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Abstract—This paper is concerned with the diffraction of an
electromagnetic wave by a perfectly conducting half-plane in a
homogeneous bi-isotropic medium (asymptotically). Similar analysis in
a source-free field is done in S. Asghar and A. Lakhtakia (1994), Plane-
wave diffraction by a perfectly conducting half-plane in a homogeneous
bi-isotropic medium. Int. J. Appl. Electromagnetics in materials, 5,
(1994), 181–188.

In this paper attention is focused on the wave coming from a
line source.

The objective is to study the scattering of an electromagnetic
wave from the boundary of a half-plane and thereby to provide a
theoretical framework for the line source diffraction asymptotically.
In far field approximation it is shown that an incident wave coming
from a line source behaves like a plane wave. The scattered field
is calculated by using the Fourier transform and the Wiener-Hopf
techniques. The scattered field in the far zone is determined by using
contour integration.

1. INTRODUCTION

The study of Beltrami fields goes back to the 19th century (Ref. [4]).
The details of Beltrami fields in chiral media (reciprocal bi-isotropic
media) are available in Ref. [9]. Analysis of electromagnetic plane-
wave diffraction by a metallic strip is established in Ref. [5]. The study
of Beltrami fields plays an important role in the description of time-
harmonic electromagnetic fields in the bi-isotropic media (Ref. [23]).
The main difference between the Beltrami-Maxwell formalism and the
conventional electromagnetic theory of Maxwell lies in the nature of the
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fields. The fields appearing in the time-dependent Maxwell’s equations
are real-valued, whereas Beltrami fields are complex-valued, while a
close relation between the two can be established, see Ref. [11].

Texts are also available giving a detailed study of Beltrami fields
and chiral media, for example, Ref. [7]. The availability of Beltrami-
Maxwell equations for general material continua opens the door to
research problems in electromagnetics. The simplest continuum that
can exist is vacuum and solutions therein are possible for Beltrami
fields, both in source-free problems as well as in the radiation problems
involving confined sources.

Asghar and Lakhtakia in [1] analyzed the source-free plane-wave
diffraction by a perfectly conducting half-plane in a homogeneous bi-
isotropic medium. They reduced the vector diffraction problem to
the scattering of a single scalar field and calculated the left-handed
Beltrami field since the right-handed Beltrami field could be found in
a similar way.

In this paper the analysis done in [1] is extended asymptotically to
the problem of a Line Source. Asymptotic techniques are sometimes
very useful in tackling problems of complicated nature. See for example
References ([6, 20]).

The required notations and equations are summarized in Section 2
along with a brief review of [1] in the Subsection 2.1. In Section 3 the
problem in [1] is extended to the line source diffraction asymptotically.
It is shown that an incident wave coming from a line source behaves
like a plane wave when the line source is shifted to infinity. In Section 4
the Wiener-Hopf equations for the scattered field are given and their
solution is discussed in the Subsection 4.1. The field in the far zone is
evaluated in the Subsection 4.2 and finally the conclusions are given
in Section 5.

2. BASIC EQUATIONS

Let us assume that the whole space is occupied by a homogeneous bi-
isotropic medium except for a perfectly conducting half-plane z = 0,
x ≥ 0. In the Federov representation (Ref. [7]), the bi-isotropic medium
is characterized by the following equations

D = εE + εα∇× E, (1)
B = µH + µβ∇×H, (2)

where ε and µ are the permittivity and the permeability scalars
respectively, while α and β are the bi-isotropy scalars. D is the electric
displacement, H is the magnetic intensity, B is the magnetic flux
density, and E is the electric intensity.
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Let us assume the time-dependence of Beltrami fields to be of the
form exp(−iωt), where ω is the angular frequency. The source-free
Maxwell curl postulates in the bi-isotropic medium can be set up as

∇×Q
1

= γ1Q1
, (3)

∇×Q
2

= −γ2Q2
, (4)

where Beltrami fields are given as in Ref. [10]

Q
1

=
(

η1

η1 + η2

) [
E + iη2H

]
, (5)

and Q
2

=
(

η1

η1 + η2

) [
H + i

E

η1

]
, (6)

in terms of the electric field E and the magnetic field H.
The two wave numbers appearing in (3) and (4) are given by

γ1 =
k

(1 − k2αβ)




√
1 +

k2(α− β)2

4
+
k(α+ β)

2


 , (7)

γ2 =
k

(1 − k2αβ)




√
1 +

k2(α− β)2

4
− k(α+ β)

2


 , (8)

and two impedances in (5) and (6) are given by

η1 =
η


√

1 +
k2(α− β)2

4
+
k(α− β)

2



, (9)

and
η2 =

η


√
1 +

k2(α− β)2

4
− k(α− β)

2



, (10)

where k =
√
εµ and η =

√
µ
ε .

Here Q
1

is the left-handed Beltrami field and Q
2

is the right-
handed Beltrami field.

2.1. Review of Source-free Diffraction Problem in [1]

In this sub-section a brief review of the diffraction problem in [1] is
given. In [1] scattering along the y-direction is considered.
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Writing the Beltrami field Q
1

as [24]

Q
1

= Q1xi+Q1yj +Q1zk. (11a)

and Q1xi+Q1zk = Q
1t

, we have

Q
1

= Q
1t

+ jQ1y. (11b)

Writing j = ŷ, i.e., unit vector along the y-axis we have

Q
1

= Q
1t

+ ŷQ1y. (12a)

Similarly we can write down Q
2

as

Q
2

= Q
2t

+ ŷQ2y. (12b)

Clearly the fields Q
1t

and Q
2t

lie in the XZ-plane and ŷ is a unit
vector along the y-axis such that ŷ.Q

1t
= 0 and ŷ.Q

2t
= 0.

The equation (3) can be written as∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z
Q1x Q1y Q1z

∣∣∣∣∣∣∣∣∣
= γ1

(
Q1xi+Q1yj +Q1zk

)
.

Now assuming all the field vectors having an implicit exp(ikyy)
dependence on the variable y and comparing x and z components on
both sides of the above equation we have

Q1x =
1

k2
1xz

[
iky

∂Q1y

∂x
− γ1

∂Q1y

∂z

]
(13)

and
Q1z =

1
k2

1xz

[
iky

∂Q1y

∂z
+ γ1

∂Q1y

∂x

]
, (14)

where k2
1xz = γ2

1 − k2
y.

Similarly, from (4), with implicit exp(ikyy) dependence on the
variable y, we may obtain

Q2x =
1

k2
2xz

[
iky

∂Q2y

∂x
+ γ2

∂Q2y

∂z

]
, (15)

Q2z =
1

k2
2xz

[
iky

∂Q2y

∂z
− γ2

∂Q2y

∂x

]
, (16)
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with k2
2xz = γ2

2 − k2
y.

Equations (13), (14), (15), and (16) show that if the scalar fields
Q1y and Q2y are evaluated then the vector fields Q

1
and Q

2
will be

determined completely. Bearing this in mind, first comparing the y-
component on both sides of (3), to get

γ1Q1y =
∂Q1x

∂z
− ∂Q1z

∂x
,

and then eliminating Q1x and Q1z from the above equation by using
(13) and (14) we can obtain the following partial differential equation

∂2Q1y

∂x2
+
∂2Q1y

∂z2
+ k2

1xzQ1y = 0. (17)

(17) shows that Q1y satisfies scalar Helmholtz equation.
Similarly we can derive(

∂2

∂z2
+

∂2

∂x2

)
Q2y + k2

2xzQ2y = 0. (18)

Since on a perfectly conducting surface, electric field vanishes,
therefore the boundary conditions on a perfectly conducting half-plane
in terms of the electric field components take the form Ex = Ey = 0,
for z = 0, x ≥ 0.

By using these conditions in the y-components of Q
1

and Q
2

that
is (5) and (6) we can obtain

Q1y − iη2Q2y = 0, and Q1x − iη2Q2x = 0.

For x < 0, z = 0 there is no boundary therefore the continuity
conditions are

Q1y(x, z+) = Q1y(x, z−); x < 0, z = 0, (19)
∂Q1y

∂z
(x, z+) =

∂Q1y

∂z
(x, z−); x < 0, z = 0, (20)

Also a suitable edge condition is lim
ρ→0

Q1y = C1 + O(ρ
1
2 ), ρ =

√
x2 + z2, where C1 is a constant.

The scattered field must satisfy the radiation conditions in the
limit ρ → ∞. We calculate only one field Q1y or Q2y because the
presence of other scalar field can be seen from Q1y − iη2Q2y = 0.

Since the resultant vector field is equal to the sum of incident and
scattered vector fields therefore

Q
1

= Qinc
1

+Qsca
1

, (21)
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From (21) we can write

Q1y = Qinc
1y +Qsca

1y . (22)

The solution of (17) (in a source-less field) is discussed in [1].

3. LINE SOURCE DIFFRACTION (ASYMPTOTICALLY)
BY A PERFECTLY CONDUCTING HALF-PLANE

Let us extend the analysis in [1] to a line source at (−x0,−y0)
asymptotically. Therefore (17) will be replaced by(

∂2

∂x2
+

∂2

∂z2

)
Q1y + k2

1xzQ1y = δ(x+ x0)δ(z + z0), (23)

where k2
1xz = γ2

1 − k2
y, and Dirac Delta function has the following

property:
δ(x+ x0) = 0 x �= −x0,

�= 0 x = −x0.

From (22) and (23) it can be seen that the incident wave satisfies
the following non-homogeneous scalar Helmholtz equation(

∂2

∂x2
+

∂2

∂z2

)
Qinc

1y + k2
1xzQ

inc
1y = δ(x+ x0)δ(z + z0), (24)

while the scattered wave Qsca
1y satisfies the following scalar homoge-

neous Helmholtz equation(
∂2

∂x2
+

∂2

∂z2

)
Qsca

1y + k2
1xzQ

sca
1y = 0. (25)

Defining the Fourier transform for the incident wave field Qinc
1y

with respect to the variable x as

ψinc(ϑ, z) =
1√
2π

∫ +∞

−∞
Qinc

1y (x, z)eiϑxdx (26)

= ψinc
+ (ϑ, z) + ψinc

− (ϑ, z), (27)

where the half-range Fourier transforms are given by

ψinc
+ (ϑ, z) =

1√
2π

∫ ∞

0
Qinc

1y (x, z)eiϑxdx, (28)

ψinc
− (ϑ, z) =

1√
2π

∫ 0

−∞
Qinc

1y (x, z)eiϑxdx. (29)
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The inverse Fourier transform is defined as

Qinc
1y (x, z) =

1√
2π

∫ +∞

−∞
ψinc(ϑ, z)e−iϑxdϑ. (30)

On transforming (23), we obtain

d2ψinc(ϑ, z)
dz2

+
(
k2

1xz − ϑ2
)
ψinc(ϑ, z) =

e−iϑx0

√
2π

δ(z + z0), (31)

Substituting k2 = k2
1xz − ϑ2, we can write (31) as

d2ψinc(ϑ, z)
dz2

+ k2ψinc(ϑ, z) =
e−iϑx0

√
2π

δ(z + z0), (32)

where the right hand side of (32) is obtained by using the property of
Dirac Delta function given by,∫ +∞

−∞
δ(x+ x0)f(x)dx = f(−x0).

The solution of the equation (32) has been discussed in Ref. [18]
and is given by

ψinc(ϑ, z) =

(
−1

2
a

)
ik

∫ +∞

−∞
e−ik|z−η′|δ(η′ + z0)dη′, (33)

where
a =

1√
2π

e−iϑx0 , and k =
√
k2

1xz − ϑ2,

so that

ψinc(ϑ, z) = − e−iϑx0

2ik
√

2π
e−ik|z+z0|. (34)

By taking the inverse Fourier transform of (34) we have

Qinc
1y (x, z) =

1√
2π

∫ +∞

−∞
ψinc(ϑ, z)e−iϑxdϑ.

After using (34) in the above equation we can obtain

Qinc
1y (x, z) = − 1

4iπ

∫ +∞

−∞

e−i[ϑ(x+x0)+k|z+z0|]dϑ
k

,
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but k =
√
k2

1xz − ϑ2, therefore we have

Qinc
1y (x, z) = − 1

4πi

∫ +∞

−∞

e−i
[
ϑ(x+x0)+

√
k2
1xz−ϑ2|z+z0|

]
dϑ√

k2
1xz − ϑ2

. (35)

By substituting ϑ = k1xz cos(θ + it), where 0 < θ < π, −∞ < t <
+∞, |z + z0| = R sin θ, x+ x0 = R cos θ, and

R =
√

(x+ x0)2 + (z + z0)2, (36)

the right hand side of (35) will take the form

Qinc
1y (x, z) =

1
4π

∫ +∞

−∞
e−ik1xzR cosh tdt

⇒ Qinc
1y (x, z) = − i

4
H

(2)
0 (k1xzR), (37)

which is the Hankel function (second kind) of order zero.
By using the asymptotic value of H(2)

0 (k1xzR), (37) can be written
as

Qinc
1y (x, z) = − i

4

√
2

πk1xzR
e−i(k1xzR−π

4 ), (38)

where R is given by (36).
Now substituting −x0 = r0 cosφ0, −z0 = r0 sinφ0 in (36), the

approximate value of R for a very large value of r0 is given by

R ≈ r0 − (x cosφ0 + z sinφ0), where − π < φ0 < −π

2
. (39)

Therefore by using (39) the incident wave (38) can be written as

Qinc
1y (x, z) ≈ − i

4

√
2

πk1xzr0
e−i(k1xzr0−π

4 )eik1xz(x cos φ0+z sin φ0). (40)

By writing

− i

4

√
2

πk1xzr0
e−i(k1xzr0−π

4 ) = c, (41)

(40) can be reduced to

Qinc
1y (x, z) = ceik1xz(x cos φ0+z sin φ0), or (42)

Qinc
1y (x, z) = cei(xk1x+zk1z), (43)



Progress In Electromagnetics Research, PIER 58, 2006 279

where k1x = k1xz cosφ0 and k1z = k1xz sinφ0 (asymptotically) and
the constant c is given by (41). In (43) the y dependence has been
suppressed. (43) shows that the incident wave behaves like a plane
wave after applying the far field approximation.

Now the problem under discussion is quite similar to the one in
[1]. As we proceed further the reader is advised to see [1] for the
missing mathematical details.

4. THE WIENER-HOPF EQUATIONS FOR Q1y

In order to solve the equation (25) the required Wiener-Hopf equations
are

ψ′
−(ϑ, 0) − ikL(ϑ)J̇+(ϑ, 0) +

ck1z√
2π(ϑ+ k1x)

= 0, (44)

and
−iϑψ−(ϑ, 0) + δL(ϑ)J̇ ′

+(ϑ, 0) +
c√
2π

k1x

(ϑ+ k1x)
= 0, (45)

where

L(ϑ) = 1 +
ϑ

kδ
,

J̇+(ϑ, 0) =
1
2

[
ψ+

(
ϑ, 0+)

− ψ+
(
ϑ, 0−

)]
,

J̇ ′
+(ϑ, 0) =

1
2

[
ψ′

+

(
ϑ, 0+)

− ψ′
+

(
ϑ, 0−

)]
. (46)

The prime denotes the differentiation with respect to the variable
z. The two Wiener-Hopf Equations (44) and (45) are to be solved
for the unknown functions J̇+(ϑ, 0) and J̇ ′

+(ϑ, 0) by the Wiener-Hopf
technique.

As a reminder the detailed derivations of (44) and (45) could be
found in [1].

4.1. Solution of the Wiener-Hopf Equations for Q1y

The function L(ϑ) given by Equation (46) can be factorized as

L(ϑ) = L+(ϑ)L−(ϑ), (47)

where L+(ϑ) is regular in the upper half plane and L−(ϑ) is regular in
the lower half-plane.

Equation (47) is taken as a definition but the explicit forms of
L±(ϑ) are available in the Appendix of [1].
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As in [1] on adopting the usual Wiener-Hopf procedure for (44)
and (45) and using the extended form of Liouville’s theorem [18] the
unknowns are given by

J̇+(ϑ, 0) =
c√
2π

k1z

i(ϑ+ k1x)
√
k1xz + k1xL−(−k1x)

√
k1xz + ϑL+(ϑ)

(48)
and

J̇ ′
+(ϑ, 0) = − c√

2π

[
k1x

δL+(ϑ)L−(−k1x)(ϑ+ k1x)

]
. (49)

Finally, the diffracted field can be written as [1]

Qsca
1y (x, z) =

1√
2π

∫ +∞

−∞
G(ϑ)eikze−iϑxdϑ, (50)

where

G(ϑ) =
c√
2π

[
k1z

i(ϑ+ k1x)
√
k1xz + k1xL−(−k1x)

√
k1xz + ϑL+(ϑ)

]

− c

ik
√

2π

[
k1x

δL+(ϑ)L−(−k1x)(ϑ+ k1x)

]
. (51)

4.2. Qsca
1y (x, z) in the Far Zone

The contribution to the right side of Equation (50) from the simple
pole of the function G(ϑ) at ϑ = −k1x can be calculated by closing
the contour of integration by a semicircle in the lower half plane. If we
denote this contribution by Qsca′

1y (x, z) we obtain

Qsca′
1y (x, y) = −c exp i(k1xx+ k1zz), (52)

where c is given by the equation (41). (52) is negative of the incident
wave field (43).

To determine the far zone behavior of the diffracted field, we
introduce the polar coordinates (r, θ) via x = r cos θ, y = r sin θ.

Using the transformation ϑ = −k1xz cos(θ + it) where t is real,
the integral in equation (50) can be evaluated asymptotically by the
saddle point method.

Thus, omitting the details of calculation, the far zone field is given
by

Qsca
1y (x, y) ∼ G

(
− k1xz cos θ

) [
π

2k1xzr

] 1
2

exp i
(
k1xzr −

π

4

)
, (53)
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where G(−k1xz cos θ) can be found from (51). Finally Q1y(x, z) can
be obtained from (22) after using (43) and (53). Similarly the right-
handed Beltrami field Q2y(x, z) can be determined from

∂2Qinc
2y

∂x2
+
∂2Qinc

2y

∂z2
+ k2

2xzQ
inc
2y = δ(x+ x0)δ(z + z0),

and
∂2Qsca

2y

∂x2
+
∂2Qsca

2y

∂z2
+ k2

2xzQ
sca
2y = 0.

5. CONCLUSIONS

(1) As in [1] the vector diffraction problem is reduced to the scattering
of a single scalar field (being the normal component of either a
left handed or right handed Beltrami field) and is contrary to the
assertion in Ref. [19].

(2) Another important observation is that the problem of diffraction
of electromagnetic waves by a perfectly conducting half-plane
is similar to that of scattering of electromagnetic waves by an
imperfectly conducting half-plane (satisfying impedance boundary
conditions) in an otherwise homogeneous medium.
Related material could be found in [18]. Thus, this observation
leads to the conclusion that the whole class of these problems
in electromagnetic and acoustic theory can be tackled for the bi-
isotropic medium. See also Ref. [21].

(3) [1] Opens a new area of diffraction in bi-isotropic medium, it is
advisable to extend this field further. This paper is an attempt in
that direction, in which diffraction of line source electromagnetic
wave by a perfectly conducting half-plane in a bi-isotropic medium
has been asymptotically considered.

(4) In addition, applications, related with the propagation of plane
waves with negative phase velocity (i.e., velocity opposite to the
direction of power flow) in isotropic chiral materials are also very
interesting to look at. Related work could be found in References
[12–15].

(5) The observations presented in this paper will be a gateway
to address many more problems of great practical importance
for example point source diffraction. Scattering by a perfectly
conducting obstacle in a homogeneous chiral environment could
be found in Ref. [2]. See also References [3], [16] and [17] for
more interesting applications. Analysis related to electromagnetic
scattering by dielectric strips and electromagnetic fields in
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biaxial anisotropic medium is available in references [8] and [22]
respectively.
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