is
zero. Integration domain size is 35λ in x direction and 30λ in y and z
directions. The grid spacing in the x, y and z directions are assumed
λ/2, λ/5 and λ/5 respectively. Near filed results in planes x = 35 m
and y = 15 m are shown in Figures 3 and 4 respectively. RCS of the
conducting sphere is illustrated in Figure 5. Parabolic equation results
and analytic results, where obtained from the extraction of Hankel
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Figure 4. Amplitude of the scattered field us(m, i, j) from the
conducting sphere in y = 15 m in 300 MHz.

Figure 5. RCS of the conducting sphere with radius 10 λ.
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Figure 6. The geometry of the actual airplane and its dimensions.

Figure 7. Airplane staircase model (dimensions are in meters).
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Figure 8. Amplitude of the scattered field us(m, i, j) from the airplane
in z = 11.3 m for 300 MHz.

and Legendre functions [9], are shown with solid line and circle marker
respectively in Figure 5. As it can be seen, there is a good agreement
between the analytical results and the parabolic equation results up to
angles about 10 degrees.

In order to calculate the scattered fields from the airplane, its
staircase model is utilized. Dimensions of airplane and its staircase
model are shown in Figures 6 and 7 respectively. Integration domain
size in order to calculate scattered fields from the airplane has been
considered as 40λ, 30λ and 30λ in the x, y and z directions respectively.
The grid spacings in the x, y and z directions are assumed λ/4, λ/5
and λ/5 respectively.

The incident wave is a plane wave with horizontal polarization
and a wavelength equal to 1 meter. The angle of incident wave is
zero. Near field results in planes z = 11.3 m and x = 25 m are shown
in Figures 8 and 9 respectively. RCS results of airplane calculated
with narrow angle PE in ϕ = 0◦ and ϕ = 90◦ planes are presented in
Figures 10 and 11 respectively. Solid lines represent parabolic equation
results and diamond markers represent physical optics results.
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Figure 9. Amplitude of the scattered field us(m, i, j) from the airplane
in x = 25 m for 300 MHz.

Figure 10. RCS of airplane in ϕ = 0◦ plane in 300 MHz.
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Figure 11. RCS of airplane in ϕ = 90◦ plane in 300 MHz.

6. CONCLUSION

Parabolic equation method provides advantages in calculating
scattered fields from objects with dimensions large compared to the
wavelength. In this paper RCS of an airplane was calculated by
three dimensional parabolic equation method. In order to show the
validity of the parabolic equation, at first RCS of a conducting sphere
with radius 10λ was calculated and the results were compared with
analytic results. As it can be seen, there is a good agreement between
the analytical results and the parabolic equation results up to angles
about 10 degrees. RCS and scattered fields from the airplane has been
presented by using its staircase model in 300 MHz and the results were
compared with physical optic results. Good agreement between two
methods can be seen especially in ϕ = 0◦ plane.
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