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Abstract—The performance of mobile cellular radio networks is
limited by the level of cochannel interference that can be tolerated.
The use of antennas arrays is very helpful in enhancing the performance
and capacity of the wireless communication system. This paper
presents a method for antenna pattern synthesis that suppress multiple
interfering narrow or wide band signals while receiving the desired
signal by controlling only the phase. Excitation phases are computed
using the Sequential Quadratic Programming (SQP) technique. This
method transforms the nonlinear minimization (or maximization)
problem to a sequence of quadratic subproblems, based on a quadratic
approximation of the Lagrangian function.
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1. INTRODUCTION

The capacity of a network depends on the number of telephone
subscribers that the owner can serve at his cellular station, by
carrier and sector. With the multiplication of the subscribers on the
bandwidth, the receiver of the station can quickly more not manage
to detect the signal emanating from such or such subscriber. And
the operators seek constantly how to optimize the exploitation of the
radioelectric spectrum as well as increasing the flow and the ray of
their networks. A solution consists in using adaptive antennas arrays
[1, 2]. Antennas arrays offer several advantages: they allow reducing
cochannel interferences, increasing the capacity of communication
system and reducing channel fading by using the spatial diversity of
the antennas arrays.

An adaptive antenna consists of two or more antennas
(the elements of the array) spatially arranged and electrically
interconnected to produce a directional radiation pattern [1–3, 5, 6].
In a phased array the phases of the exciting currents in each element
antenna of the array are adjusted to change the pattern of the
array or suppress interfering signals from prescribed directions while
receiving desired signal from a chosen direction, in order to improve
the performance of a communication, sonar or radar system. Although
the amplitudes of the currents can also be varied, the phase adjustment
is of particular interest in pattern null steering and it is responsible for
beam steering [4].

An adaptive antenna has the potential to reduce multipath
interferences, to increase signal to noise ratio and introduce frequency
reuse [1, 2, 6]. However, several challenges remain in the development of
these adaptive systems and one of these is the technique of suppression
of interference. Several approaches can be used for pattern synthesis
with narrow and wide null steering by phase-only control.

In this work, we propose an efficient method of synthesis based
on the SQP algorithm to determine phases which must be applied to
each elements of the array in order to obtain a null of radiation in the
directions of the interfering signals while to maximize of radiation in
the direction of the useful signal (to track the desired users).

2. PROBLEM FORMULATION

Consider a uniform excited linear array of N equispaced isotropic
elements positioned along the x-axis with interelement spacing of d.
These antennas are supplied with same current amplitude A and with
a gradient of phase ϕn, (n = 1, 2, · · · , N − 1) as shown in Figure 1.
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Figure 1. The uniform linear array configuration.

The array factor (F (θ)) can be obtained by considering the
elements to be point source which is given by [4, 7]:

F (θ) =
N−1∑

n=0

ej(kdn sin θ+ϕn) (1)

Where ϕn ∈ [ϕ0, ϕ1, · · · , ϕN−1] represents the phase excitation of the
nth element (the antenna in the beginning is taken as reference of
phase: ϕ0 = 0), dn is the position of the nth element, k is the wave
number, and θ is the scanning angle from broadside.

The problem of interference suppression in antenna arrays consists
in determining the phases excitations ϕn (n = 1, · · · , N − 1) which one
must apply to each element of the array in order to obtain a minimum
of radiation in directions θi (direction of the interfering signals, with
i = 1, · · · , I) while maintaining the maximum of radiation (main lobe)
in direction θ0 (direction of the useful signal).

Mathematically, the numerical optimization technique is formu-
lated as minimizing an objective function (to maximize a objective
function f(x) is equivalent to minimize −f(x)) subject to a set of con-
straints. In our case, the constraints can simply be as en forcing the
required array pattern to be δi (i = 1, · · · , me and δi is the levels in the
regions of the suppressed sectors) at the direction of interferences.
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The nonlinear programmation problem can be formulated as:

minimize − fθ0(ϕ)
subject to fθi

(ϕ) = δi i = 1, · · ·me

fθj
(ϕ) ≤ δj j = me + 1, · · · , m
−2π ≤ ϕ ≤ 2π

(2)

where: fθ(ϕ) =

∣∣∣∣∣1 +
N−1∑
n=1

ej(kdn sin θ+ϕn)

∣∣∣∣∣

2

; θ0, θi, θj , δi, and δi and are

the direction of the desired signal, the ith directions of interfering
signals, the side lobe region, the levels in the regions of the suppressed
sectors, and the level in the side lobe region, respectively and m is the
number of the sampled angular direction.

3. OPTIMIZATION PROCEDURE SQP

We want to find the solution of (2).
There has been a tremendous amount of research among

the nonlinear programming (NLP) community on finding efficient
algorithms for (NLP). The Sequential Quadratic Programming or
SQP [8] methods belong to the most powerful nonlinear programming
(NLP) algorithms we know today for solving differentiable nonlinear
programming problems of the form (2). The theoretical background
is described e.g. in Stoer [9] in form of a review, or in Spellucci [10]
in form of an extensive text book. From the more practical point
of view SQP methods are also introduced briefly in the books of
Papalambros, Wilde [11] and Edgar, Himmelblau [12]. Their excellent
numerical performance was tested and compared with other methods
in Schittkowski [13], and since many years they belong to the most
frequently used algorithms to solve practical nonlinear optimization
problems.

The basic idea is to formulate and solve a quadratic programming
subproblem at each iteration which is obtained by linearizing the
constraints and approximating the Lagrangian function

L(ϕ, λ) = −fθ0(ϕ) +
m∑

k=1

λk (fθk
(ϕ) − δk) (3)

quadratically, where ϕ ∈ RN−1, and where λ = (λ1, · · · , λm)T ∈ Rm is
the vector of the Lagrange multiplier.

To formulate the quadratic programming subproblem, we proceed
from given iterates ϕk ∈ RN−1, an approximation of the solution,
and the matrix Mk ∈ RN−1×N−1, an approximation of the Hessian
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matrix of the Lagrangian function. Then one has to solve the following
quadratic programming problem:

minimize −∇fθ0(ϕk)T d + 1
2dT Mkd

subject to ∇fθi
(ϕk)T d + fθi

(ϕk) = δi i = 1, · · · , me

∇fθj
(ϕk)T d + fθj

(ϕk) ≤ δj j = me + 1, · · · , m
d ∈ RN−1

(4)

Where: Mk � ∇2
ϕL(ϕk, λk).

Let dk be the optimal solution. The solution is used to form a
new iterate

ϕk+1 = ϕk + αkdk (5)

where αk ∈ [0, 1] is a suitable step length parameter.
We can now define the SQP algorithm:

1. set k := 1
2. solve the QP subproblem described on Equation (4) to determine

dk and let λk+1 be the vector of the Lagrange multiplier of the
linear constraints obtained from the QP.

3. Compute the length αk of the step and set ϕk+1 = ϕk + αkdk

4. Compute Mk+1 from Mk using a quasi-Newton formula
5. Increment k. Stop if a solution is found. Otherwise, go to step 2.

This algorithm is the generalization of the Newton method for the
constrained case. It has the same properties. It has, near the optimum,
quadratic convergence.

The motivation for the success of SQP methods is found in the
following observation: An SQP method is identical to Newton method
to solve the necessary optimality conditions, if Mk is the Hessian of the
Lagrangian function and if we start sufficiently close to a solution. The
statement is easily derived in case of equality constraints only, that is
me = m, but holds also for inequality restrictions. A straightforward
analysis shows that if dk = 0 is an optimal solution of (4) and λk the
corresponding multiplier vector, then ϕk and λk satisfy the necessary
optimality conditions of (2).

4. NUMERICAL RESULTS

In order to illustrate the performance of the SQP algorithm for steering
single, multiple, and broadband nulls in the imposed directions by
controlling the phase excitation only, ten examples of uniform excited
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Figure 2. The initial uniform excited linear array, N = 10d = λ/2.

linear array with 10 one-half wavelength spaced isotropic elements were
performed. Initially, the synthesis was made with a uniform excited
linear array pattern. This array was made with 10 equispaced elements
with 0.5λ interelement spacing. The corresponding radiation patterns
are given in Figure 2.

The results of creating multiple suppressed narrow and wide band
interferences are presented. Let the template with the mainbeam of
uniform Linear array, N = 10, d = λ/2.

The template to be used contains one narrowband interference
at the angular directions −50◦ as shown in Figure 3. The phases of
antenna elements are computed as given in column 1 of Table 1.

Figure 4, and 5 show the pattern synthesis with one prescribed
wide sector is imposed at −50◦. The desired signal imposed at 40◦.
The corresponding suppressed sector levels are δ1 = −65 and −95 dB,
respectively. The numbers of pattern nulls that are used to realize the
suppressed sectors are 2 and 3, respectively, as shown in Figures 4 and
5. The Figures 3, 4, 5 shows that the method makes it possible to
suppress narrow and wide band interferences and also control the level
of this zero without degradation of the mainbeam (desired signal).

Figures 4, 6 and 7 shows that we can create a null and mainbeam
in any directions. The computed element phases for Figures 3, 4, 5
and 6 are given in Table 1.

To show the ability of creating multiple suppressed narrow and
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Table 1. Computed element phases ϕn for Figures 3, 4, 5, 6 and 7.

Elem. ϕn (Degree)
No. Fig.3 Fig.4 Fig.5 Fig.6 Fig.7
1 0 0 0 0 0
2 -114.4696 -63.8591 -76.0134 108.3104 -57.0293
3 132.1764 143.2762 119.6518 -122.1083 -132.1477
4 13.9051 24.1199 -17.3237 -24.8184 -174.3008
5 -102.7210 -69.4918 -110.8007 111.2555 -258.0691
6 144.7282 155.3991 140.4686 -155.4868 65.3605
7 28.1020 61.7873 47.0135 -19.4129 -18.4078
8 -90.1693 -57.3690 -89.9209 77.8770 -60.5609
9 156.4767 149.7663 105.7378 -152.5416 -135.6793
10 42.0071 85.9072 29.7330 -44.2313 -192.7086
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Figure 3. Pattern synthesis with a narrow band null at −50◦ and
steering lobe at 40◦.
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Figure 4. Pattern synthesis with a wide sectors imposed around −50◦
and steering lobe at 40◦.
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Figure 5. Pattern synthesis with a wide sector imposed around −50◦
with a suppressed sector level is δ1 = −95 dB and steering lobe at 40◦.
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Figure 6. Pattern synthesis with a wide sectors imposed around 27◦
and steering lobe at −40◦.
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Figure 7. Pattern synthesis with a wide sectors imposed around −50◦
and steering lobe at 20◦.
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Figure 8. Pattern synthesis with a two wide sectors imposed around
−50◦, 50◦ and steering lobe at 20◦.
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Figure 9. Pattern synthesis with a wide sectors imposed around −50◦,
with a two narrows band nulls imposed at 14 and 50 and steering lobe
at 35◦.
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Figure 10. Pattern synthesis with tree narrows band nulls imposed
at −40◦, −14, 20 and steering lobe at −27◦.

wide sectors in the side lobe region: two prescribed wide sectors are
imposed at −50◦ and 50◦. The specified levels of the two sectors are
δi = −60 dB as shown in Figure 8. Figure 9 shows the synthesized
pattern with mainbeam at 35◦, with two narrow nulls imposed at 15◦
and 50◦, respectively and with wide suppressed sector at −50◦.

The following computer simulation example demonstrates the
capacity of this model to suppress a multiple interference signal. In
Figure 10, 11 and 12, we have shown the nulling with triple nulls
imposed at −40◦, −14◦, 20 and imposed the desired signal at −27◦,
with four nulls imposed in the directions angular −40, −15, −6, 20 and
imposed the desired signal at 45, and with four nulls imposed at −40,
−14, −4, 20 and imposed the mainbeam at −27, respectively. As can
be seen from Figures 10, 11, and 12, all desired nulls are deeper than
100 dB. The computed element phases for Figures are given in Table 2.
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Figure 11. Pattern synthesis with four nulls imposed at −40◦, −15,
−6, 20 and steering lobe at 45.

Table 2. Computed element phases ϕn for Figures 8, 9, 10, 11 and
12.

Elem. ϕn (Degree)

No. Fig.8 Fig.9 Fig.10 Fig.11 Fig.12

1 0 0 0 0 0

2 324.6799 -78.1404 -288.4156 229.5830 -279.5717

3 -76.3654 -219.7272 -222.4559 88.9871 173.5302

4 203.1052 37.6785 213.0409 -47.0404 250.5526

5 104.1566 -53.5796 -45.3551 -156.7721 334.2319

6 98.9719 -149.5689 -349.2146 -305.3921 -319.4783

7 360.0000 -240.8270 112.3895 -55.1239 -235.7991

8 279.4825 16.5786 -172.1136 -191.1490 -158.7767

9 -121.5667 -125.0081 -106.1538 -331.7387 -65.6747

10 -156.8917 156.8515 325.4302 257.8436 -345.2465
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Figure 12. Pattern synthesis with four nulls imposed at −40◦, −14,
−4, 20 and steering lobe at −27.

5. CONCLUSION

A new method using a sequential quadratic programming (SQP)
algorithm to suppress a multiple narrow and wide band interferences
and track the desired signal by controlling only the phase has been
presented. SQP algorithm solves a quadratic programming subproblem
in each iteration which is obtained by linearizing the constraints
and approximating the Lagrangian function. A good precision on
the gradients is necessary, because it determines the direction of
descent and intervenes under the conditions stopping of the algorithm.
Contrary to many methods which check the constraints at each
iteration, the SQP algorithm imposes the respect of the constraints
only at the final solution.

The computer simulation results show that the phase-only control
using the SQP algorithm is efficient for forming nulls for any prescribed
directions.
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