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Abstract—Based on the Mie theory, the light scattering properties of
clouds consisting of pure water, pure ice spheres and concentric water-
ice spheres are studied in the near-infrared regions, respectively. We
computed the single scattering albedo, phase function, and asymmetry
parameters of water clouds, ice clouds, and ice-water mixed clouds.
The near infrared reflectivity of the ice-water mixed clouds is computed
by using the adding-doubling method and compared to the other two
types of clouds. It is shown that it is possible to use the near infrared
reflectivity to derive the microphysical characteristics of the clouds.

1. INTRODUCTION

Light scattering is an important technique in characterization of
clouds. Spectral and angular variations of intensity and polarization
of scattering light beams depend on the microstructure, such as mean
particle size, concentration and optical depth, of the particles. Hansen
[1], Van de Hulst [2] and Liou [3] have pointed out that some of
the microphysical properties of clouds, can be inferred from analysis
of the clouds’ near-infrared reflectivity. Theoretical computations of
the reflectivity of clouds are usually reduced to solving the radiative
transfer equation (RTE) owing to its complexity, however, remote
sensing of the clouds rely on accurate knowledge of the reflectivity.
This makes the use of numerically exact solutions of RTE popular.
The adding-doubling method was first used by van de Hulst, and
Hansen extended it to consider the polarization. The method has
been used extensively for illumination by unidirectional light at the
top [1–3, 7, 11, 12].
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The radar bright band, caused by melting ice particles within the
clouds, has been observed and explained by earlier work. In these
papers, a melting particle is modeled by a spherical particle which
has an average dielectric constant of water and ice. In millimeter
wavelengths, this model is tolerable owing to the Rayleigh scattering.
However, the Mie scattering is dominate in the near-infrared regions,
this model is not appropriate and practical. In this paper, an ice-water
spherical particle is modeled by a water-coated ice sphere.

An important cloud characteristic which can be derived by remote
sensing is the phase of the cloud particles. This can be gained
by the accurate computation of the reflectivity of clouds. In this
paper, we made such calculations by using the adding-doubling method
in the near-infrared wavelength region. The plane albedo, angular
distributions of intensities, and spherical albedo are presented. From
our results we conclude that the light reflected by clouds is sensitive
to the particle phase at the wavelength λ ≈ 3.3µm.

2. SINGLE SCATTERING

Major shapes of ice crystals are plates, columns, needles, dendrites,
and bullets. The Magano-Lee classification of natural crystals includes
80 shapes, ranging from elementary needle to the irregular germ [4].
Though there are several methods to calculate the scattering properties
of nonspherical particles, microphysical properties of clouds cannot be
characterized by only one of these shapes. In this paper, we replace the
ice particles with equal-volume spherical shaped particles, the melting
ice particles are replaced by water-coated ice spheres [5].

Due to the variability of physical properties of clouds both in
space and time domains, the size of clouds particles is polydisperse.
Thus one can consider a radius of a droplet, r, as a random value,
which is characterized by the distribution function f(r). In most cases,
the function f(r) can be represented by gamma distribution, modified
gamma distribution, log normal distribution, power law distribution,
etc. [6]. Hansen and Travis [1] found that the effective radius and
variance

ref =

∫ ∞

0
rπr2f(r)dr∫ ∞

0
πr2f(r)dr

(1)

vef =

∫ ∞

0
(r − ref )2πr2f(r)dr

r2ef

∫ ∞

0
πr2f(r)dr

(2)
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are important parameters for any particle-size distribution. Hansen
found that the size distribution for different cloud with the same values
of ref and vef will have similar scattering properties. Therefore we can
simply choose the gamma distribution defined as equation (3),

f(r) = const× r(1−3b)/b exp
(−r
ab

)
(3)

where a = ref , b = vef . In particular, we use b = 0.11111 in this
paper.

When electromagnetic waves propagate in clouds, it will be
scattered and absorbed, the probability of surviving photons is defined
as the single-scattering albedo,

ω0 =
σsca

σext
(4)

where σsca and σext, which are defined below, are scattering coefficient
and extinction coefficient, respectively.

σsca = N

∫ ∞

0
Cscaf(r)dr (5)

σext = N

∫ ∞

0
Cextf(r)dr (6)

where N is the concentration of particles, Csca is the scattering cross
section, and Cext is the extinction cross section. These cross sections
can be obtained from the well-known Mie theory [7].

Using Mie theory, the spectral dependence of ω0 for the gamma
distribution at aef = 6µm for the spectral range of 1.0–4.0µm is
calculated and plotted in Fig. 1. We can see from Fig. 1 that the
single scattering albedos of the three types of clouds are very close,
and they decrease with the increase of the imaginary part of refractive
index.

Another important function is the single scattering phase function,
which characterizes the probability of photon scattering in a given
direction, specified by the scattering angle θ. For the spherical shape,
light scattering by cloud particles is azimuthally symmetric, thus

1
2

∫ π

0
p(θ) sin θdθ = 1 (7)

The phase function p(θ) does not depend on the concentration of
particles, but on the refractive index, shape and size. The function
p(θ), obtained from Mie theory, is presented in Fig. 2 at λ = 1.0µm
for three types of clouds with ref = 6µm.
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From Fig. 2 we can see that the main features of this phase
function is the strong diffraction peak at θ ≈ 0◦. There are small
differences among the three types of clouds in the range of scattering
angles from 20◦ to 60◦, while the differences in the backward scattering
angles are relatively larger.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

 ice-water
 water
 ice

S
in

g
le

 s
ca

tt
er

in
g 

al
be

do

wavelength, mµ

Figure 1. Single scattering albedo of three types of clouds
characterized by gamma distribution at ref = 6µm.
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Figure 2. Phase functions of three types of clouds obtained from
Mie theory characterized by gamma distribution at ref = 6µm and
λ = 1.0µm.
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Figure 3. Asymmetry parameters of three types of clouds
characterized by gamma distribution at ref = 6µm.

The asymmetry parameter of the phase function is defined as

g =
1
2

∫ π

0
p(θ) sin θ cos θdθ (8)

From (8), we can see that the so-called asymmetry parameter is the
average cosine of the scattering angle. In Fig. 3, we can see that the
asymmetry parameter of water clouds is slightly less than that of the
ice clouds and ice-water mixed clouds.

3. MULTIPLE SCATTERING

In this paper, the cloud is assumed to be vertically homogeneous plane-
parallel layer. The radiative transfer equation can be written as [8, 9]:

cos θ
dI(τ, ϑ, ϑ0, φ)

dτ
+ I(τ, ϑ, ϑ0, φ)

=
ω0

4π

∫ 2π

0
dφ′

∫ π

0
I(τ, ϑ′, ϑ0, φ

′)P (γ′) sinϑ′dϑ′ +
ω0

4π
SP (γ)e−τsecϑ0 (9)

where P (γ) is phase function, γ is scattering angle. Note that the
following equations is used for (9)

cos γ′ = cosϑ cosϑ′ + sinϑ sinϑ′ cos(φ− φ′) (10)
cos γ = cosϑ cosϑ0 + sinϑ sinϑ0 cosφ (11)
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where, ϑ0 is the angle of incidence, ϑ is the angle of observation, and
φ− φ′ is the difference of incidence and observation angle.

We are desired to find the intensity for the light diffusely reflected
and transmitted by the atmosphere, i.e., Ir(0, µ, φ) and It(τ, µ, φ),
respectively. It is convenient to define reflection and transmission
functions as follows

Ir(0, µ, φ) = µ0R(τ, µ, µ0, φ− φ0)F (12)
It(τ, µ, φ) = µ0T (τ, µ, µ0, φ− φ0)F (13)

where the quantity R(τ, µ, µ0, φ− φ0) is called the reflection function,
T (τ, µ, µ0, φ− φ0) is the transmission function, and the incident solar
flux through the upper boundary is πFµ0.

Van de Hulst [10] showed that if the solution is known for multiple
scattering from a plane-parallel atmosphere with thickness τ0, then
the solution may be used to obtain the solution for layers of thickness
2τ0, 4τ0, etc., by an adding-doubling procedure. So, we must know
the reflection and transmission functions for the initial layer. One
convenient way is to start the computation from a layer with small
optical thickness where the multiple scattering may be neglected. The
reflection and transmission function for single scattering are give by
[11, 12]:

R1(τ0;µ, µ0, φ− φ0) =
ω0

4(µ+ µ0)

{
1 − exp

[
−τ0

(
1
µ

+
1
µ0

)]}

×P (µ, µ0, φ− φ0) (14)

T1(τ0;µ, µ0, φ− φ0) =
ω0

4(µ− µ0)

[
exp

(−τ0
µ0

)
− exp

(−τ0
µ0

)]

×P (µ, µ0, φ− φ0) if µ �= µ0

T1(τ0;µ, µ0, φ− φ0) =
ω0τ0
4µ2

0

exp
(−τ0
µ0

)
× P (µ, µ0, φ− φ0)

if µ = µ0 (15)

Hansen [11] found that the scattering quantities of the combined layer
for light incident from above can be introduced by following equations:

Q1 = RaRb

Qn = Q1Qn−1

S =
∞∑

n−1

Qn

D = Ta + S exp(−τa/µ0) + STa (16)
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Figure 4. Reflection functions of three types of clouds obtained from
adding-doubling method at the wavelength λ = 1.0, 2.4, 3.0, 3.3µm and
the effective radius ref = 6µm. The particle in clouds are characterized
by the gamma particle-size distribution with b = 0.11111.

U = Rb exp(−τa/µ0) +RbD

R(τa + τb) = Ra + exp(−τa/µ)U + TaU

T (τa + τb) = exp(−τb/µ)D + T exp(−τa/µ0) + TbD

In (16), the product of two functions implies the integration over the
adjoining angles. For arbitrary functions,X and Y , and the production
Z is defined as

Z(µ, µ0, φ− φ0) =
1
π

∫ 1

0

∫ 2π

0
X(µ, µ′, φ− φ′)Y (µ, µ0, φ− φ′0)µ′dµ′dφ′

(17)
It is advantageous to expand the R(µ, µ0, φ) in a Fourier series

in azimuth as shown below. Each term in the Fourier series can be
treated independently, thus large saving in computer storage can be
achieved.

R(µ, µ0, φ) = R0(µ, µ0) + 2
max∑
m=1

Rm(µ, µ0) cosmφ (18)
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Figure 5. Plane albedos of three types of clouds obtained from adding-
doubling method at wavelength λ = 1.0, 2.4, 3.0, 3.3µm effective radius
ref = 6µm, and optical thickness τ = 8. The particle in clouds are
characterized by the gamma particle-size distribution with b = 0.11111.

After equation (16) is solved for each m, the reflection function for
any directions of wave propagation can be obtained from (18), and
then we can find the plane and the spherical albedos, Ap(µ0) and As,
respectively, as follows,

Ap(µ0) =
1
π

∫ 1

0
dµµ

∫ 2π

0
dφR(µ, µ0, φ) = 2

∫ 1

0
R0(µ, µ0)µdµ (19)

As = 2
∫ 1

0
Ap(µ0)µ0dµ0 (20)

This case when the sun is at the zenith is special since the
results are azimuth-independent, i.e., R(µ, µ0, φ) = R0(µ, µ0), and
the computational burden is greatly reduced. Fig. 4 illustrates the
intensity of the reflected light at, λ = 1.0, 2.4, 3.0, and 3.3µm for
three different types of clouds. The results are obtained for the optical
thickness τ = 8, the effective radius ref = 6µm, and the effective
variable vef = 0.11111. From the plots in Fig. 4, we can see that
the intensity is more sensitive to particle component at λ = 3.3µm.
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This suggests that it is possible to derive some information about the
particle, e.g., the particle size or component, at this wavelength.

Fig. 5 depicts the plane albedo Ap as a function of cosine of the
illumination zenith µ0 for the three types of clouds. It is obvious
that plane albedo decreases with the increase of the imaginary part of
refractive index.

Fig. 6 shows the spectral distribution of spherical albedo of the
three types of clouds with the effective radius ref = 6µm. In Fig.
6, we can see that the spherical albedos have a rapid decrease in the
2.2–2.8µm region, and they are approximately constant from 2.8µm
to 3.4µm. This is because the absorption features become stronger in
these regions.
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Figure 6. Spherical albedo of three types of clouds obtained from
adding-doubling method at the optical thickness τ = 8. The particle
in clouds are characterized by the gamma particle-size distribution
with b = 0.11111.

4. CONCLUSION

In this paper, we calculated the reflection function, plane and spherical
albedos of water clouds, ice clouds and ice-water mixed clouds. The
results illustrate that the intensity in the near infrared is sensitive to
particle phase, and the sensitivity to particle phase is especially high
at the wavelength λ ≈ 3.3µm, indicating the candidate wavelength
to be used for measuring the intensity of reflected light in the remote
sensing of clouds.
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