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Abstract—A vectorial modal analysis of two-dimensional (2-D)
dielectric grating is presented. The transmission and reflection
from the 2-D dielectric-grating slab are computed by combining the
generalized scattering matrix and the modal analysis. New insights on
the boundary conditions between two grating structures are presented
to be suitable for two-dimensional gratings. The results obtained
using the present analysis are verified with published experimental and
numerical results for both one- and two-dimensional dielectric-grating
slabs. The present approach provides fast convergence and provides
good agreement with other numerical techniques. This technique is
used to study the effects of different parameters for designing a wide
band FSS composed of multilayered 2-D grating slabs.

1. INTRODUCTION

Due to the filtering and diffractive effects of their periodic structures,
dielectric gratings have found different applications in controlling the
propagation of electromagnetic waves. They can be used as frequency-
selective surfaces. They can also be used as substrates or superstrates
for microstrip antennas to suppress the excitation of surfaces waves or
be used in microstrip circuits to add filtering effects on simple guiding
structures like microstrip lines. These applications and others were the
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motivation to introduce comprehensive studies of different dielectric
grating structures using different techniques during last two decades
[1–12]. These techniques can be classified into two main categories,
numerical techniques such as method of moment [7] and finite difference
time domain [9] and semi-analytical techniques such as transverse
resonance technique [3–5, 10] and modal analysis [1, 2, 11, 12]. The
main advantage of numerical techniques is that they can easily include
any perturbation in finite periodic structure as well as solving infinite
periodic structures. On the other hand, semi-analytical techniques are
mainly valid for infinite periodic structures. However, these techniques
require much less computational effort to obtain the characteristics
of the grating structure. Vectorial modal analysis showed important
advantage compared with transverse resonance approach for modeling
one-dimensional grating structure where the complexity of the former
does not increase with the number of dielectric slabs present in the
unit cell as it is usually happens in the latter approach [1]. Another
important advantage of vectorial modal analysis compared with the
transverse resonance method is that it can be extended to two-
dimensional structure as it is used for solving a waveguide filled
with inhomogeneous materials [13]. In vectorial modal analysis, the
presence of losses in dielectric slabs can be easily considered by simply
introducing complex permittivity [1].

It can be expected that by using semi-analytical techniques to
obtain the reflection and transmission coefficients of grating structures,
it may be possible to formulate Greens function of a point source
above grating structure. This formulation can be quite useful for
simulating an antenna above grating structure by using integral
equation approach. Therefore, the present work extends the vectorial
modal analysis of one-dimensional dielectric grating to the case of two-
dimensional dielectric grating.

Figure 1 shows a schematic diagram of the proposed problem for
a simple case of a single layer-grating slab. It should be noted that for
the case of one dimensional grating, where the embedded dielectrics
are rectangular rods of finite width along the periodic direction and
equal to the dielectric thickness, h. The problem of two-dimensional
dielectric grating layered structure can be presented as a multi-section
guiding structure of finite thicknesses and infinite lateral dimensions.
Each guiding structure consists of periodic dielectric rods embedded in
a base dielectric periodic cell. The fields inside each guiding structure
are determined in terms of its modes. Thus, the vectorial modal
analysis of dielectric grating slabs starts with finding the modes of
each layer. Then the boundary conditions are obtained by matching
the tangential fields on the interface between the different layers.
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Figure 1. Two-dimensional dielectric grating slab excited by obliquely
incident plane wave.

By enforcing obtaining the appropriate boundary conditions, one can
obtain the reflection and transmission coefficients from one grating
structure to the other. Then by using the generalized scattering matrix
approach one can obtain the transmission and reflection of multilayered
grating structure [14]. The details of the modal analysis for two-
dimensional dielectric grating structures are discussed in Section 2.
Then the problems of the boundary conditions and the generalized
scattering matrix are discussed in Section 3. Sample results and
discussions are presented in Section 4.

2. MODAL ANALYSIS OF TWO-DIMENSIONAL
DIELECTRIC GRATING

Starting from Maxwell’s equations, it can be shown that for spatial
dependent medium the wave equation of the magnetic field is

∇×
(
ε−1
r ∇× �H

)
= k2

0
�H (1)

For the case of a guiding structure, εr is independent of its longitudinal
direction and the field dependence on the longitudinal direction is
e−jβz, assuming that z is the longitudinal direction. Thus, the
transverse field part of (1) can be rewritten as follows:[

∇2
t + k2

0εr +
(∇tεr

εr

)
× (∇t × ◦)

]
�ht = β2�ht (2)
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where �ht is the field distribution of the transverse magnetic field
components. By solving this eigen value problem, one can obtain
the field distribution of the transverse magnetic field �ht and the
propagation constant β. The solution requires expanding the
transverse magnetic field in terms of a set of orthogonal Floquet mode
expansion functions. These expansions are obtained for the TE and
TM modes separately, which requires use of bi-orthogonal functions to
represent each mode separately.

It is important to choose such bi-orthogonal expansion functions.
In previous studies of one-dimensional dielectric grating, the plane
consisting of the direction of incidence and the normal direction to the
interface between the dielectric layers of the same grating structure
is considered as the plane of incidence. Then, the TE and TM
directions are defined based on this plane. Such definition simplifies
the relation between the transverse magnetic field obtained by solving
the above eigen value problem and the transverse electric field [1, 4].
However, this approach cannot be applied for two-dimensional grating
because there is no fixed normal direction to the interface between the
embedded dielectric rods and the surrounding dielectric base medium.
Thus, it would be preferred to define the plane of incidence as the
plane consisting of the direction parallel to the embedded rods, which
is the z direction, and the direction of incidence. The advantage of
this choice is that it would be consistent with the traditional definition
of the TE and TM wave for planar structure. For arbitrary incident
plane wave, the direction of incidence is

�ainc = sin θinc cosφinc�ax + sin θinc sinφinc�ay − cos θinc�az (3)

Thus, the unit vectors of the TE and TM transverse magnetic fields
are

�ahTE = cosφinc�ax + sinφinc�ay (4a)
�ahTM = − sinφinc�ax + cosφinc�ay (4b)

Based on the above definition of TE and TM magnetic field directions,
it can be assumed that the bi-orthogonal Floquet mode expansion
functions can be defined as

�̃
h

TE

mn =
exp(−jkxmx− jkyny)√

DxDy
(cosφinc�ax + sinφinc�ay) (5a)

�̃
h

TM

mn =
exp(−jkxmx− jkyny)√

DxDy
(− sinφinc�ax + cosφinc�ay) (5b)

where
kxm = kx0 + 2πm/Dx (5c)
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kyn = ky0 + 2πn/Dy (5d)
kx0 = k0 sin θinc cosφinc (5e)
ky0 = k0 sin θinc sinφinc (5f)

Dx andDy are the dimensions of the periodic cell. The bi-orthogonality
relation can be easily verified as follows

〈
�̃
h

ζ

mn,
�̃
h

ξ

m′n′

〉
=

Dx∫
0

Dy∫
0

�̃
h

ζ∗

mn · �̃h
ξ

m′n′dxdy = δmm′δnn′δζξ (6)

Using these bi-orthogonal expansion functions, the transverse
magnetic field component can be represented as

�ht = �hTE
t + �hTM

t =
∑
p

CTE
(p)

�̃
h

TE

(p) + CTM
(p)

�̃
h

TM

(p) (7)

where each (p) represents different combinations of mn. Ideally, this
series should be infinite. However, for numerical implementation
this series is truncated to be finite. The problem of obtaining the
transverse magnetic field distribution is now converted into obtaining
the amplitudes of such modal expansion. By inserting (7) into (12),
one can obtain

L�ht =
∑
p

CTE
(p) L

�̃
h

TE

(p) + CTM
(p) L

�̃
h

TM

(p) = β2
∑
p

CTE
(p)

�̃
h

TE

(p) + CTM
(p)

�̃
h

TM

(p) (8a)

where

L = L0 + ∆1 + ∆2 (8b)
L0 = ∇2

t + k2
0εrb (8c)

∆1 = k2
0 (εr(x, y) − εrb) (8d)

∆2 =
(∇tεr(x, y)

εr(x, y)

)
× (∇t × ◦) (8e)

To obtain the unknown amplitudes of the field expansion functions and
the corresponding propagation constant of each mode convert (8a) into
an eigen value problem as follows




[
L

TE/TE
pq

] [
L

TE/TM
pq

]
[
L

TM/TE
pq

] [
L

TM/TM
pq

]






[
CTE

(q)

]
[
CTM

(q)

]

 = β2




[
CTE

(q)

]
[
CTM

(q)

]

 (9a)
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where

LTE/TE
pq =

〈
�̃
h

TE

(p) , L0
�̃
h

TE

(q)

〉
+

〈
�̃
h

TE

(p) ,∆1
�̃
h

TE

(q)

〉
+

〈
�̃
h

TE

(p) ,∆2
�̃
h

TE

(q)

〉
(9b)

LTE/TM
pq =

〈
�̃
h

TE

(p) ,∆2
�̃
h

TM

(q)

〉
(9c)

LTM/TE
pq =

〈
�̃
h

TM

(p) ,∆2
�̃
h

TE

(q)

〉
(9d)

LTM/TM
pq =

〈
�̃
h

TM

(p) , L0
�̃
h

TM

(q)

〉
+

〈
�̃
h

TM

(p) ,∆1
�̃
h

TM

(q)

〉
+

〈
�̃
h

TM

(p) ,∆2
�̃
h

TM

(q)

〉
(9e)

It should be noted that the operator ∆2 is the only part of the operator
L that can couple TE and TM waves. By obtaining the eigen values
and the eigen vectors of (9), one can obtain the field distribution of
each mode by using (7) and its corresponding propagation factor.

For the case of a grating consisting of rectangular dielectric rods,
the relative dielectric constant at each cell can be represented as

εr(x, y) = εrb +
ND∑
i=1

[(εri − εrb)(H(x−x0i+lxi/2) −H(x−x0i−lxi/2))

×(H(y − y0i + lyi/2) −H(y − y0i − lyi/2))] (10)

where H( ) is the Heaviside unit step function, (x0i, y0i) is the center of
the ith rod, lxi and lyi and are the dimensions, and ND is the number
of dielectric rods in unit cell. Using (8) and (10) into (9) a closed form
for the matrix elements in (9) as

LTE/TE
pq = β̃2

pδpq + k2
0R0

(
kx(p) − kx(q), ky(p) − ky(q)

)

+
(
jkx(q) sinφinc − jky(q) cosφinc

)

×
(
R1y

(
kx(p) − kx(q), ky(p) − ky(q)

)
cosφinc

−R1x

(
kx(p) − kx(q), ky(p) − ky(q)

)
sinφinc

)
(11a)

LTM/TM
pq = β̃2

pδpq + k2
0R0

(
kx(p) − kx(q), ky(p) − ky(q)

)

+
(
jkx(q) cosφinc + jky(q) sinφinc

)

×
(
−R1y

(
kx(p) − kx(q), ky(p) − ky(q)

)
sinφinc

−R1x

(
kx(p) − kx(q), ky(p) − ky(q)

)
cosφinc

)
(11b)
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LTE/TM
pq =

(
jkx(q) cosφinc + jky(q) sinφinc

)

×
(
R1y

(
kx(p) − kx(q), ky(p) − ky(q)

)
cosφinc

−R1x

(
kx(p) − kx(q), ky(p) − ky(q)

)
sinφinc

)
(11c)

LTM/TE
pq =

(
jkx(q) sinφinc − jky(q) cosφinc

)

×
(
−R1y

(
kx(p) − kx(q), ky(p) − ky(q)

)
sinφinc

−R1x

(
kx(p) − kx(q), ky(p) − ky(q)

)
cosφinc

)
(11d)

where

β̃p =
√
εrbk

2
0 − k2

x(p) − k2
y(p) (12a)

R0(kx, ky) =
1

DxDy

ND∑
i=1

4(εri − εrb)

sin(kxlxi/2)
kx

sin(kylyi/2)
ky

ej(kxx0i+kyy0i) (12b)

R1x(kx, ky) =
1

DxDy

ND∑
i=1

8j
(εri − εrb)
(εri + εrb)

sin(kxlxi/2)
sin(kylyi/2)

ky
ej(kxx0i+kyy0i) (12c)

R1y(kx, ky) =
1

DxDy

ND∑
i=1

8j
(εri − εrb)
(εri + εrb)

sin(kxlxi/2)
kx

sin(kylyi/2)ej(kxx0i+kyy0i) (12d)

Up to this point one can obtain the distribution of the transverse
magnetic field of each mode and its propagation constant.

3. BOUNDARY CONDITIONS ON THE INTERFACE
BETWEEN TWO ADJACENT DIELECTRIC GRATINGS

The tangential magnetic and electric fields should be continuous on the
interface between adjacent dielectric gratings. The continuity of the
tangential magnetic field can be obtained directly by using the modal
representation obtained in the previous section as follows:

(I −R11)C1 = T21C2 (13)
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where R11 is the reflection matrix at the first grating structure, T21 is
the transmission matrix from the first grating to the second grating,
C1 and C2 are the transpose matrix consisting of the eigen vectors
corresponding to the modal analyses of the first and the second grating,
respectively.

The problem now is to obtain the tangential electric field. It
should be noted that the transverse electric field distribution could
be obtained via another eigen value problem similar to (1) of the
transverse magnetic field [1]. However, obtaining the electric field
distribution only is not sufficient to obtain the second boundary
condition because it does not present the relation between the
amplitude of the transverse electric field and the transverse magnetic
field for each mode, which is also required to obtain the second
boundary condition. Thus, it is required to obtain the transverse
electric field in terms of the obtained transverse magnetic field. For
the case of one-dimensional grating, this problem is simplified by
appropriate choice of TE and TM definitions as mentioned in the
previous section. In this case, the relation between the transverse
electric and magnetic fields are only multiplication factors, which
represent the TE and the TM characteristic impedances [1, 4]. In
this case the TE characteristic impedance is independent of the
variation of the dielectric constant. However, in the present case the
relation between the transverse electric and magnetic fields cannot
be just multiplication factors. To find this relation, it would be
required to obtain the transverse electric field in terms of the total
magnetic field including the longitudinal magnetic field component.
The longitudinal magnetic field component in terms of the transverse
magnetic components can be obtained as

hz = −jβ−1
(
∇t · �ht

)
(14)

Thus the transverse electric field can be obtained in terms of the
transverse magnetic field as follows:

jωε0εr�et =
[
∇t × �az

(
−jβ−1∇t · �ht

)
− jβ�az × �ht

]
(15)

Using the modal representation of the transverse magnetic field, (15)
can be rewritten in a modal form as:

jωε0εr�et =
[(

−jβ−1C (∇t × �az)∇t · �̃ht

)
− jβC�az × �̃

ht

]

where �̃ht is a vector including the TE and TM expansion modes �̃ht =[[
�̃
h

TE

(p)

] [
�̃
h

TM

(p)

]]T

, β is a diagonal matrix including the propagation
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constants of the different modes and C is the transpose matrix
consisting of the eigen vectors of the modal analysis for the transverse
magnetic field. Assuming that the transverse electric field is expanded
in terms of transverse modal functions corresponding to TE and TM

modes �̃et =
[[
�̃e

TE
(p)

] [
�̃e

TE
(p)

]]T
as

�et = �eTE
t + �eTM

t =
∑
p

ΦTE
(p)
�̃e

TE
(p) + ΦTM

(p)
�̃e

TM
(p) (16)

where �̃e
TE
(p) = −�az × �̃

h
TE

(p) and �̃e
TM
(p) = −�az × �̃

h
TM

(p) . The electric
field amplitude matrix Φ can be obtained by using the bi-orthogonal
property of the electric field modal expansion function as follows:

jωε0
〈
�̃e, εr�et

〉
=

〈
�̃e,

[(
−jβ−1C(∇t × �az)∇t · �̃ht

)
− jβC�az × �̃

ht

]〉
(17)

By solving (17), it can be shown that the electric field amplitude matrix
Φ is

Φ =
1

jωε0

(
−jβ−1CAAT + jβC

)
Ψ−1 (18)

where A =
[
ATE

ATM

]
and Ψ =

[
ΨTE 0

0 ΨTM

]
. ATE is a diagonal

matrix whose element is (−jkx(p) cosφinc − jky(p) sinφinc) and ATM is
a diagonal matrix whose element is (jkx(p) sinφinc − jky(p) cosφinc) ·
ΨTE = ΨTM is a matrix with element given as

ψpq =
1

DxDy

Dx∫
0

Dy∫
0

εr(x, y)ej(kx(p)−kx(q))xej(ky(p)−ky(q))ydxdy

After obtaining the transverse electric field amplitude matrix in
terms of the previously obtained transverse magnetic field amplitude
matrix, one can obtain the equation of the second boundary condition
as:

(I +R11)Φ1 = T21Φ2 (19)

Solving (13) and (19) simultaneously, one can obtain the reflection and
transmission matrices as:

T21 = 2
(
C2C

−1
1 + Φ2Φ−1

1

)−1
(20a)

R11 = I − 2
(
C2C

−1
1 + Φ2Φ−1

1

)−1
C2C

−1
1 (20b)
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The reflection at the second grating structure and the transmission
can be obtained from the second to the first grating by exchanging the
subscripts 1 and 2 in (20).

In practices, two homogeneous media at both sides of the layered
structure surround the layered grating slabs. However, to facilitate
the analysis it is assumed that such homogeneous media are composed
of grating structure of the same cell size of the slab gratings. The
base dielectric constants of these two semi-infinite gratings are the
dielectric constants of the two surrounding media and there are no
embedded rods in such media. For such homogenous medium the C

matrix is simply a unit matrix, β =
[
βTE 0

0 βTM

]
where βTE = βTM

are diagonal matrices whose elements are
√
εrk2

0 − k2
x(p) − k2

y(p).
The above analysis is suitable to obtain the reflection and

transmission matrices between two semi-infinite grating structures.
This analysis can be combined with generalized scattering matrix
approach to obtain the reflection and transmission from a multilayered
medium composed of grating slabs. It should be noted that the word
“layer” here means a grating slab and should not be confused with the
structure of the grating itself. As a special case, one can obtain the
reflection and transmission matrices of a grating slab in free space as
follows:

R̃11 = R11 + T12 (I −BR22BR22)
−1BR22BT21 (21a)

T̃12 = T12 (I −BR22BR22)
−1BT21 (21b)

where medium 1 is assumed to be free space and medium 2 is the
grating slab, B is a diagonal matrix whose element is exp(−jβih), βi

is the ith modal propagation constant of the grating structure, and h
is the thickness of the grating slab.

4. RESULTS AND DISCUSSIONS

In this section, different examples are presented to show the validity
of the above formulation. These examples include both one- and
two-dimensional grating structures. It should be noted that one-
dimensional grating can be treated as a two-dimensional grating whose
embedded rods extend in one direction up to the cell boundaries. For
the sake of comparison with previously mentioned results, it should
be noted that the TE case corresponds to electric field normal to the
plane of incidence and parallel to the interface between the grating
layers and TM case corresponds to electric field parallel to the plane
incidence normal to that direction, which is consistent with the present
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Figure 2. Comparison between Transverse Resonance Method
[5] (Dotted points) and Vectorial modal analysis (Solid line) for
calculating TE reflection coefficient of a one-dimensional grating with
εrb = 1.44, εr1 = 2.56, Dx = Dy = 10 mm, lx1 = 10 mm, ly1 = 5 mm,
x01 = 5 mm, y01 = 7.5 mm and h = 17.13 mm. φinc = 90◦ and
θinc = 45◦.

definition of TE and TM if it is assumed that the direction parallel to
the interface between the layers of the one-dimensional gratings is the
x-direction and φinc is π/2. Other choices are also possible.

Figure 2 shows the TE reflection of a one-dimensional dielectric-
grating slab whose base dielectric constant εrb = 1.44. It includes only
one dielectric rod per cell. The dielectric constant of such dielectric rod
is εr1 = 2.56. The unit cell is a square of length 10 mm. The dimension
of the embedded dielectric rod is 10 mm× 5 mm. The thickness of the
substrate is 17.13 mm. The direction of the incident plane wave is
φinc = π/2 and θinc = π/4. Excellent agreement is obtained between
the present results and the previously published result of Bertoni et al.
[5, Fig. 3], which is obtained by using transverse resonance method.

Figure 3 presents another example of a one-dimensional dielectric-
grating slab, where it presents the transmission coefficients for both
TE and TM incident waves. The base dielectric is free space and
the dielectric constant of the embedded rods is εr1 = 2.59. The
loss tangent of the dielectric rods is tan δ = 0.0067. The unit
cell is a square of length 30 mm. The dimension of the embedded
dielectric rod is 30 mm × 15 mm. The thickness of the substrate is
8.7 mm. The direction of the incident plane wave is φinc = π/2 and
θinc = π/180. These results show good agreements when compared
with the corresponding experimental results of Tibuleac et al. [8]. It
should be noted that all these results have been obtained by using only
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Figure 3. Comparisons between measured [8] and calculated TE
and TM transmission coefficients of a one-dimensional grating with
εrb = 1, εr1 = 2.59, tan δ1 = 0.0067, Dx = Dy = 30 mm, lx1 = 30 mm,
ly1 = 15 mm, x01 = 15 mm, y01 = 22.5 mm and h = 8.7 mm. φinc = 90◦
and θinc = 1◦. Measurements are dotted points and calculated results
are solid lines. (a) TE, (b) TM.

25 Floquet mode expansion functions where −2 ≤ m,n ≤ 2 in (5).
Figure 4 presents an example of the TM reflection of a two-

dimensional dielectric grating slab. The base dielectric is εrb = 4
and the dielectric constant of the embedded rods is εr1 = 10. The
unit cell is a square of length 20 mm and the cross section of the
embedded rod is also square of length 10 mm. The thickness of the
substrate is 2 mm. The φinc angle is fixed to be zero degree while θinc
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Figure 4. TM reflection coefficients of a two-dimensional grating with
εrb = 4, εr1 = 10, Dx = Dy = 20 mm, lx1 = 10 mm, ly1 = 10 mm,
x01 = 10 mm, y01 = 10 mm and h = 2 mm. φinc = 0◦ and (a) θinc = 0◦,
(b) θinc = 15◦ and (c) θinc = 30◦.
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has three values namely, 0, 15 and 30 degrees. These results show
good agreement with the corresponding results obtained by Method of
Moment solution of Yang et al. [7]. However, it is noted that there is
a fixed difference in the resonance frequency between their results and
the present results. This is examined by increasing the number of the
Floquet mode expansion functions. It is found that the present solution
is highly convergent. Thereforethe same problem is simulated by HFSS
for the case of normal incidence. The three results are compared
in Fig. 4(a). It can be noted that there is an excellent agreement
between the results of HFSS simulation and the results of the vectorial
modal analysis. The main advantage of the present technique is the
fast convergence as compared with the Method of Moment solution
where the present results are obtained by using only 49 Floquet mode
expansion functions, −3 ≤ m, n ≤ 3, where each mode represent an
expansion function whereas Yang et al. [7] used 1681 Floquet modes
combined with 9 expansion functions to obtain his results.
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%
 e

rr
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r

Figure 5. Percentage error of TE and TM transmission and reflection
coefficients as functions of the number of Floquet mode expansion
functions −N ≤ m,n ≤ N . The percentage error is compared with
the results of m = n = 10. The grating structure is the same as shown
in Fig. 4. θinc = 30◦ and φinc = 0◦, f = 10 GHz.

To show the fast convergence of the present technique, Fig. 5
shows the percentage error of TE and TM transmission and reflection
coefficients as a function of the number of Floquet mode expansion
functions. The grating structure is the same as that of Fig. 4. The
angle of incidence is θinc = 30◦ and φinc = 0◦, and the operating
frequency is 10 GHz. The Floquet mode expansion functions are
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determined as −N ≤ m, n ≤ N . The errors are computed based
on the solutions obtained with N = 10 to be the exact one. It can
be noted that, for N = 2 the maximum percentage error is less than
4%. The error decreases monotonically as N increases. This maximum
percentage error decreases to 1.5% for N = 3, which is the value used
to obtain the results presented in this paper.

Figure 6. TE reflection coefficients of the same grating structure of
Fig. 4. φinc = 0◦, (a) θinc = 0◦, (b) θinc = 15◦ and (c) θinc = 30◦.

Figure 6 shows the TE reflection of the same grating structures at
the same incident angles. It can be noted that due to the symmetry
of the embedded dielectric rod with respect to the z-axis, the TE and
the TM reflection coefficients are exactly the same at θinc = 0◦ and
φinc = 0◦, thus it has not been repeated in Fig. 6. By comparing
Figures 5 and 6 for different θinc angles for the same φinc angle it can
be noted that the TM resonance frequencies are slightly affected by
changing θinc. However, the number of the TE resonances increases
by increasing the elevation angle θinc and the corresponding resonance
frequencies decrease.

Figure 7 shows the dependence of the TE and TM reflection
coefficients on the angle φinc for fixed tilting where θinc = 30◦ for the
same grating structure of Figure 4 at 10 GHz. Due to the symmetry of
the embedded rod inside the periodic cell, only π/4 section is sufficient
to present the dependence of such reflections coefficients on the angle
φinc. Figure 7 shows π/2 section to show part of this symmetry. It
can be noted that, in addition to the frequency selectivity behavior
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|    |Γ
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Figure 7. Reflection coefficients at 10 GHz as a function of φinc for
the same grating structure of Fig. 4. θinc = 30◦.

of the dielectric grating structure, the angular selectivity can also be
obtained for the same frequency as shown in Fig. 7.

It should be noted that all the previous results present only the
specular reflection and transmission coefficients. In addition to such
specular components, there are also mode conversion components,
where the TE incident wave introduces TM wave and vise versa,
and non-specular components, which correspond to grating lobes.
The existence of these components depends on the dimensions of the
periodic cell with respect to the incident wavelength, the coupling effect
of the implanted dielectric rods, the direction of incidence and the
coupling effect of the embedded rods between the TE and TM waves.
Tables 1 and 2 shows samples results for the grating structure of Fig. 4
where it they introduces in addition to its specular wave, other three
wave components including coupling between TE and TM waves. The
operating frequency in this case is 15 GHz and the direction of incidence
is θinc = 45◦ and φinc = 30◦. Power conversion for both TE and TM
waves can be easily examined by verifying

M∑
i=1

(∣∣∣ΓTE/TE
i

∣∣∣2 +
∣∣∣T TE/TE

i

∣∣∣2 +
∣∣∣ΓTM/TE

i

∣∣∣2 +
∣∣∣T TM/TE

i

∣∣∣2
)
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Table 1. Total reflection coefficients at 15 GHz for the same grating
structure of Fig. 4. θinc = 45◦ and φinc = 30◦.

Direction of 
diffracted field 

Mode of 
diffracted field  

|| / TETEΓ  || / TETMΓ  || / TMTEΓ  || / TMTMΓ  

oo 30,45 ==  ( 0,0 == nm ) 0.558910 0.039539 0.077634 0.467863 
oo 55.46,07.27 -==  ( 1,0 −== nm ) 0.130430 0.050649 0.097971 0.162806 

oo 137.63,58.35 ==  ( 0,1 =−= nm ) 0.062982 0.063534 0.015651 0.030942 
oo -120.95,41.08 ==  ( 1,1 −=−= nm ) 0.131194 0.094718 0.085683 0.128558 

Table 2. Total transmission coefficients at 15 GHz for the same grating
structure of Fig. 4. θinc = 45◦ and φinc = 30◦.

Direction of 
diffracted field 

Mode of 
diffracted field  

|| / TETET  || / TETMT  || / TMTET  || / TMTMT  

oo 30,45 ==  ( 0,0 == nm ) 0.756709 0.038788 0.078023 0.881722 
oo 55.46,07.27 −==  ( 1,0 −== nm ) 0.138850 0.053513 0.070513 0.179749 

oo 137.63,58.35 ==  ( 0,1 =−= nm ) 0.082630 0.064975 0.019104 0.015330 
oo −120.95,41.08 ==  ( 1,1 −=−= nm ) 0.131630 0.100221 0.085951 0.141535 

where M is the total number of the propagating grating lobes.
Figure 8 shows four-layers 2-D grating slabs as a wide band

dielectric FSS. It is composed of four 2-D grating slabs supported by
three homogenous dielectric slabs. The unit cell of the 2-D grating
slab is a square dielectric ring of εrb = 12. The dimensions of the
unit cell are Dx = Dy = 10 mm and the dimensions of the air hole
inside the dielectric ring are Lx = Ly = 7 mm. The thickness of the
grating slab is h1 = 2 mm. The supporting homogenous dielectric slabs
have a dielectric constant εr = 2.2 and dielectric thickness h2 = 4 mm.
Figure 9 shows the transmission and reflection coefficients of this FSS
for the case of normally incident plane wave. The results of Fig. 9 are
calculated by using both modal analysis and HFSS. The comparison
shows good agreement between the two techniques. It can be noted
that this FSS structure can be used as a reflecting structure with less
than −20 dB transmission in the frequency band from 13.2 to 15.6 GHz
which is nearly 16.6% bandwidth with respect to its central frequency.
It can be also used as a transparent surface for frequencies less than
10 GHz with maximum insertion loss below −3 dB.

The supporting dielectric slabs have a significant effect on the
reflection bandwidth. Figure 10 shows the effect of the dielectric
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Figure 8. FSS of multilayered dielectric grating slabs. Dx = Dy =
10 mm, Lx = Ly = 7 mm, εrb = 12, h1 = 2 mm, εr = 2.2 and
h2 = 4 mm.

Figure 9. Reflection and Transmission coefficients of multilayered
dielectric grating slabs shown in Fig. 8 for the case of normal incidence.
θinc = 0 and φinc = 0. The incident field is y-polarized field.
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Figure 10. Percentage reflection bandwidth and its corresponding
center frequency as functions of supporting slab thickness h2. The
remaining parameters are as shown in Fig. 8.

thickness of the supporting dielectric slab on the reflection bandwidth
and the center frequency of the reflection bandwidth where the
dielectric constant is εr eauals 2.2. It can be noticed that the
center frequency of the reflection bandwidth decreases by increasing
the thickness of the supporting dielectric slab and the maximum
reflection bandwidth for such dielectric constant is nearly 20% at a
dielectric thickness h2 equals 3 mm. Figure 11 shows the effect of the
dielectric constant of the supporting dielectric slabs on the reflection
bandwidth. It can be noted that the reflection band with increases
by decreasing the dielectric constant of the supporting slabs while the
center frequency of the reflection bandwidth has slightly decreased

On the other hand, the thickness of the grating structure h1 has
a similar effect on the reflection bandwidth as shown in Figure 12.
However the change of the reflection bandwidth is more sensitive
to the thickness of the grating structure and the decrease of the
center frequency linearly. Finally, Figure 13 shows the effect of base
dielectric constant of the grating structure εrb. It can be noted that
the reflection bandwidth increases by increasing εrb while its center
frequency decreases by increasing εrb.

Based on the above discussions it can be concluded that to design
a wideband FSS composed of 2-D dielectric grating slabs of square
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Figure 11. Percentage reflection bandwidth and its corresponding
center frequency as functions of supporting slab dielectric constant εr.
The remaining parameters are as shown in Fig. 8.
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center frequency as functions of grating slab thickness h1. The
remaining parameters are as shown in Fig. 8.
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Figure 13. Percentage reflection bandwidth and its corresponding
center frequency as functions of εrb. The remaining parameters are as
shown in Fig. 8.

dielectric rings supported by homogenous dielectric slabs it is required
to increase the base dielectric constant of the grating structure and to
decrease the dielectric constant of the supporting dielectric slab. The
thicknesses of the grating slab and the support slabs have significant
effects on the reflection bandwidth. Appropriate choice of these
thicknesses is required to obtain maximum reflection bandwidth.

5. CONCLUSION

An efficient approach to study the reflection and transmission
coefficients of two-dimensional dielectric grating structures for
arbitrary incident plane wave was presented. The approach was based
on vectorial modal analysis of the grating structure to obtain the
field distribution and the propagation constant of different modes
in the grating structure. The modal analysis was combined with
the generalized scattering matrix. The reflection and transmission
coefficients of multilayered two-dimensional dielectric grating structure
were obtained. The technique was verified by comparing the results
of the present approach with previously published results based on
experimental and other numerical techniques. The present modal
analysis required expanding the field in the transverse direction
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only while the method of moments based on volume integral
equation requires expanding the field in the three-dimensional space,
which requires more expansion functions especially for thick grating
structures. A wideband FSS composed of multilayered grating slabs
supported by homogeneous dielectric slabs was designed. It was also
found that this approach requires less Floquet modes for convergence
as compared with the Method of Moment.
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