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Abstract—To model periodic structures with oblique incident
waves/scan angles in FDTD, the field transformation method is
successfully used to analyze their characteristics. In the field
transformation method, Maxwell’s equations are Floquet-transformed
so that only a single period of infinite periodic structure can be
modeled in FDTD by using periodic boundary conditions (PBCs). A
new discretization method based on the exponential time differencing
(ETD) algorithm is proposed here for the discretization of the
modified Maxwell’s equations in the periodic FDTD method. This
new discretization method provides an alternative way to discretize
the modified Maxwell’s equations with simpler updating forms that
requires less CPU time and memory than the traditional stability factor
method (SFM). These two methods have the same numerical accuracy
and stability in the periodic FDTD method. Some validation cases are
provided showing perfect match between the results of both methods.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method has become one of
the most popular numerical methods for the analysis of electromagnetic
scattering, radiation, and propagation problems since Yee first
introduced in 1966 [1]. In principle, this technique separates the
electric and magnetic fields in Maxwell’s curl equations at each time
step, and the fields are determined at every cell point numerically
in an established computational domain. The electric field intensity
E and magnetic field intensity H at each cell point and each time
step are computed during the simulation subject to zero initial
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conditions. The updating equations in FDTD are simple, yet they have
the capability to model geometrically complicated electromagnetic
problems that are very complicated if analyzed by other methods.
Besides these aforementioned advantages, it can also easily handle
material inhomogeneities.

Periodic structures have received considerable attention in
electromagnetic applications such as frequency selective surfaces (FSS)
[2], electromagnetic bandgap (EBG) structures [3], and infinite antenna
arrays [4]. These structures have such fine details at the element
level that an accurate model must be provided to predict the
correct electromagnetic behavior [5]. Because the entire structure is
incorporated with the periodic characteristics, it is computationally
unmanageable in the conventional FDTD method. Considering the
fact that the overall structure consists of many replicas of the basic
element (unit cell), one way to eliminate the computational burden is to
model only a single-period structure with the proper periodic boundary
conditions (PBCs) to simulate the effect of periodic replication in the
periodic FDTD method [5]. In order to apply the FDTD method
to the oblique incidence/scanning case in the single-period structure,
the field transformation method was first introduced in [6] and its
further extensions were presented in [7, 8]. In the field transformation
method, the field components in Maxwell’s equations are transferred
from the E-H domain to the mapped P -Q domain and modified
Maxwell’s equations are formed. The difficulties in the implementation
of time-advance and time-delay across the grid in the conventional
FDTD method can be easily overcome by the field transformation
method. Some extra terms due to the field transformations make
direct implementation of the modified Maxwell’s equations impossible
in the periodic FDTD method. Several implementations in the
periodic FDTD method have been presented in [7–12] to overcome
this problem. One of these is the split-field method, which can
be generalized to model lossy problems involving three-dimensional
periodic structures [11]. In the split-field method, each field component
is further split and a “two time-step updating” algorithm is used to
update all the field components in the periodic FDTD method. To
discretize the modified Maxwell’s equations in the split-field method,
the stability factor method (SFM) was introduced. This method uses
a stability factor, which varies with the incident/scan angle, to achieve
a numerically stable solution in the periodic FDTD method and it has
been successfully used to analyze a variety of periodic structures [13].

In the proposed method, a new discretization method based on
the exponential time differencing (ETD) algorithm is introduced to
achieve the same numerical stability and accuracy in the periodic
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FDTD method [14]. Compared to SFM, the ETD algorithm has
simpler updating forms, and it requires less CPU time and memory.
Several validation cases are provided and excellent agreements between
these two methods among all of the validation cases are obtained.

2. FORMULATIONS

Consider a periodic structure that may contain lossy anisotropic
materials with periodicities in both the y- and z-directions, and that is
truncated by perfectly matched layer (PML) ABCs in the x-direction.
In the frequency domain, the field transformation method is applied
to transform the electric and magnetic field components from the E-H
domain to the P -Q domain as,

P̃{
x
y
z

} = Ẽ{
x
y
z

}ejΛ·ρ, (1a)

Q̃{
x
y
z

} = η0H̃{
x
y
z

}ejΛ·ρ. (1b)

The tilde symbol “∼” is used to denote the field components in the
frequency domain, Λ = ŷky + ẑkz, and ρ = ŷy+ ẑz. After substituting
these transformed field components into Maxwell’s equations and
transforming them from the frequency domain to the time domain,
the modified time-dependent Maxwell’s equations can be obtained [7, 8]
(derivations are given in Appendix A),
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�P , �Rm = σ∗/η0
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incident/scan angles.
Expanding Equation (2) in time domain yields,
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Some extra terms shown on the right hand side (RHS) of Equations (3)
result from the transformation defined in (1). Direct implementation
in the periodic FDTD method is impossible due the time derivative on
both sides of Equation (3). In order to eliminate the time derivative
on the RHS, a new set of variables, which contain the information of
the components with the time derivative on the RHS, are introduced
to split the total fields into several parts as,
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By substituting these variables into Equations (3), the final updating
equations in the periodic FDTD method can be achieved,
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A “two time-step updating” algorithm can be used to update
Equations (4) and (5). A description of this algorithm can be found
in [5]. In the following, discretization of Equation (5a) in the periodic
FDTD method is given in detail as an example. The other equations
can be developed in a similar way. In [11], a stability factor β is
introduced to achieve the modified time-averaging of the loss term in
the left hand side (LHS) of Equations (5) as,
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(6)

where β = 0.5/ sin2 θ cos2 φ.
Such treatment for the loss term is necessary to achieve numerical

stability in the periodic FDTD method due to the reason that waves
propagating in the lossy media decay exponentially, and the standard
Yee time-stepping algorithm cannot be easily used to handle such rapid
changes. In the SFM, the numerical stability is achieved with the cost
of complicated updating forms and it requires additional computational
resources. An alternative approach to handle the loss terms is the
exponential time differencing (ETD) algorithm. In the ETD algorithm,
the numerical solution to the inhomogeneous differential equation
consists of two parts: a general solution of the homogeneous equation
and a particular solution of the inhomogeneous equation. The solution
of homogeneous equation corresponding to inhomogeneous Equation
(5a)
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can be easily obtained as
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where C1 is a constant. Equation (7b) can be expressed over one time
step as follows,
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. (7c)

The particular solution of Equation (5a) is given by
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whereK is a constant that needs to be determined subject to the initial
conditions. In the periodic FDTD method, before any iteration, all the
field components in the computational domain are initialized to zero.
Therefore, the initial condition for the field component Pxa is given as

Pxapart(t
′ = 0) = 0. (7e)

By solving Equation (7e), constant K can be easily obtained, as given
by
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After one time step increment, ∆t, the particular solution can be
obtained as
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With the obtained general solution of the homogeneous equation
and a particular solution of the inhomogeneous equation, the overall
solution of Equation (5a) can be easily obtained by superposition. The
discretized form of the solution of Equation (5a) in the periodic FDTD
method is given by
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Comparing the updating Equations (6) and (8), one finds an extra
term in Equation (6), which requires more memory and computational
time.

In the ETD algorithm, the numerical stability in the periodic
FDTD method is the same as the SFM since both of these two
discretization methods are based on the split-field set of Equation (5).

3. NUMERICAL VALIDATION

In this section, numerical validations based on the formulations
described in Section 2 are presented. In the first numerical experiment,
we consider a y- and z-periodic infinite infinitesimal dipole array with
a 45◦ scan angle above an infinite perfect electric conducting (PEC)
ground plane. In this validation case, both the zero conductivity (free
space) and infinite conductivity (PEC) media types are considered.
The grid sizes in the x, y, and z directions are 0.5 mm, and the time
step is 0.42 ps. The computational domain in the x, y, and z directions
is 15 cm× 15 cm× 15 cm (30× 30× 30 cells). A horizontal y-polarized
infinitesimal dipole is placed in the center of the computational domain
(15, 15, 15) and 12 cells above the infinite ground plane, with a
Gaussian waveform excitation of the form

Py(t) = exp

(
−(t− t0)2

τ2

)
(9)

where t0 is the time at which the pulse reaches its maximum and τ
is a parameter related to pulse width. The sampling position for the
electric field is placed at 10 cells away from the source position.

Fig. 1 shows the time-domain response obtained from the ETD
algorithm and the SFM for an infinite dipole array with a 45◦ scan
angle above an infinite ground plane. In Fig. 1, it can be noticed
that the results obtained from these two methods appear to agree very
well. In fact, the results obtained by the ETD algorithm agree with
those obtained by the SFM up to the seventh digit. The strong fields
shown in Fig. 1 before 1.5 ns are contributed by the radiating fields
propagating directly from the dipole elements and the scatter fields
reflected from an infinite PEC ground plane. The computational time
and memory requirements based on 10000 time steps for the ETD
algorithm and the SFM are shown in Table 1.

A second numerical validation is conducted with the same
computational domain, grid size, excitation form, time increment, and
sampling positions as in the previous example. The only difference is
that an infinite dielectric slab with permittivity εr = 2.2, permeability
µr = 1, and thickness 4 mm is used to replace the infinite PEC ground
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Figure 1. Time-domain response from the ETD algorithm and the
SFM for an infinite infinitesimal-dipole array with a 45◦ scan angle
above an infinite ground plane.

Table 1. The computational time and memory requirement for the
ETD algorithm and the SFM.

ETD SMF

CPU time (min) 20 22

Memory (Mb) 19 19.5

plane. Different conductivities in the dielectric slab are used to validate
the ETD algorithm.

Fig. 2 shows the time-domain responses obtained from the ETD
algorithm and the SFM for an infinite dipole array with a 45◦ scan
angle above an infinite dielectric slab. In the case of zero conduction
loss, the periodic characteristics of the overall structure can be clearly
noticed by the strong repeated pulses for the later time steps as
shown in Fig. 1(a). Zero conduction loss in the substrate allows for
the unattenuated propagation of surface waves in the dielectric slab.
Therefore, pulses shown in the later time are resulting from these
modes of the unit cells that are far away from the current unit cell. In
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Figure 2. Time-domain response from the ETD algorithm and the
SFM for an infinite dipole array with a 45◦ scan angle above an infinite
dielectric slab with conductivities: (a) σ = 0, (b) σ = 1, (c) σ = 10,
and (d) σ = 100.

the presence of conduction loss, surface waves in the infinite dielectric
slab decay exponentially in the later time as shown in Fig. 2(b), (c),
(d).

To further test the numerical stability of the ETD algorithm,
a material with high value of dielectric constant and conductivity
should be used for this purpose. Hence, an additional stability test
is performed for the case of a material with dielectric constant of 300
and conductivity of 300. The iteration steps in FDTD are chosen
to be 10000, which is long enough to observe any divergence in the
time domain for such a small computational domain. Fig. 3 shows
the time-domain responses obtained from the ETD algorithm and
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Figure 3. Time-domain responses obtained from the ETD algorithm
and the SFM for an infinite dipole array with a 45◦ scan angle above a
infinite dielectric slab with high dielectric constant and conductivity.

the SFM for an infinite dipole array with a 45◦ scan angle above an
infinite dielectric slab with high dielectric constant and conductivity.
No divergence phenomenon is observed. The ETD algorithm is thus
shown to achieve the same stability as the SFM for high dielectric
constant and conductivity material.

The last numerical validation is conducted with a coax-fed infinite
rectangular dielectric resonator antenna (DRA) array above a PEC
ground plane. The permittivity inside each rectangular DRA is chosen
to be εr = 12. The geometry of a single element is shown in Fig. 4
and its dimensions (in mm) are: a = b = 5.4 mm and h = 7 mm. The
unit cell size for each element is 22.86 mm and 10.16 mm, in the x-
and y-direction, respectively. The coax transmission line under the
PEC ground plane is designed to 50 Ω characteristic impedance. The
length of the probe, which is extended inside the rectangular DRA, is
Lp = 3.5 mm and it is offset 1.5 mm from the center of the rectangular
DRA so that the proper mode can be excited [15]. Fig. 5 shows the
time-domain responses of sampled voltage and current obtained from
the ETD algorithm and the SFM with a 45◦ scan angle. The active
input impedance at the coax port is plotted in Fig. 6, and is compared
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Figure 4. Geometry of a single element in an infinite rectangular
DRA array.

with the results obtained from HFSS. Good agreement can be found
between the results obtained from the ETD algorithm and HFSS except
for some frequency points. In FDTD, the cell size determines the
accuracy of the simulation. The smaller the cell, the more accurate
one may expect the result to be. Theoretically, the cell size could
approach zero to get the exact solution, but in practice, the cell size
cannot be too small because of the limitations on the computational
resources and cost. Due to the limitations on the cell size and the
required conditions for the thin wire approximations, the model in
FDTD could have some errors. These errors do not have a significant
effect in a single element environment, while they do in infinite array
environment since the active input impedance for each element is very
sensitive to its surrounding environment. Thus, differences can be
observed between the ETD algorithm and HFSS in Fig. 6.

A novel implementation of the modified Maxwell’s equations in the
periodic FDTD method was presented. By using the new discretization
method based on the ETD algorithm, simpler updating forms and less
CPU time and memory were obtained. At the same time, the new
discretization method provides the same accuracy and has the same
numerical stability as the SFM. Good agreement is obtained in all of
the validation cases. The new discretization method based on the ETD
algorithm provides a fast and accurate way to analyze electromagnetic
behavior of periodic structures.
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Figure 5. Time-domain response from the ETD algorithm and the
SFM for an infinite rectangular DRA array with a 45◦ scan angle: (a)
sampled voltage and (b) sampled current.
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Figure 6. Comparison between the results obtained from the ETD
algorithm and HFSS for the coupled input impedance of a single
element in an infinite rectangular DRA array referenced at the coaxial
port.
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APPENDIX A. MODIFIED MAXWELL’S EQUATIONS
IN THE P -Q DOMAIN

Define the transformed fields as

P̃{
x
y
z

} = Ẽ{
x
y
z

}ejΛ·ρ, (A1a)

Q̃{
x
y
z

} = η0H̃{
x
y
z

}ejΛ·ρ. (A1b)

These are used in the frequency domain Maxwell’s equations to yield
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Transformation of Equations (A2) from the frequency domain to the
time domain yields
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∂Qz

∂t
+
σ∗z
η0
Qz = −∂Py

∂x
+
∂Px

∂y
− ky

c

∂Px

∂t
(A3f)

where k̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ = kxx̂+ kyŷ + kz ẑ.
By rewriting Equation (A3), a compact form of the modified

Maxwell’s equations in the time domain can be obtained as
∂

∂t

(
εr
c
�P +

1
c
Λ × �Q

)
= ∇× �Q− �R (A4a)

∂

∂t

(
µr

c
�Q− 1

c
Λ × �P

)
= −∇× �P − �Rm. (A4b)
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