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Abstract—Creeping waves propagate in the shadow along the surface
of a convex body. In the case of a perfectly conducting body coated
with high index anisotropic dielectric, this surface can be described
by anisotropic impedance boundary condition. In a previous paper
the general case of anisotropic impedance was studied. In this paper
we discuss a special case characterized by a degenerated impedance
matrix. The ansatz for ordinary creeping waves does not allow the
asymptotics to be constructed and a new ansatz is suggested. In
contrast to the usual one, this ansatz contains an additional quick
factor proportional to k1/6 (where k is the wavenumber). As a result,
the field is described by an asymptotic sequence in inverse powers of
k1/6. We derive the principal order term of the asymptotics and discuss
specific properties of creeping waves on a surface with degenerated
impedance.

1. INTRODUCTION

In this paper we study creeping waves on a surface described by an an-
isotropic impedance boundary condition. That condition is assumed
in the form

E − (E, en)en = Z en × H. (1)

Here (·, ·) denotes scalar product in R
3, cross × denotes vector product

and en stands for the unit vector of the normal to the surface. Creeping
waves propagate in the shadow along the surface of a convex body.
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They follow the geodesics of the surface. The creeping wave field
varies rapidly inside a boundary layer in the vicinity of the surface
of the body. The classical method of analysis of creeping waves is
the canonical problem method [1]. Among recent contributions to the
subject relying on this method are the problem of creeping waves on a
circular cylinder with isotropic impedance studied in [2], the problem
of a source on a circular cylinder with anisotropic impedance studied
in [3] and creeping waves on a coated dielectric sphere treated in [4].
However an efficient way of deriving the creeping wave field on a general
convex body is to use the boundary layer method. The main steps of
the method are

• choosing an ansatz
• expressing the Maxwell equations and boundary conditions in a

body-fitted coordinate system
• substituting the ansatz in above equations and boundary

conditions
• sorting the equations by decreasing powers of large parameter
• solving the equations at each order

The method has been successfully applied to both cases of isotropic
and anisotropic impedance boundary condition (see e.g., [5]). The
body-fitted coordinates are denoted (s, a, n), where s and a are surface
coordinates associated with the geodesics followed by creeping waves:
s is the arc-length and a is transverse coordinate, as illustrated by
Fig. 1, and n is the distance from the surface. When the boundary
condition (1) is written in these coordinates, one gets [6](

Es

hEa

)
= Z

( −hHa

Hs

)
, (2)

Figure 1. Coordinate system (s, a).
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where h measures the divergence of the geodesics pencil. The matrix

Z =
(
Zss Zsa

Zas Zaa

)

is supposed to be symmetric (Zsa = Zas) to describe a reciprocal
surface This condition is representative of an anisotropic high index
layer with symmetric permittivity and permeability tensors covering
a perfectly conducting surface A thorough analysis of reciprocity
issue for general bianisotropic media is given in [7]. In order to get
better approximation capabilities, as explained in [5] one can allow the
elements to be of different appropriate orders in the large parameter k
(wavenumber of electromagnetic waves).

In our computations as explained below another matrix

M =
(
ZaaZss − Z2

as −Zas

Zas 1

)
(3)

appears, which eigenvalues define the attenuation parameters of
creeping waves. The general case, where the eigenvalues λ1, λ2 of the
matrix M are different (λ1 �= λ2) was examined in [6]. The asymptotics
of creeping waves derived in this paper contains terms proportional to
(λ1 − λ2)−1 which diverge when λ1 → λ2. As a result, when the
eigenvalues of the matrix M coincide, the asymptotics of [6] becomes
not valid and therefore specific analysis is required.

Linear algebra [8] says that two subcases are possible. Either the
matrix M is diagonal, or it can not be diagonalized. In the first case,
by introducing quantities J = H + iE and K = H − iE, one can split
the problem into two independent subproblems. The results are similar
to the case of isotropic impedance equal to one (see [5]) and one finds
the factors

exp
(
±i

∫
τ ds

)

in the amplitudes of two types of creeping waves. The integration in
the above formula is carried along the geodesics followed by a creeping
wave and τ is the torsion of that geodesics.

The other case, namely when the matrix M cannot be
diagonalized, presents a more difficult problem, analysis of which is
the subject of this paper. The ansatz used in [6] is not general enough
to handle this specific case. We derive in the section below a new
ansatz for the creeping wave field, and show in Sections 3, 4 and 5 how
to derive a solution of the problem by using this ansatz. We show that
the recurrent procedure can be used to derive the asymptotics up to
any desired order, but present formulae at the principal order only.
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2. DERIVATION OF THE APPROPRIATE ANSATZ

As explained in the introduction,we use the geodesic coordinate system
(s, a, n). The metric matrix of this coordinate system can be found for
example in [9]




(
1 +

n

ρ

)2

+ τ2n2 −hτn
(

2 +
n

ρ
+
n

ρt

)
0

−hτn
(

2 +
n

ρ
+
n

ρt

)
h2

((
1 +

n

ρt

)2

+ τ2n2

)
0

0 0 1



.

Here ρ is the radius of curvature of the geodesics followed by creeping
waves, τ is its torsion, h is the divergence of geodesics pencil and ρt is
transverse curvature.

One can check (see also section 5) that the usual boundary-layer
procedure [10] does not allow the asymptotic series for the field of
creeping waves on the surface with degenerated nondiagonalizable
impedance to be constructed. Though the principal order (O(k1/3))
equations can be solved, at the next order O(k0) one gets a degenerated
algebraic system for the amplitudes with incompatible right-hand side.
Therefore the analytic form of the asymptotic decomposition (ansatz)
for creeping wave on such a surface should be modified. In order to
understand why the usual ansatz fails to provide a solution to the
problem and to discover how to modify it, we consider briefly the field
in a small vicinity of the light-shadow boundary on the surface, i.e. in
the Fock domain. It is well known [10] that the field in this domain
is solution of parabolic equations and can be written in the form of
Fourier integral by spectral parameter ξ. In the principal order one
has (

Ea

Ha

)
= eiks

∫
eiσξ

(
A0(ξ)
B0(ξ)

)
w1(ξ − ν) dξ,

where Ea and Ha are transverse components of electric and magnetic
fields in coordinates (s, a, n), σ = (kρ/2)1/3 s/ρ is the stretched s

coordinate, ν0 = 2 (kρ/2)2/3 n/ρ is the stretched normal coordinate
and w1() is the Airy function. The amplitudes A0(ξ) and B0(ξ) of
the electric and magnetic waves satisfy to the linear algebraic system
originated from the boundary condition. This system has the matrix
(here and below ẇ1(ξ) = dw1(ξ)/dξ)

M = ẇ1(ξ) −
i

Zaa

(
kρ

2

)1/3

w1(ξ)M
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and its right-hand side contains the incident field. In the case of
coincident eigenvalues λ1 = λ2 of matrix M the determinant of M
has zeros of multiplicity two. Therefore the amplitudes A0, B0 of the
leading term has poles of multiplicity two. These poles are located at
the points ξ
 which are solutions of the dispersion equation

L(ξ) ≡ ẇ1(ξ) −
i

Zaa

(
kρ

2

)1/3

λ1,2w1(ξ) = 0.

In the next order, that is at k−1/3, the amplitudes A1, B1 are solutions
of the algebraic system with the same matrix M and its right-hand
side contains the incident field and the principal order amplitudes A0,
B0. Therefore A1, B1 have poles of multiplicity four. Further, the
multiplicity of poles increases by two each time we proceed to the
next order. As a result, the asymptotic series for the field in the Fock
domain has the following structure

eiks
∫ ∞∑

j=0

k−j/3eiσξ Ωj(ξ, σ, ν0, a)
L(ξ)2j

dξ.

The functions Ωj are smooth functions of their arguments and do not
contain the large parameter k explicitly. We do not provide particular
expressions for Ωj which are too lengthy and are not needed for the
analysis of the structure of the field. If σ is sufficiently large the field
in Fock domain should match to creeping waves field. Computing the
above integral by the residue theorem, one gets

eiks+iσξ0
∞∑

j=0

k−j/3σ2j−1fj ,

where ξ0 is solution of the dispersion equation with minimal imaginary
part and fj are complicated expressions having the order O(1). One
can see that the above written series looses its asymptotic character
when σ = O(k−1/6). That means that the field contains dependence
not only on ks and k1/3s, but also on k1/6s.

Therefore one introduces the following ansatz including such a
dependence, namely

(
H
E

)
= exp


iks+ i

(
k

2

)1/3
s∫

s0(a)

ξ(s′, a) ds′

ρ2/3(s′, a)
+ ik1/6Ψ(s, a)




×
∞∑

j=0

k−j/6
(
Hj(s, a,N)
Ej(s, a,N)

)
, N = k2/3n. (4)
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The ansatz (4) is different from the usual ansatz for creeping waves in
two respects. First, it contains an additional exponential factor

exp
(
ik1/6Ψ(s, a)

)
,

Second, the decomposition is carried out by inverse powers of k1/6

(instead of k1/3).
In the next section, we substitute the above ansatz in Maxwell

equations and in Section 4 into the boundary condition.

3. MAXWELL EQUATIONS

One rewrites Maxwell equations in the coordinate system (s, a, n)
and substitutes in these equations the ansatz (4). Collecting
terms of the same order in k−1/6, one gets a list of equations
for contravariant components of electric (Es, Ea, En) and magnetic
(Hs, Ha, Hn) vectors. To compute the principal order terms of the
asymptotics, one needs equations at orders O(k), O(k5/6), O(k2/3),
O(k1/2), O(k1/3), O(k1/6), O(1) and O(k−1/6). By letting Ej = Hj = 0
for negative j, one can write these equations in the following way

Hs
j = ih

∂Ha
j−2

∂N
+ PEn

j−4 +
1
h

∂Ψ
∂a
En

j−5 −
i

h

∂En
j−6

∂a
+ 2i

h

ρt
Ea

j−6

+ihN
(

1
ρt

− 1
ρ

)
∂Ea

j−6

∂N
, (5)

Es
j = −ih

∂Ha
j−2

∂N
+ PEn

j−4 +
1
h

∂Ψ
∂a
En

j−5 −
i

h

∂En
j−6

∂a
+ 2i

h

ρt
Ea

j−6

+ihN
(

1
ρt

− 1
ρ

)
∂Ea

j−6

∂N
,

Ha
j +

1
h
En

j = − i

h

∂Es
j−2

∂N
− 1
h

ξ

21/3ρ2/3
En

j−4 +
1
h

(
N

ρ
+
N

ρt

)
En

j−4

−1
h

∂Ψ
∂s
En

j−5 +
i

h

∂En
j−6

∂s
+ 2iτN

∂Ea
j−6

∂N
+ 2iτEa

j−6,

Hn
j −hEa

j = −h
(
N

ρ
−N
ρt

)
Ea

j−4−2τNEs
j−4−PEs

j−4+h
ξ

21/3ρ2/3
Ea

j−4

+h
∂Ψ
∂s
Ea

j−5 −
1
h

∂Ψ
∂a
Es

j−5 − ih
∂Ea

j−6

∂s
− 2i

∂h

∂s
Ea

j−6,

Ea
j −

1
h
Hn

j =
i

h

∂Hs
j−2

∂N
+

1
h

ξ

21/3ρ2/3
Hn

j−4 −
1
h

(
N

ρ
+
N

ρt

)
Hn

j−4
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+
1
h

∂Ψ
∂s
Hn

j−5 −
i

h

∂Hn
j−6

∂s
− 2iτN

∂Ha
j−6

∂N
− 2iτHa

j−6,

En
j +hHa

j = h

(
N

ρ
−N
ρt

)
Ha

j−4+2τNHs
j−4+PHs

j−4−h
ξ

21/3ρ2/3
Ha

j−4

−h∂Ψ
∂s
Ha

j−5 +
1
h

∂Ψ
∂a
Hs

j−5 + ih
∂Ha

j−6

∂s
+ 2i

∂h

∂s
Ha

j−6. (6)

In the above equations, j takes values 0, 1, 2, 3, 4, 5, 6 and 7, and P is
given by the formula

P =
1

21/3h

∂

∂a

s∫
s0(a)

ξ(s′, a) ds′

ρ2/3(s′, a)
.

The first two equations at each order express the longitudinal
components of electric and magnetic vectors. That components appear
only starting from the order k−1/3 (i.e. Es

0 = Hs
0 = Es

1 = Hs
1 = 0).

With the help of the other equations one can express en

components of the field via transverse components. Starting from the
order O(k1/3) there are pairs of different expressions for the quantities
Hn

j −hEa
j and En

j +hHa
j . The compatibility of these expressions yields

L0

(
Ha

j
Ea

j

)
= η

(
Ha

j−1
Ea

j−1

)
+

(
ρ

2

)2/3 {
iL1 − 2τS2

} (
Ha

j−2
Ea

j−2

)
, (7)

Here we introduced differential operators

L0 =
∂

∂ν2
+ (ν − ξ), L1 =

3
h

∂h

∂s
+ 2

∂

∂s
,

stretched normal ν

ν = 21/3ρ−1/3N = 2m2n

ρ
, m =

(
kρ

2

)1/3

and function η which is related to Ψ by the formula

Ψ = 2−1/3

s∫
s0(a)

η(s′, a) ds′

ρ2/3(s′, a)
. (8)

The matrix S2 is the Pauli matrix S2 =
(

0
−i

i
0

)
. The equations (7)

should be completed with the boundary conditions presented in the
section below and the resulting boundary-value problems are solved in
Section 5.
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4. DEGENERATED ANISOTROPIC IMPEDANCE
BOUNDARY CONDITIONS

Let us now turn to the boundary condition (2). In order that all the
elements of the matrix impedance Z participate in the equation for the
attenuation parameter ξ , one chooses the elements of the matrix Z to
be of appropriate orders in k, namely

Zaa = O(k1/3), Zas = Zsa = O(1), Zss = O(k−1/3).

Expressing es and en components of electric and magnetic vectors by
means of equations (5)–(6) and taking into account the assumed orders
of the impedances yields a set of conditions for Ea

j and Ha
j on the

surface. The first component in the boundary condition (2) has the
principal order O(k−1/3). Conditions at orders O(k−1/2), O(k−2/3) and
O(k−5/6) are also needed, these are (j = 0, 1, 2, 3)

i
∂Ha

j

∂N
+ izas

∂Ea
j

∂N
− zaaH

a
j + PEa

j−2 − zasPH
a
j−2 +

1
h

∂Ψ
∂a
Ea

j−3

−zas
1
h

∂Ψ
∂a
Ha

j−3 = 0.

Here we introduced zaa = k−1/3Zaa, zas = Zas and zss = k1/3Zss which
all have the order O(1). The second component of (2) is of order O(1).
At this and three successive orders, one has (j = 0, 1, 2, 3)

zasH
a
j + Ea

j − izss
∂Ea

j

∂N
+ zssPH

a
j−2 + zss

1
h

∂Ψ
∂a
Ha

j−3 = 0.

One combines the above equations into the system

∂

∂N

(
Ha

j
Ea

j

)
+

i

zaa
M

(
Ha

j
Ea

j

)
= PS2

(
Ha

j−2
Ea

j−2

)
+

1
h

∂Ψ
∂a

S2

(
Ha

j−3
Ea

j−3

)
.

(9)
Here the matrix M is defined in (3).

The eigenvalues of the matrix M as mentioned in the introduction
play an important role in the asymptotic procedure. They are defined
by the equation

(Z − λ)(1 − λ) + z2
as = 0.

Here Z = det(Z) = ZaaZss − Z2
as. Assuming λ1 = λ2 yields

λ1 = λ2 =
Z + 1

2
, Z − 1 = ±2Zsa. (10)
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It is possible to have plus or minus in the last formula of (10).
So there are two cases of degenerated matrices. These two cases are
treated together by introducing

α =
Z − 1
2Zsa

= ±1.

One introduces new unknowns in order to simplify the boundary
conditions. Let K and J be defined by the formulae

Ha
j = Jj +Kj , Ea

j = α (Jj −Kj) . (11)

The formulae (11) can be inverted

Kj =
Ha

j − αEa
j

2
, Jj =

Ha
j + αEa

j

2
.

The boundary conditions (9) yield for new unknowns (j = 0, 1, 2, 3)

∂

∂ν

(
Kj

Jj

)
+

im

2Zaa

(
Z + 1 0
2Z − 2 Z + 1

) (
Kj

Jj

)

=
(
ρ

2

)2/3

PS2

(
Kj−2

Jj−2

)
+

(
ρ

2

)2/3 1
h

∂Ψ
∂a

S2

(
Kj−3

Jj−3

)
. (12)

One rewrites also the equations (7) for new unknowns

L0

(
Kj

Jj

)
= η

(
Kj−1

Jj−1

)
+

(
ρ

2

)2/3 {
iL1 − 2ατS2

} (
Kj−2

Jj−2

)
. (13)

5. SOLVING RECURRENT EQUATIONS

The problem of constructing asymptotics of creeping waves on a surface
with degenerated impedance boundary condition is reduced to a set of
boundary-value problems for the unknowns Kj and Jj . At each order j
there are two equations and two boundary conditions, which together
with the radiation condition allow the solution to be determined.

One starts with the principal order equations of (13) which for K0

and J0 become

L0

(
K0

J0

)
= 0. (14)

From these equations one finds(
K0

J0

)
=

(
A0

B0

)
w1(ξ − ν).
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The Airy function w1() is chosen to satisfy the radiation condition
[10]. The amplitudes A0 and B0 depend on s and a coordinates and
at this step remain arbitrary. Substituting these expressions into the
boundary conditions (12) with j = 0 allows the attenuation parameter
ξ to be determined. Nontrivial solution is possible only if ξ satisfies
the dispersion equation (ẇ1 denotes derivative of the Airy function w1)

ẇ1(ξ) = iµw1(ξ), (15)

where
µ =

m

Zaa

Z + 1
2

.

That nontrivial solution is

K0 ≡ 0, J0 = B0(s, a)w1(ξ − ν).

One should note that in the usual case two different types of solutions
are possible. In the case of degenerated matrix impedance, solutions
with K0 �= 0 do not exist. When applying the standard scheme
of asymptotics construction, this fact prevents solving next order
equations and makes the usual ansatz inapplicable.

Now one proceeds to equations in the next order. Solution of the
equation (13) which for K1 and J1 becomes

L0

(
K1

J1

)
= η

(
K0

J0

)

can be written in explicit form

K1 = A1w1(ξ − ν), J1 = B1w1(ξ − ν) + ηB0ẇ1(ξ − ν). (16)

Here A1 and B1 are arbitrary functions of coordinates s and a and
the quantity η(s, a) is introduced by the formula (8). One substitutes
functions (16) into the boundary condition (12) with j = 1 and, taking
into account the dispersion equation (15), finds

 0 0

− im

Zaa
(Z − 1) 0


 (

A1

B1

)
= −η

(
ξ +

m2

Z2
aa

(Z + 1)2

4

) (
0
B0

)
.

Fortunately, the right-hand side of this degenerated system is
compatible, and the solution exists, it is

A1 = −iηZaa

m

ξ + µ2

Z − 1
B0, (17)
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and B1 remains arbitrary.
One proceeds to the boundary-value problem for K2 and J2. The

equations (7) yield

L0

(
K2

J2

)
= η

(
K1

J1

)
+

(
ρ

2

)2/3 {
iL1 − 2ατS2

} (
K0

J0

)
. (18)

These equations can be solved explicitly. The right-hand sides of the
equations (18) are (here and below prime denotes derivative by s)

(R.H.S.)1 =
(
ηA1 − i21/3ρ2/3ατB0

)
w1(ξ − ν),

(R.H.S.)2 =

(
ηB1 + i

(
ρ

2

)2/3 (
3
h′

h
B0 + 2

∂B0

∂s

))
w1(ξ − ν)

+

(
η2 + 2i

(
ρ

2

)2/3

ξ′
)
B0ẇ1(ξ − ν)

+
2i
3

(
ρ

2

)2/3 ρ′

ρ
B0νẇ1(ξ − ν).

By using the properties of Airy functions, one can write the solution
of (18) which contains arbitrary functions A2(s, a) and B2(s, a), it is

K2 = A2w1(ξ − ν) +
(
ηA1 − i21/3ρ2/3ατB0

)
ẇ1(ξ − ν),

J2 = B2w1(ξ − ν) + ηB1ẇ1(ξ − ν)

+i
(
ρ

2

)2/3 (
3
h′

h
B0 + 2

∂B0

∂s
+

1
3
ρ′

ρ

)
ẇ1(ξ − ν)

−
(
η2

2
+ i

(
ρ

2

)2/3

ξ′
)
B0νw1(ξ − ν)

− i
6

(
ρ

2

)2/3 ρ′

ρ
B0ν

2w1(ξ − ν).

One substitutes these formulae to the boundary conditions (12) with
j = 2. The first condition can be satisfied only if(

ρ

2

)2/3

αP −
(
η2Zaa

m

ξ + µ2

Z − 1
+ 21/3ρ2/3ατ

) (
ξ + µ2

)
= 0. (19)

Here the value of A1, given by the formula (17), is taken into account.
The equation (19) allows the function η to be determined, namely

η = ±
(
ρ

2

)1/3
√
m

Zaa

Z − 1
ξ + µ2

√
αP

ξ + µ2
− 2ατ. (20)
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The possibility to choose plus or minus in the expression (20) means
that there exist creeping waves of two types. These waves have
coincident polarizations in the principal order (J0 �= 0, K0 = 0), but
as can be seen from (17) at the next order O(k−1/6) K component
appears (K1 �= 0). In the creeping waves of the two types, this mixed
polarization differs in sign.

From the second condition in (12) one finds the amplitude A2.
Using the expression (20) for η, it can be simplified to

A2 = −iηfB1+2
(
ρ

2

)2/3

f
∂B0

∂s

+
(
ρ

2

)2/3(
3
h′

h
f+

1
3
ρ′

ρ
f+

ξ′

ξ + µ2
f− i

2
αP

(ξ+µ2)2
+i

ατ

ξ+µ2
− αPµ

ξ+µ2

)
B0.

Here

f =
Zaa

m

ξ + µ2

Z − 1
.

The dependence of B0 on s remains undetermined and one
considers the boundary-value problem for K3 and J3. In order to find
how B0 depends on s it is sufficient to determine K3 from (7) and then
substitute it to the first boundary condition from (12) with j = 3.

Consider equations (7). These equations yield the following
equation for K3

L0K3 = ηK2 + i

(
ρ

2

)2/3

L1K1 − i21/3ρ2/3ατJ1. (21)

Substituting here expressions for K2, K1 and J1 one finds the right-
hand side of (21)

R.H.S. =

(
ηA2 + i

(
ρ

2

)2/3 (
3
h′

h
A1 + 2

∂A1

∂s
− 2ατB1

))
w1(ξ − ν)

+

(
η2A1 + i

(
ρ

2

)2/3 (
2ξ′A1 − 4ηατB0

))
ẇ1(ξ − ν)

+
2i
3

(
ρ

2

)2/3 ρ′

ρ
A1νẇ1(ξ − ν),

Using properties of Airy functions, the solution of (21) can be found

K3 = A3w1(ξ − ν)

+

(
ηA2 + i

(
ρ

2

)2/3 (
3
h′

h
A1 + 2

∂A1

∂s
+

1
3
ρ′

ρ
A1 − 2ατB1

))
ẇ1(ξ − ν)
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−
(
η2

2
A1 + i

(
ρ

2

)2/3 (
ξ′A1 − 2ηατB0

))
ν w1(ξ − ν)

− i

6

(
ρ

2

)2/3 ρ′

ρ
A1ν

2w1(ξ − ν).

At this step A3 is as usually an arbitrary function. One substitutes this
solution to the first boundary condition from (12). Expressing ẇ1(ξ)
in that formula with the help of dispersion equation (15) and taking
into account the introduced function µ, one gets

iη

(
2
ρ

)2/3

A2−3
h′

h
A1−2

∂A1

∂s
− 1

3
ρ′

ρ
A1+i

η2

2

(
2
ρ

)2/3 A1

ξ + µ2
− ξ′

ξ + µ2
A1

+ 2ατB1 −
αP

ξ + µ2
B1 +

(
2ατη − iαPηµ− α

h

∂Ψ
∂a

)
B0

ξ + µ2
= 0. (22)

Now one substitutes expressions for the functions A1 and A2. It
is not difficult to see that due to the choice of function η, terms
proportional to B1 disappear from the equation (22). Dividing the
above equation by 4iηfB0 allows it to be rewritten in the form
convenient for integration, namely

B′
0

B0
+

3
2
h′

h
+

1
6
ρ′

ρ
+

1
2

(ηf)′

ηf
+

ξ′

ξ + µ2
− i

4
αP

(ξ + µ2)2
− 1

2
αPµ

(ξ + µ2)f

+
i

4
α

h

∂Ψ
∂a

1
(ξ + µ2)f

= 0.

One notes that

ξ′

ξ + µ2
=
d′

d
, d = ẇ2

1(ξ) − ξ w2
1(ξ) = −(ξ + µ2)w2

1(ξ).

This allows the solution to be written in the form

B0(s, a) =
B0(a)

h3/2ρ1/6
√
ηfd

exp


α

s∫
s0(a)

F (s′, a)ds′


 , (23)

where

F (s, a) =
i

4
P

(ξ + µ2)2
+

1
2

Pµ

(ξ + µ2)f
− i

4
1
h

∂Ψ
∂a

1
(ξ + µ2)f

.
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Now one can write the principal order term of the creeping waves
asymptotics. Introducing the above determined functions in the ansatz
(4), one finally gets(
H
E

)
=

exp


iks+ i

(
k

2

)1/3
s∫

s0(a)

ξ(s′, a) ds′

ρ2/3(s′, a)
+ i

k1/6

21/3

s∫
s0(a)

η ds

ρ2/3


B0w1(ξ − ν),

(24)

where ξ is a solution of (15), η is given by (20), and B0 is presented in
(23).

We stop our derivations at this step. However it is easy to
check that the asymptotic procedure allows solutions Kj and Jj to be
found at any order. Each time one starts solving the corresponding
boundary-value problem, there are undetermined amplitudes Aj−1,
Bj−3, Bj−2 and Bj−1. One finds general solutions Kj and Jj of the
inhomogeneous Airy equations. These solutions contain arbitrary at
this step amplitudes Aj and Bj . Then one considers the boundary
conditions. The first boundary condition (for K) yields differential
equation for the amplitude Bj−3. The second gives expression for the
amplitude Aj via known and yet undetermined amplitudes. Thus at
each step number j one introduces new unknown amplitude Bj and
determines s dependence in the amplitude Bj−3.

6. CONCLUSION

The principal order approximation for the electromagnetic creeping
waves on an anisotropic impedance surface with nondiagonalizable
degenerated impedance matrix is given by (24). One can see that
such parameters as h, ρ, Z, τ and P are present in the principal order
of this asymptotics. Thus in order to define the amplitude dependence
one needs to perform some preliminary matching procedure, and to fix
the lower bound of integration given by function s0(a) in (4).

One can note also that there appears another specific case, namely
if

P = 2τ(ξ + µ2)

the function η becomes equal to zero. In this case the even terms in
the asymptotic series (4) disappear. Moreover the equation (22) is
automatically satisfied and the dependence of B0 on s remains at this
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step undetermined. However it can be determined from the further
order equations.

Finally let us compare the derived asymptotics of creeping waves
on a surface with anisotropic impedance boundary condition described
by degenerated matrix that has coincident eigenvalues and can not be
diagonalized with the usual asymptotics of electromagnetic creeping
waves. The difference is in the following aspects:
(i) Additional exponential factor

exp
(
ik1/6Ψ(s, a)

)
appears. Function Ψ(s, a) depends on torsion τ and torsion-like
quantity P (P is equal to torsion for the circular cylinder case).

(ii) Asymptotic series is carried out by k−j/6 rather than k−j/3 as in
the usual case.

(iii) Creeping waves of two types do not differ in attenuation
parameters ξ (similar effect was observed for isotropic case if the
impedance Z is equal to 1).

(iv) Creeping waves of two types do not differ in polarization, such
difference appears only at the next order, i.e. at O(k−1/6).

(v) Torsion τ and torsion-like quantity P are present in quick factor
(function Ψ), i.e. these quantities play more important role than
in the general case when only τ appears and only in the amplitude
factor.

(vi) Some additional factors appear also in the amplitude B0.
Let us also note that using the ansatz (4) in the nondegenerated

case results in the asymptotic decomposition which represents the sum
of two usual asymptotics for electromagnetic creeping waves, one of
which is multiplied by k−1/6. In this case one has η = 0, Ψ = 0,
and terms of even and odd orders do not interact with each other.
One therefore checks that our procedure provides in this case the same
results as previous analysis.
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