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Abstract—This paper presents an improved approach for the
propagation of electromagnetic (EM) fields along a helical dielectric
waveguide with a circular cross section. The main objective is to
develop a mode model for infrared (IR) wave propagation along
a helical waveguide, in order to provide a numerical tool for the
calculation of the output fields, output power density and output
power transmission for an arbitrary step’s angle of the helix. Another
objective is to apply the inhomogeneous cross section for a hollow
waveguide. The derivation is based on Maxwell’s equations. The
longitudinal components of the fields are developed into the Fourier-
Bessel series. The transverse components of the fields are expressed as
functions of the longitudinal components in the Laplace plane and are
obtained by using the inverse Laplace transform by the residue method.
The separation of variables is obtained by using the orthogonal-
relations. This model enables us to understand more precisely the
influence of the step’s angle and the radius of the cylinder of the helix
on the output results. The output power transmission and output
power density are improved by increasing the step’s angle or the radius
of the cylinder of the helix, especially in the cases of space curved
waveguides. This mode model can be a useful tool to improve the
output results in all the cases of the hollow helical waveguides (e.g., in
medical and industrial regimes).
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1. INTRODUCTION

Various methods for the analysis of cylindrical hollow metallic or
metallic with inner dielectric coating waveguide have been studied in
the literature [1–17]. A review of the hollow waveguide technology
[1] and a review of IR transmitting, hollow waveguides, fibers and
integrated optics [2] were published. The first theoretical analysis of
the problem of hollow cylindrical bent waveguides was published by
Marcatili and Schmeltzer [3]. Their theory considers the bending as
a small disturbance and uses cylindrical coordinates to solve Maxwell
equations. They derive the mode equations of the disturbed waveguide
using the ratio of the inner radius r to the curvature radius R as a small
parameter (r/R � 1). Their theory predicts that the bending has little
influence on the attenuation of a hollow metallic waveguide. However,
practical experiments have shown a large increase in the attenuation,
even for a rather large R.

Marhic [4] proposed a mode-coupling analysis of the bending losses
of circular metallic waveguide in the IR range for large bending radii.
His study of nonsteady-state propagation improves the understanding
of experimental procedures for the measurement of bending losses and
provides practical limits to the rate of change of curvature consistent
with single-mode propagation. In the circular guide it is found that the
preferred TE01 mode can couple very effectively to the lossier TM11

mode when the guide undergoes a circular bend. The mode-coupling
analysis [4] developed to study bending losses in microwave guides has
been applied to IR metallic waveguides at λ = 10.6µm. For circular
waveguides, the microwave approximation has been used for the index
of refraction and the straight guide losses, and the results indicate
very poor bending properties due to the near degeneracy of the TE01

and TM11 modes, thereby offering an explanation for the high losses
observed in practice.

Miyagi et al. [5] suggested an improved solution, which provided
agreement with the experimental results, but only for r/R � 1. A
different approach [4, 6] treats the bending as a perturbation that
couples the modes of a straight waveguide. That theory explains
qualitatively the large difference between the metallic and metallic-
dielectric bent waveguide attenuation. The reason for this difference
is that in metallic waveguides the coupling between the TE and TM
modes caused by the bending mixes modes with very low attenuation
and modes with very high attenuation, whereas in metallic-dielectric
waveguides, both the TE and TM modes have low attenuation. The
EH and HE modes have similar properties and can be related to modes
that have a large TM component.
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Hollow waveguides with both metallic and dielectric internal
layers were proposed to reduce the transmission losses. Hollow-core
waveguides have two possibilities. The inner core materials have
refractive indices greater than one (namely, leaky waveguides) or the
inner wall material has a refractive index of less than one. A hollow
waveguide can be made, in principle, from any flexible or rigid tube
(plastic, glass, metal, etc.) if its inner hollow surface (the core) is
covered by a metallic layer and a dielectric overlayer. This layer
structure enables us to transmit both the TE and TM polarization
with low attenuation [4, 6].

A method for the EM analysis of bent waveguides [7] is based on
the expansion of the bend mode in modes of the straight waveguides,
including the modes under the cutoff. A different approach to calculate
the bending losses in curved dielectric waveguides [8] is based on
the well-known conformal transformation of the index profile and
on vectorial eigenmode expansion combined with perfectly matched
layer boundary conditions to accurately model radiation losses. Light
propagation through inhomogeneous media whose refractive index has
weak changes with cylindrical symmetry around the propagation axis
was published in [9], and two approximations based on geometric optics
were examined. The cylindrical TEM00 and TEM10 laser modes were
considered, and explicit analytical expressions for the light rays and
intensity profiles for short and long times were derived. An improved
ray model for simulating the transmission of laser radiation through a
metallic or metallic dielectric multibent hollow cylindrical waveguide
was proposed in [10, 11]. It was shown theoretically and proved
experimentally that the transmission of CO2 radiation is possible even
through bent waveguide.

The propagation of EM waves in a loss-free inhomogeneous hollow
conducting waveguide with a circular cross section and uniform plane
curvature of the longitudinal axis was considered in [12]. For small
curvature the field equations can, however, be solved by means
of an analytical approximation method. In this approximation
the curvature of the axis of the waveguide was considered as a
disturbance of the straight circular cylinder, and the perturbed torus
field was expanded in eigenfunctions of the unperturbed problem.
Using the Rayleigh-Schrodinger perturbation theory, eigenvalues and
eigenfunctions containing first-order correction terms were derived. An
extensive survey of the related literature can be found especially in the
book on EM waves and curved structures [13]. The radiation from
curved open structures is mainly considered by using a perturbation
approach, that is by treating the curvature as a small perturbation of
the straight configuration. The perturbative approach is not entirely
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suitable for the analysis of relatively sharp bends, such as those
required in integrated optics and especially short millimeter waves.
An analytical method to study a general helix-loaded structure has
been published in [14]. The inhomogeneously-loaded helix enclosed
in a cylindrical waveguide operating in the fast-wave regime. The
tape-helix model has been used which takes into account the effect
of the space-harmonics, and is used particularly in the cases that the
structure is operated at high voltages and for high helix pitch angles.
The propagation characteristics of an elliptical step-index fiber with
a conducting helical winding on the core-cladding boundary [15] are
investigated analytically where the coordinate systems are chosen for
the circular and elliptical fibers. In their waveguides the core and the
cladding regions are assumed to have constant real refractive indices
n1 and n2, where n1 > n2. The fibers are referred to as the elliptical
helically cladded fiber and the circular helically cladded fiber.

The models based on the perturbation theory consider the bending
as a perturbation (r/R � 1), and solve problems only for a large
radius of curvature. An improved approach has been derived for the
propagation of EM field along a toroidal dielectric waveguide with
a circular cross-section [16]. The derivation is based on Maxwell’s
equations for the computation of the EM field and the radiation power
density at each point during propagation along a toroidal waveguide,
with a radial dielectric profile. That method [16] employs toroidal
coordinates (and not cylindrical coordinates, such as in the methods
that considered the bending as a perturbation (r/R � 1)). In addition,
terms up to fourth order in 1/R were considered in which the further
orders are equal to zero.

The main objective of this paper is to generalize the numerical
mode model [16] from a toroidal dielectric waveguide (approximately
a plane curve) with a circular cross-section to a helical waveguide
(a space curved waveguide for an arbitrary value of the step’s angle
of the helix) with a circular cross-section. Another objective is to
demonstrate the ability of the model to solve practical problems with
inhomogeneous cross-section in the case of a hollow waveguide. The
generalized mode model with the two above objectives provides us
a numerical tool for the calculation of the output fields and output
power transmission for an arbitrary step’s angle of the helix (δp). The
results of this model are applied to the study of hollow waveguides with
space curved shapes that are suitable for transmitting IR radiation,
especially CO2 laser radiation. In this paper we supposed that the
modes excited at the input of the waveguide by the conventional CO2

laser IR radiation (λ = 10.6µm) are closer to the TEM polarization
of the laser radiation. The TEM00 mode is the fundamental and the
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Figure 1. The circular helical waveguide.

most important mode. This means that a cross-section of the beam
has a Gaussian intensity distribution. The output power transmission
is improved by increasing the step’s angle or the radius of the cylinder
of the helix, especially in the cases of space curved waveguides.

2. FORMULATION OF THE PROBLEM

The method presented in [16] is generalized to provide a numerical tool
for the calculation of the output transverse fields and power density in a
helical waveguide (see Fig. 1), for an arbitrary value of the step’s angle
of the helix (δp). Fig. 1 shows the geometry of the helical waveguide
with a circular cross section. The direction of the IR wave propagation
is along the axis of the helical waveguide. The axis of the helical
waveguide is shown in Fig. 2. The deployment of the helix and the
step’s angle δp are shown in Fig. 3. We start by finding the metric
coefficients from the helical transformation of the coordinates. The
latters will be used in the wave equations as will be outlined in the
next section.

The helical transformation of the coordinates is achieved by two
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rotations and one translation, and is given in the form: X
Y
Z

 =

 cos(φc) − sin(φc) 0
sin(φc) cos(φc) 0

0 0 1

  1 0 0
0 cos(δp) − sin(δp)
0 sin(δp) cos(δp)


 r sin θ

0
r cos θ

 +

 R cos(φc)
R sin(φc)
ζ sin(δp)

 , (1a,b, c)

where ζ is the coordinate along the helix axis, R is the radius of
the cylinder, δp is the step’s angle of the helix (see Figs. 2–3), and
φc = (ζ cos(δp))/R. Likewise, 0 ≤ r ≤ a + δm, where 2a is the
internal diameter of the cross-section of the helical waveguide, δm is the
thickness of the metallic layer, and d is the thickness of the dielectric
layer (see Fig. 4).

X

Z

Y

X

Z

K

A

ζ

Figure 2. Rotations and translation of the orthogonal system
(X, ζ, Z) from point A to the orthogonal system (X,Y, Z) at point
K.

Figure 2 shows the rotations and translation of the orthogonal
system (X, ζ, Z) from point A to the orthogonal system (X,Y, Z) at
point K . In the first rotation, the ζ and Z axes rotate around the X
axis of the orthogonal system (X, ζ, Z) at the point A until the Z axis
becomes parallel to the Z axis (Z ‖ Z), and the ζ axis becomes parallel
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Figure 3. Deployment of the helix.
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Figure 4. A cross-section of the waveguide (r, θ).

to the X,Y plane (ζ ‖ (X,Y )) of the orthogonal system (X,Y, Z) at
the point K. In the second rotation, the X and ζ axes rotate around
the Z axis (Z ‖ Z) of the orthogonal system (X, ζ, Z) until X ‖ X and
ζ ‖ Y . After the two above rotations, we have one translation from
the orthogonal system (X, ζ, Z) at point A to the orthogonal system
(X,Y, Z) at the point K.

Figure 3 shows the deployment of the helix depicted in Fig. 2. The
condition for the step’s angle δp is given according to

tan(δp) ≥
2(a + δm)

2πR
, (2)
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where the internal diameter is denoted as 2a, the thickness of the
metallic layer is denoted as δm, and the radius of the cylinder is denoted
as R.

According to Eqs. (1a)–(1c), the helical transformation of the
coordinates becomes

X = (R + r sin θ) cos(φc) + r sin(δp) cos θ sin(φc), (3a)
Y = (R + r sin θ) sin(φc) − r sin(δp) cos θ cos(φc), (3b)
Z = r cos θ cos(δp) + ζ sin(δp), (3c)

where φc = (ζ/R) cos(δp), R is the radius of the cylinder, and (r, θ) are
the parameters of the cross-section. Note that ζ sin(δp) = Rφc tan(δp).

The metric coefficients in the case of the helical waveguide
according to Eqs. (3a)–(3c) are:

hr = 1, (4a)
hθ = r, (4b)

hζ =

√
(1 +

r

R
sin θ)

2
cos2(δp) + sin2(δp)(1 +

r2

R2
cos2θcos2(δp))

=

√
1+

2r
R

sin θcos2(δp)+
r2

R2
sin2θcos2(δp)+

r2

R2
cos2θcos2(δp)sin2(δp)

� 1 +
r

R
sin θcos2(δp). (4c)

Furthermore, the third and the fourth terms in the root of the
metric coefficient hζ are negligible in comparison to the first and the
second terms when (r/R)2 � 1. Nonetheless, the metric coefficient
hζ still depends on δp, the step’s angle of the helix (Fig. 3). Note
that the metric coefficient hζ is a function of r and θ, which causes a
difficulty in the separation of variables. Thus, the analytical methods
are not suitable for the helical or the curved waveguide. In this method,
the separation of variables is performed by employing the orthogonal-
relations. The cross-section of the helical waveguide in the region
0 ≤ r ≤ a + δm is shown in Fig. 4, where δm is the thickness of
the metallic layer, and d is the thickness of the dielectric layer.

For small values of the step’s angle δp (sin(δp) � tan(δp) �
δp, cos(δp) � 1), condition (2) becomes δp ≥ 2(a+δm)/(2πR). For small
values of the step’s angle, the helical waveguide becomes a toroidal
waveguide, where the radius of the curvature of the helix can then
be approximately by the radius of the cylinder (R). In this case, the
toroidal system (r, θ, ζ) in conjunction with the curved waveguide is
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Figure 5. A general scheme of the toroidal system (r, θ, ζ) and the
curved waveguide.

shown in Fig. 5, and the transformation of the coordinates (3a)–(3c) is
given as a special case of the toroidal transformation of the coordinates,
as follows

X = (R + r sin θ) cos

(
ζ

R

)
, Y = (R + r sin θ) sin

(
ζ

R

)
, Z = r cos θ,

(5a,b, c)
and the metric coefficients are given by

hr = 1 , hθ = r , hζ = 1 +
r

R
sin θ . (6a,b, c)

By using the Serret-Frenet relations for a spatial curve, we can
find the curvature (κ) and the torsion (τ) for each spatial curve that
is characterized by θ = const and r = const for each pair (r, θ)
in the range. This is achieved by using the helical transformation
introduced in equations (3a)–(3c). The curvature and the torsion (see
Appendix A) are constants for constant values of the radius of the
cylinder (R), the step’s angle (δp) and the parameters (r, θ) of the
cross-section. The curvature and the torsion are given by

κ =
1 + Ct

R(1 + tan2(δp) + Ct)
, τ =

tan(δp)
R(1 + tan2(δp) + Ct)

, (7a,b)

where

Ct =
r2

R2
sin2θ + 2

r

R
sin θ +

r2

R2
sin2(δp)cos2θ.

The radius of curvature and the radius of torsion are given by ρ = 1/ κ,
and σ = 1/ τ , respectively. For small values of the step’s angle (δp �
1), the helical waveguide becomes a toroidal waveguide (Fig. 5), where
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the radius of the curvature of the helix can then be approximately by
the radius of the cylinder (ρ � R).

The generalization of the method from a toroidal dielectric
waveguide [16] (approximately a plane curve) to a helical waveguide
(a space curved waveguide for an arbitrary value of the step’s angle of
the helix) is presented in the following derivation. The derivation is
based on Maxwell’s equations for the computation of the EM field and
the radiation power density at each point during propagation along
a helical waveguide, with a radial dielectric profile. The longitudinal
components of the fields are developed into the Fourier-Bessel series.
The transverse components of the fields are expressed as a function of
the longitudinal components in the Laplace transform domain. Finally,
the transverse components of the fields are obtained by using the
inverse Laplace transform by the residue method, for an arbitrary value
of the step’s angle of the helix (δp).

3. SOLUTION OF THE WAVE EQUATIONS

The wave equations for the electric and magnetic field components in
the inhomogeneous dielectric medium ε(r) are derived in this section
for a lossy dielectric media in metallic boundaries of the waveguide.
The cross-section of the helical waveguide is shown in Fig. 4 for the
application of the hollow waveguide, in the region 0 ≤ r ≤ a + δm,
where δm is the thickness of the metallic layer, and d is the thickness
of the dielectric layer.

The derivation is given for the lossless case to simplify the
mathematical expressions. In a linear lossy medium, the solution
is obtained by replacing the permitivity ε by εc = ε − j(σ/ω) in
the solutions for the lossless case, where εc is the complex dielectric
constant, and σ is the conductivity of the medium. The boundary
conditions for a lossy medium are given after the derivation. For most
materials, the permeability µ is equal to that of free space (µ = µ0).
The wave equations for the electric and magnetic field components in
the inhomogeneous dielectric medium ε(r) are given by

∇2E + ω2µεE + ∇
(

E · ∇ε

ε

)
= 0, (8a)

and
∇2H + ω2µεH +

∇ε

ε
× (∇× H) = 0, (8b)

respectively. The transverse dielectric profile (ε(r)) is defined as
ε0(1 + g(r)), where ε0 represents the vacuum dielectric constant, and
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g(r) is its profile function in the waveguide. The normalized transverse
derivative of the dielectric profile (gr) is defined as (1/ε(r))(∂ε(r)/∂r).

From the transformation of Eqs. (3a)–(3c) we can derive the
Laplacian of the vector E (i.e., ∇2E), and obtain the wave equations
for the electric and magnetic fields in the inhomogeneous dielectric
medium. It is necessary to find the values of ∇ · E, ∇(∇ · E),
∇× E, and ∇× (∇× E) in order to obtain the value of ∇2E, where
∇2E = ∇(∇ · E) − ∇ × (∇ × E). All these values are dependent on
the metric coefficients (4a)–(4c).

The ζ component of ∇2E is given by

(∇2E)ζ = ∇2Eζ +
2

Rh2
ζ

[
sin θ

∂

∂ζ
Er + cos θ

∂

∂ζ
Eθ

]
− 1

R2h2
ζ

Eζ , (9)

where

∇2Eζ =
∂2

∂r2
Eζ +

1
r2

∂2

∂θ2
Eζ +

1
r

∂

∂r
Eζ

+
1
hζ

[
sin θ

R

∂

∂r
Eζ +

cos θ
rR

∂

∂θ
Eζ +

1
hζ

∂2

∂ζ2
Eζ

]
, (10)

and in the case of hζ = 1 + (r/R) sin θcos2(δp).
The longitudinal components of the wave equations (8a) and (8b)

are obtained by deriving the following terms[
∇(E · ∇ε

ε
)

]
ζ

=
1
hζ

∂

∂ζ

[
Ergr

]
, (11)

and [
∇ε

ε
× (∇× H)

]
ζ

= jωε

[
∇ε

ε
× E

]
ζ

= jωεgrEθ. (12)

The longitudinal components of the wave equations (8a) and (8b) are
then written in the form(

∇2E

)
ζ

+ k2Eζ +
1
hζ

∂

∂ζ

(
Ergr

)
= 0, (13)

(
∇2H

)
ζ

+ k2Hζ + jωεgrEθ = 0, (14)

where (∇2E)ζ , for instance, is given in eq. (9). The local wave number
parameter is k = ω

√
µε(r) = k0

√
1 + g(r), where the free-space wave

number is k0 = ω
√

µ0ε0.
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The transverse Laplacian operator is defined as

∇2
⊥ ≡ ∇2 − 1

h2
ζ

∂2

∂ζ2
. (15)

The Laplace transform

ã(s) = L{a(ζ)} =
∫ ∞

ζ=0
a(ζ)e−sζdζ (16)

is applied on the ζ-dimension, where a(ζ) represents any ζ-dependent
variables, where ζ = (Rφc)/ cos(δp).

The next steps are given in detail in Ref. [16], as a part of our
derivation. Let us repeat these steps, in brief.
1). By substituting Eq. (9) into Eq. (13) and by using the Laplace
transform (16), the longitudinal components of the wave equations
(Eqs. (13)–(14)) are described in the Laplace transform domain, as
coupled wave equations.
2). The transverse fields are obtained directly from Maxwell’s
equations, and by using the Laplace transform (16), and are given
by

Ẽr(s) =
1

s2 + k2h2
ζ

{
− jωµ0

r

[
r

R
cos θcos2(δp)H̃ζ + hζ

∂

∂θ
H̃ζ

]
hζ

+s

[
sin θ

R
cos2(δp)Ẽζ + hζ

∂

∂r
Ẽζ

]
+sEr0−jωµ0Hθ0hζ

}
, (17a)

Ẽθ(s) =
1

s2 + k2h2
ζ

{
s

r

[
r

R
cos θcos2(δp)Ẽζ + hζ

∂

∂θ
Ẽζ

]

+jωµ0hζ

[
sin θ

R
cos2(δp)H̃ζ +hζ

∂

∂r
H̃ζ

]
+sEθ0 +jωµ0Hr0hζ

}
,

(17b)

H̃r(s) =
1

s2 + k2h2
ζ

{
jωε

r

[
r

R
cos θcos2(δp)Ẽζ + hζ

∂

∂θ
Ẽζ

]
hζ

+s

[
sin θ

R
cos2(δp)H̃ζ + hζ

∂

∂r
H̃ζ

]
+ sHr0 + jωεEθ0hζ

}
, (17c)

H̃θ(s) =
1

s2 + k2h2
ζ

{
s

r

[
r

R
cos θcos2(δp)H̃ζ + hζ

∂

∂θ
H̃ζ

]

−jωεhζ

[
sin θ

R
cos2(δp)Ẽζ +hζ

∂

∂r
Ẽζ

]
+sHθ0−jωεEr0hζ

}
. (17d)
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Note that the transverse fields are dependent only on the longitudinal
components of the fields and as function of the step’s angle (δp) of the
helix.
3). The transverse fields are substituted into the coupled wave
equations.
4). The longitudinal components of the fields are developed into
Fourier-Bessel series, in order to satisfy the metallic boundary
conditions of the circular cross-section. The condition is that we have
only ideal boundary conditions for r = a. Thus, the electric and
magnetic fields will be zero in the metal.
5). Two sets of equations are obtained by substitution the longitudinal
components of the fields into the wave equations. The first set of
the equations is multiplied by cos(nθ)Jn(Pnmr/a), and after that
by sin(nθ)Jn(Pnmr/a), for n �= 0. Similarly, the second set of
the equations is multiplied by cos(nθ)Jn(P

′
nmr/a), and after that by

sin(nθ)Jn(P
′
nmr/a), for n �= 0.

6). In order to find an algebraic system of four equations with four
unknowns, it is necessary to integrate over the area (r, θ), where
r = [0, a], and θ = [0, 2π], by using the orthogonal-relations of the
trigonometric functions.
7). The propagation constants βnm and β

′
nm of the TM and TE

modes of the hollow waveguide [17] are given, respectively, by βnm =√
k2

o − (Pnm/a)2 and β
′
nm =

√
k2

o − (P ′
nm/a)2, where the transverse

Laplacian operator (∇2
⊥) is given by −(Pnm/a)2 and −(P

′
nm/a)

2
for

the TM and TE modes of the hollow waveguide, respectively.
The separation of variables is obtained by using the preceding

orthogonal-relations. Thus the algebraic equations (n �= 0) are given
by

αn
(1)An + βn

(1)Dn =
1
π

̂(BC1)n, (18a)

αn
(2)Bn + βn

(2)Cn =
1
π

̂(BC2)n, (18b)

βn
(3)Bn + αn

(3)Cn =
1
π

̂(BC3)n, (18c)

βn
(4)An + αn

(4)Dn =
1
π

̂(BC4)n. (18d)

Further we assume n
′
= n = 1. The elements (αn

(1), βn
(1), etc.), on

the left side of (18a) for n = 1 are given for an arbitrary value of the
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step’s angle (δp) by:

α1
(1)mm

′
= π

(
s2 + β

2
1m′

)[(
s2 + k0

2

)
G

(1)mm
′

00 + k0
2G

(1)mm
′

01

]

+π
1
R4

k0
2s2

(
1
4
cos4(δp)G

(1)mm
′

02 +
1
2
cos4(δp)G

(1)mm
′

03

)

+πk0
2

{
s2G

(1)mm
′

01 + G
(1)mm

′

05 +
1
R2

(
G

(1)mm
′

00 + G
(1)mm

′

01

)

+
3

2R2
β2

1m′ cos4(δp)

(
G

(1)mm
′

02 + G
(1)mm

′

03

)

+
1

4R4
cos4(δp)

(
G

(1)mm
′

02 + G
(1)mm

′

03

)

+
1

8R4
cos8(δp)

(
G

(1)mm
′

06 + G
(1)mm

′

07

)}

+πs2

[
G

(1)mm
′

08 +
1

2R2
cos2(δp)G

(1)mm
′

00

+
1

4R2

(
cos4(δp)β2

1m′G
(1)mm

′

02 + cos2(δp)G
(1)mm

′

09

)

+
1

2R2

P1m
′

a
cos2(δp)

(
G

(1)mm
′

10 +
1
2
cos2(δp)G

(1)mm
′

11

)]

+πk0
4cos4(δp)

[
3

2R2

(
G

(1)mm
′

03 + G
(1)mm

′

04

)

+
1

8R4
cos8(δp)

(
G

(1)mm
′

07 + G
(1)mm

′

12

)]
, (19a)

β1
(1)mm

′
= −jωµ0πs

{
G

(1)mm
′

13 +

(
1
2
cos2(δp)+

3
4
cos4(δp)

)
1
R2

G
(1)mm

′

14

+

(
1
2

+ cos2(δp)

)
1
R2

G
(1)mm

′

15

− 1
2R2

G
(1)mm

′

00 − cos2(δp)
1
R2

P
′
1m′

a
G

(1)mm
′

16

}
, (19b)

where the elements of the matrices (G(1)mm
′

00 , etc.) are given in
Appendix B. Similarly, the rest of the elements on the left side in
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Eqs. (18a)–(18d) are obtained. We establish an algebraic system of
four equations with four unknowns. All the elements of the matrices
in the Laplace transform domain are dependent on the step’s angle
of the helix (δp), the Bessel functions; the dielectric profile g(r); the
transverse derivative gr(r); and (r, θ).

The elements of the boundary conditions (e.g., ̂(BC2)1) at ζ = 0+

on the right side in (18b) are dependent on the step’s angle δp as follows:

̂(BC2)1 =
∫ 2π

0

∫ a

0
(BC2) sin θJ1(P1mr/a)rdrdθ,

where

(BC2) =

[(
s2 + k2h2

ζ

)(
sEζ0 + E

′
ζ0

)]
+ jωµ0Hθ0sgrh

2
ζ

+
2
R

hζ sin θ

(
jωµ0Hθ0s + k2Er0hζ

)

+
2
R

hζ cos θ

(
− jωµ0Hr0s + k2Eθ0hζ

)
+ k2h3

ζEr0gr,

and for hζ = 1 + r
R sin θcos2(δp).

The boundary conditions at ζ = 0+ for TEM00 mode in excitation
become to:

̂(BC2)1 = 2π

{ ∫ a

0
Q(r)(k(r) + js)J1m(P1mr/a)rdr

}
δ1n

+
4jsπ
R2

cos2(δp)

{ ∫ a

0
Q(r)k(r)J1m(P1mr/a)r2dr

}
δ1n

+
9π
2R2

cos4(δp)

{ ∫ a

0
Q(r)k2(r)J1m(P1mr/a)r3dr

}
δ1n

+
3jsπ
2R2

cos4(δp)

{ ∫ a

0
Q(r)k(r)J1m(P1mr/a)r3dr

}
δ1n

+
8π
R2

cos2(δp)

{ ∫ a

0
Q(r)k2(r)J1m(P1mr/a)r2dr

}
δ1n (20)

where :
Q(r) =

E0

nc(r) + 1
gr exp (−(r/wo)

2).
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Similarly, the remaining elements of the boundary conditions at ζ = 0+

are obtained. The matrix system of Eqs. (18a)–(18d) is solved to obtain
the coefficients (A1, B1, etc).

Phase fronts
2w 0

Propagation lines

+z-z

x
z=0

{

Figure 6. Propagating Gaussian beam.

According to the Gaussian beams [18] the parameter w0 is the
minimum spot-size at the plane z = 0 (see Fig. 6), and the electric
field at the plane z = 0 is given by E = E0 exp[−(r/wo)

2]. The modes
excited at ζ = 0 in the waveguide by the conventional CO2 laser IR
radiation (λ = 10.6µm) are closer to the TEM polarization of the laser
radiation. The TEM00 mode is the fundamental and most important
mode. This means that a cross-section of the beam has a Gaussian
intensity distribution. The relation between the electric and magnetic
fields [18] is given by E/H =

√
µ0/ε0 ≡ η0, where η0 is the intrinsic

wave impedance. Suppose that the electric field is parallel to the y-
axis. Thus the components of Ey and Hx are written by the fields Ey

= E0 exp[−(r/wo)
2] and Hx = −(E0/η0) exp[−(r/wo)

2].
After a Gaussian beam passes through a lens and before it enters

to the waveguide, the waist cross-sectional diameter (2w0) can then
be approximately calculated for a parallel incident beam by means
of w0 = λ/(π θ) � (fλ)/(πw). This approximation is justified if the
parameter w0 is much larger than the wavelength λ. The parameter
of the waist cross-sectional diameter (2w0) is taken into account in
our method, instead of the focal length of the lens (f). The initial
fields at ζ = 0+ are formulated by using the Fresnel coefficients of the
transmitted fields [19] as follows

E+
r0

(r) = TE(r)(E0e
−(r/wo)2 sin θ), (21a)

E+
θ0

(r) = TE(r)(E0e
−(r/wo)2 cos θ), (21b)

H+
r0

(r) = −TH(r)((E0/η0)e−(r/wo)2 cos θ), (21c)

H+
θ0

(r) = TH(r)((E0/η0)e−(r/wo)2 sin θ), (21d)

where E+
ζ0

= H+
ζ0

= 0, TE(r) = 2/[(n(r)+1], TH(r) = 2n(r)/[(n(r)+1],
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and n(r) = [εr(r)]1/2. The index of refraction is denoted by n(r).
The transverse components of the fields are finally expressed in a

form of transfer matrix functions for an arbitrary value of δp as follows:

Er(r, θ, ζ) = E+
r0(r)e

−jkhζζ − jωµ0

R
hζ cos2 θcos2(δp)

∑
m

′
Cm

′

S1 (ζ)J1(ψ)

−jωµ0

R
hζ sin θ cos θcos2(δp)

∑
m

′
Dm

′

S1 (ζ)J1(ψ)

+
jωµ0

r
h2

ζ sin θ
∑
m

′
Cm

′

S1 (ζ)J1(ψ)

−jωµ0

r
h2

ζ cos θ
∑
m

′
Dm

′

S1 (ζ)J1(ψ)

+
1
R

sin θ cos θcos2(δp)
∑
m′

Am
′

S2 (ζ)J1(ξ)

+
1
R

sin2 θcos2(δp)
∑
m

′
Bm

′

S2 (ζ)J1(ξ)

+hζ cos θ
∑
m

′
Am

′

S2 (ζ)
dJ1

dr
(ξ) + hζ sin θ

∑
m

′
Bm

′

S2 (ζ)
dJ1

dr
(ξ),

(22)

where hζ = 1+(r/R) sin θcos2(δp), R is the radius of the cylinder, δp is
the step’s angle, ψ = [P

′

1m
′ (r/a)] and ξ = [P1m′ (r/a)]. The coefficients

are given in the above equation, for instance

Am
′

S1 (ζ) = L−1

{
A1m

′ (s)
s2 + k2(r)h2

ζ

}
, (23a)

Am
′

S2 (ζ) = L−1

{
sA1m

′ (s)
s2 + k2(r)h2

ζ

}
, (23b)

where
m

′
= 1, ...N, 3 ≤ N ≤ 50. (23c)

Similarly, the other transverse components of the output fields are
obtained (see Appendix C). The first fifty roots (zeros) of the equations
J1(x) = 0 and dJ1(x)/dx = 0 may be found in tables [20, 21].

The inverse Laplace transform is performed in this study by a
direct numerical integration in the Laplace transform domain by the
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residue method, as follows

f(ζ) = L−1[f̃(s)] =
1

2πj

∫ σ+j∞

σ−j∞
f̃(s)esζds =

∑
n

Res[esζ f̃(s);Sn].

(24)
By using the inverse Laplace transform (24) we can compute the

output transverse components in the real plane and the output power
density at each point at ζ = (Rφc)/ cos(δp). The integration path
in the right side of the Laplace transform domain includes all the
singularities according to Eq. (24). All the points Sn are the poles
of f̃(s) and Res[esζ f̃(s); Sn] represent the residue of the function in
a specific pole. According to the residue method, two dominant poles
for the helical waveguide are given by

s = ±j k(r)hζ = ±j k(r)

(
1 +

r

R
sin θcos2(δp)

)
.

Finally, knowing all the transverse components, the ζ component
of the average-power density Poynting vector is given by

Sav =
1
2
Re

{
ErHθ

∗ − EθHr
∗
}

, (25)

where the asterisk indicates the complex conjugate.
The total average-power transmitted along the guide in the ζ

direction can now be obtained by the integral of Eq. (25) over the
waveguide cross section. Thus, the output power transmission is given
by

T =
1
2

∫ 2π

0

∫ a

0
Re

{
ErHθ

∗ − EθHr
∗
}
rdrdθ . (26)

Lossy medium case
In a linear lossy medium, the solution is obtained by replacing

the permitivity ε by εc = ε − j(σ/ω) in the preceding mathematical
expressions, where εc is the complex dielectric constant and σ is the
conductivity of the medium. The coefficients are obtained directly from
the algebraic equations (18a)–(18d) and are expressed as functions
in the Laplace transform domain. To satisfy the metallic boundary
conditions of a circular cross-section we find the new roots P

(new)
1m and

P
′(new)
1m of the equations J1(z) = 0 and dJ1(z)/dz = 0, respectively,

where z is complex. Thus, from the requirement that the coefficients
vanish, the new roots P

(new)
1m and P

′(new)
1m are calculated by developing
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into the Taylor series, in the first order at 1/σ. The new roots in the
case of a lossy medium are complex. The complex Bessel functions are
computed by using NAG subroutine [22]. The explanation is given in
detail in Ref. [16].

It should be noticed that a theoretical method [23] has been
developed also for a curved waveguide with a rectangular cross section.
Several examples computed on a Unix system are presented in the next
sections, in order to demonstrate the results of this proposed method
for a helical waveguide (a space curved waveguide for an arbitrary value
of the step’s angle of the helix) in the case of a hollow waveguide. We
suppose that the transmitted fields of the initial fields (TEM00 mode
in excitation) are formulated by using the Fresnel coefficients (21a)–
(21d).

4. NUMERICAL RESULTS

The next examples represent the case of the hollow waveguide with a
metallic layer (Ag) coated by a thin dielectric layer (AgI). For silver
having a conductivity of 6.14 ×107(ohm · m)−1 and the skin depth at
10.6 µm is 1.207 ×10−8 m. Three test-cases are demonstrated for small
values of the step’s angle (δp). In these cases, the condition (2) becomes
δp ≥ 2(a + δm)/(2πR). Note that for small values of the step’s angle,
the helical waveguide becomes approximately a toroidal waveguide (see
Fig. 5), where the radius of the curvature of the helix (ρ) can then be
approximately by the radius of the cylinder (R).

The first test-case is demonstrated for the straight waveguide
(R → ∞). The results of the output transverse components of the
fields and the output power density (|Sav|) (e.g., Fig. 7(a)) show
the same behavior of the solutions as shown in the results of Ref.
[16] for the TEM00 mode in excitation. The result of the output
power density (Fig. 7(a)) is compared also to the result of published
experimental data [24] (see also in Fig. 7(b)). This comparison
shows good agreement (a Gaussian shape) as expected, except for the
secondary small propagation mode. In this example, the length of
the straight waveguide is 1 m, the diameter (2a) of the waveguide is
2 mm, the thickness of the dielectric layer [d(AgI)] is 0.75µm, and the
minimum spot-size (w0) is 0.3 mm. The refractive indices of the air,
dielectric layer (AgI) and metallic layer (Ag) are n(0) = 1, n(AgI) = 2.2,
and n(Ag) = 13.5−j75.3, respectively. The value of the refractive index
of the material at a wavelength of λ = 10.6µm is taken from the table
compiled by Miyagi et al. in Ref. [5].

The second test-case is demonstrated in Fig. 8(a) for the toroidal
dielectric waveguide. Fig. 8(b) shows the experimental result that
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Figure 7. The output power density (a = 1 mm, d(AgI) = 0.75µm,
λ = 10.6µm, w0 = 0.3 mm, n(0) = 1, n(AgI) = 2.2, n(Ag) =
13.5 − j75.34, and the length of the straight waveguide is 1 m), for
R → ∞ : (a) theoretical result; (b) experimental result.

was received in the laboratory of Croitoru at Tel-Aviv University.
This experimental result was obtained from the measurements of the
transmitted CO2 laser radiation (λ = 10.6µm) propagation through
a hollow tube covered on the bore wall with silver and silver-iodide
layers (Fig. 4), where the initial diameter (ID) is 1 mm (namely, small
bore size).

The output modal profile is greatly affected by the bending, and
the theoretical and experimental results (Figs. 8(a)–8(b)) show that in
addition to the main propagation mode, several other secondary modes
and asymmetric output shape appear. The amplitude of the output
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Figure 8. Solution of the output power density (a = 0.5 mm,
d(AgI) = 0.75µm, λ = 10.6µm, w0 = 0.2 mm, n(0) = 1, n(AgI) =
2.2, n(Ag) = 13.5 − j75.3, R = 0.7 m, φ = π/2, and ζ = 1 m): (a)
theoretical result; (b) experimental result.

power density (|Sav|) is small for bending radii (R), and the shape is
far from a Gaussian shape. This result agrees with the experimental
results, but not for all propagation modes. The experimental result
(Fig. 8(b)) is influenced by the bending and additional parameters
(e.g., the roughnes of the internal wall of the waveguide) which are
not taken into account theoretically. In this example, a = 0.5 mm,
R = 0.7 m, φ = π/2, and ζ = 1 m. The thickness of the dielectric layer
[d(AgI)] is 0.75µm (Fig. 4), and the minimum spot size (w0) is 0.2 mm.
The values of the refractive indices of the air, dielectric layer (AgI) and
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Figure 9. The theoretical mode-model’s result and the experimental
result [11] where the hollow metallic waveguide (Ag) is covered inside
the walls with a AgI film. The output power transmission as a
function of 1/R for δp = 0, where ζ = 0.55 m, where a = 1.2 mm,
d(AgI) = 0.75µm, w0 = 0.1 mm, λ = 10.6µm, n(0) = 1, n(AgI) = 2.2,
and n(Ag) = 10.

metallic layer (Ag) are n(0) = 1, n(AgI) = 2.2, and n(Ag) = 13.5−j75.3,
respectively. In both theoretical and experimental results (Figs. 8(a)–
8(b)) the shapes of the output power density for the curved waveguide
are not symmetric.

The third test-case is demonstrated in Fig. 9 for the toroidal
dielectric waveguide. The theoretical mode-model’s result and the
experimental result [11] are demonstrated in normalized units where
the length of the curved waveguide (ζ) is 0.55 m, the diameter (2a) of
the waveguide is 2.4 mm, and the minimum spot size (w0) is 0.1 mm.

This comparison (Fig. 9) between the theoretical mode-model
and the experimental data [11] indicates a good agreement. For all
the examples, our theoretical mode-model takes into account only
the dielectric losses and the bending losses, in conjunction with
the problem of the propagation through a curved waveguide. The
experimental result [11] takes into account additional parameters (e.g.,
the roughnes of the internal wall of the waveguide) which are not taken
into account theoretically. In spite of the differences, the comparison
shows a good agreement. For small values of the bending (1/R) in the
case of small step’s angle, the output power transmission is large and
decreases with increasing the bending.

Figure 10 demonstrates the influence of the step’s angle (δp) and
the radius of the cylinder (R) on the radius of curvature of the helix
(ρ) along the ζ-axis of the helix. Three results are demonstrated for
three values of δp (δp = 0, 0.4, 0.8). For an arbitrary value of radius
of cylinder (R), the radius of curvature of the helix (ρ) is large for
large values of the step’s angle and decreases with decreasing the value
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Figure 10. The radius of curvature of the helix (ρ) along the ζ-axis
of the helix as a function of 1/R, where R is the radius of the cylinder.
Three results are demonstrated for three values of δp (δp = 0, 0.4, 0.8).
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Figure 11. The results of the output power transmission of the
helical waveguide as a function of 1/R, where R is the radius of the
cylinder. Six results are demonstrated for six values of δp (δp =
0, 0.4, 0.7, 0.8, 0.9, 1), where ζ = 4 m, a = 1 mm, w0 = 0.06 mm,
nd = 2.2, and n(Ag) = 13.5 − j75.3.

of δp. On the other hand, for an arbitrary value of the step’s angle,
the radius of curvature of the helix (ρ) is large for large values of the
radius of the cylinder (R), and decreases with decreasing the value of
the radius of the cylinder.

The main contribution of this paper is demonstrated in Fig. 11,
in order to understand the influence of the step’s angle (δp) and
the radius of the cylinder (R) on the output power transmission,
defined in Eq. (26). Six results are demonstrated for six values of δp

(δp = 0, 0.4, 0.7, 0.8, 0.9, 1.0), where ζ = 4 m, a = 1 mm, w0 = 0.06 mm,
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Figure 12. The results of the output power density as functions of
the step’s angle (δp) and the radius of the cylinder (R), where ζ = 1 m,
a = 1 mm, w0 = 0.3 mm, nd = 2.2, and n(Ag) = 13.5 − j75.3: (a).
δp = 0.4, and R = 0.7 m; (b). δp = 0.8, and R = 0.7 m; (c). δp = 0.4,
and R = 1 m; (d). δp = 0.8, and R = 1 m.

nd = 2.2 and n(Ag) = 13.5 − j75.3. For an arbitrary value of R, the
output power transmission is large for large values of δp and decreases
with decreasing the value of δp. On the other hand, for an arbitrary
value of δp, the output power transmission is large for large values of
R and decreases with decreasing the value of R. Note that for small
values of the step’s angle, the radius of curvature of the helix (ρ) can be
approximated by the radius of the cylinder (R). In this case, the output
power transmission is large for small values of the bending (1/R), and
decreases with increasing the bending. Thus, this model can be a useful
tool to find the parameters (δp and R) which will give us the improved
results (output power transmission) of a hollow waveguide in the cases
of space curved waveguides.

Figures 12(a)–(d) show the results of the output power density
as functions of the step’s angle (e.g., δp = 0.4, 0.8) and the radius
of the cylinder (e.g., R = 0.7 m, 1 m). For these results ζ = 1 m,
where a = 1 mm, w0 = 0.3 mm, nd = 2.2, and n(Ag) = 13.5 − j75.3.
For δp = 0.4, the amplitude of the output power density is small
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Figure 13. The output amplitude, the width of the Gaussian shape,
and the shift of the central peak in the same cross section of Figs. 12(a)–
(d) where x = 0 and y = [−0.5 mm,+0.5 mm]. Four examples are
demonstrated for: (a) δp = 0.4, and R = 0.7 m; (b) δp = 0.8, and
R = 0.7 m; (c) δp = 0.4, and R = 1 m; (d) δp = 0.8, and R = 1 m. The
output modal profile is greatly affected for small values of δp and R,
as shown in case (a).

(e.g., (|Sav| = 0.5 W/m2) as the radius of the cylinder is small (e.g.,
R = 0.7 m), and the output shape (Fig. 12(a)) is far from a Gaussian
shape (Fig. 12(d)). By increasing only the step’s angle from δp = 0.4
to δp = 0.8 where R = 0.7 m, the amplitude of the output power
density is greater and also the output shape is changed (Fig. 12(b)).
By increasing only the radius of the cylinder from 0.7 m to 1 m where
δp = 0.4, the result of the output power density (|Sav|) shows a
Gaussian shape, and the amplitude of the output power density is
changed from 0.5 W/m2 (Fig. 12(a)) to 0.8 W/m2 (Fig. 12(c)). Now,
by increasing the step’s angle from δp = 0.4 to δp = 0.8 and also
by increasing the radius of the cylinder from 0.7 m to 1 m, the result
becomes a Gaussian shape (Fig. 12(d)), where the amplitude is changed
from 0.5 W/m2 (Fig. 12(a)) to 0.9 W/m2. Fig. 12(a) shows that in
addition to the main propagation mode, several other secondary modes
appear, where δp = 0.4 and R = 0.7 m.

Figures 13(a)–(d) show the output amplitude, the width of the
Gaussian shape, and the shift of the central peak in the same cross
section of Figs. 12(a)–(d), where x = 0 and y = [−0.5 mm,+0.5 mm].
These results represent the output power density as functions of the
step’s angle (δp) and the radius of the cylinder (R), for the same
parameters of Figs. 12(a)–(d). By increasing only the step’s angle
from δp = 0.4 to δp = 0.8 where R = 0.7 m, the amplitude and the
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width of the Gaussian shape are greater (Fig. 13(b)). In addition,
the output shape is improved from asymmetric shape (Fig. 13(a)) to
the symmetric shape (Fig. 13(b)). The peak of the output shape
(Fig. 13(b)) is closer to y = 0, as regarding to the result as shown
in Fig. 13(a). By increasing only the radius of the cylinder of the
helix from 0.7 m to 1 m where δp = 0.4, the symmetric shape appears
(Fig. 13(c)). In this case the amplitude and the width of the Gaussian
shape are greater than the amplitude and the width of the Gaussian
shape as shown in Fig. 13(a). Now, by increasing the step’s angle from
δp = 0.4 to δp = 0.8 and also by increasing the radius of the cylinder
of the helix from 0.7 m to 1 m, the amplitude and the width of the
Gaussian shape (Fig. 13(d)) are greater than the amplitude and the
width of the Gaussian shape in the previous cases. The symmetric
shape (Gaussian shape) is shown in Fig. 13(d) where δp = 0.8 and
R = 1 m.

From the above results we can see that the output power
transmission, the amplitude of the output power density (|Sav|), and
the output Gaussian shape are improved by increasing the step’s angle
or the radius of the cylinder of the helix, in the cases of space curved
waveguides. The output modal profile is greatly affected by small
parameters of R and δp, (e.g., R = 0.7 m, and δp = 0.4). For small
values of the step’s angle, the helical waveguide becomes a toroidal
waveguide, where the radius of the curvature of the helix (ρ) can
then be approximately by the radius of the cylinder (R). For small
values of R (e.g., R = 0.7 m), the output shapes of the fields and the
output power density (|Sav|) are far from a Gaussian shape, as shown
in Fig. 12(a) and Fig. 13(a), for instance. The amplitude of the output
power density is small (e.g., (|Sav|) = 0.4 W/m2) as the radius of the
cylinder is small (e.g., R = 0.7 m), and the output shape is far from a
Gaussian shape, as shown in Fig. 13(a), for instance. The asymmetric
output shape appears in this case, the width of the output Gaussian
shape is smaller with regard to the width of the output Gaussian shape
of the symmetric case (Fig. 13(d)).

This mode model enables us to understand the influence of the
step’s angle (δp) and the radius of the cylinder (R) on the output results
(output power transmission, etc.). The output power transmission is
improved by increasing the step’s angle or by increasing the radius of
the cylinder of the helix. The best results are obtained by increasing
the value of δp and also by increasing the value of R. Thus, this
model can be a useful tool to find the parameters (δp and R) which
will give us the improved results (output power transmission, output
power density, etc.) of a hollow waveguide in the cases of space curved
waveguides, and for application in the medical and industrial fields.
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5. CONCLUSIONS

The main objective was to generalize the method [16] from the curved
dielectric waveguide (approximately a plane curve) with a circular
cross-section to a helical waveguide (a space curved waveguide for an
arbitrary value of the step’s angle of the helix) with a circular cross-
section. Another objective was to demonstrate the ability of the model
to solve practical problems with inhomogeneous cross-section in the
case of hollow waveguides. The generalized mode model with the two
above objectives provides us a numerical tool for the calculation of the
output fields, output power density, and output power transmission for
an arbitrary value of the step’s angle of the helix (δp), in the case of a
hollow waveguide.

Three test-cases were demonstrated for small values of the step’s
angle. The first test-case was demonstrated for the straight waveguide
(R → ∞). The results of the output transverse components of the
fields and the output power density (e.g., Fig. 7(a)) show the same
behavior of the solutions as shown in the results of Ref. [16] for the
TEM00 mode in excitation. The result of the output power density
(Fig. 7(a)) was compared also to the result of the previous published
experimental data [24] (see also in Fig. 7(b)). The comparison
shows good agreement (a Gaussian shape) as expected, except for the
secondary small propagation mode.

The second and third test-cases were demonstrated in the case
of the toroidal dielectric waveguide. The second test-case was
demonstrated (Fig. 8(a)) where the initial diameter (ID) is 1 mm
(namely, small bore size). The output modal profile is greatly affected
by the bending. The theoretical and experimental results (Figs. 8(a)–
(b)) show that in addition to the main propagation mode, several other
secondary modes and asymmetric shape appear. The amplitude of
the output power density is small as the bending radius (R) is small,
and the shape is far from a Gaussian shape. In the third test-case,
the result of the output power transmission (Fig. 9) was compared to
the experimental data [11]. Our theoretical model takes into account
only the dielectric losses and the bending losses, in conjunction with
the problem of the propagation through a curved waveguide. The
experimental result (Fig. 8(b)) and the experimental result [11] take
into account additional parameters (e.g., the roughnes of the internal
wall of the waveguide) which are not taken into account theoretically.
In spite of the differences, the comparisons show good agreements. For
small values of the bending (1/R) in the case of small step’s angle, the
output power transmission is large and decreases with increasing the
bending.
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The results of the radius of curvature of the helix (ρ) as a function
of 1/R and the results of the output power transmission of the helical
waveguide as a function of 1/R are shown in Fig. 10 and in Fig. 11,
respectively, where R is the radius of the cylinder. For an arbitrary
value of R, the radius of curvature of the helix (ρ) and the output
power transmission are large for large values of δp and decrease with
decreasing the value of δp. On the other hand, for an arbitrary
value of δp, the radius of curvature of the helix (ρ) and the output
power transmission are large for large values of R and decrease with
decreasing the value of R.

The results of the output power density as functions of the step’s
angle (δp) and the radius of the cylinder (R) are shown in Figs. 12(a)–
(d). The output amplitude, the width of the Gaussian shape, and the
shift of the central peak are shown in Figs. 13(a)–(d), in the same
cross section of Figs. 12(a)–(d). In addition to the main propagation
mode, several other secondary modes appear in Figs. 12(a) and 13(a),
where δp = 0.4 and R = 0.7 m, and the output modal profile is
greatly affected in this case. By increasing only the step’s angle or
the radius of the cylinder of the helix, the amplitude of the output
power density and the width of the Gaussian shape are greater and
the output shape is changed from asymmetric shape to the symmetric
shape. The best results in these examples are shown in Figs. 12(d) and
13(d), by increasing the value of δp and also by increasing the value of
R.

This mode model enables us to understand the influence of the
step’s angle (δp) and the radius of the cylinder (R) on the output results
(output power transmission, etc.). The output power transmission is
improved by increasing the step’s angle or by increasing the radius of
the cylinder of the helix. The best results are obtained by increasing
the value of δp and also by increasing the value of R. Thus, this
model can be a useful tool to find the parameters (δp and R) which
will give the improved results (output power transmission, output
power density, etc.) of a hollow waveguide in the cases of space curved
waveguides, and for application in the medical and industrial fields.

APPENDIX A.

By using the Serret-Frenet relations for a spatial curve, we can find
the curvature (κ) and the torsion (τ) for each spatial curve that is
characterized by θ = const and r = const for each pair (r, θ) in the
range. This is achieved by using the helical transformation introduced
in equations (3a)–(3c).

The location vector for the helical transformation of the
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coordinates (3a)–(3c) is given by

r =

(
(R + r sin θ) cos(φc) + r sin(δp) cos θ sin(φc)

)
î

+

(
(R + r sin θ) sin(φc) − r sin(δp) cos θ cos(φc)

)
ĵ

+

(
r cos θ cos(δp) + Rφc tan(δp)

)
k̂, (A1)

where φc = (ζ/R) cos(δp), R is the radius of the cylinder, and (r, θ)
are the parameters of the cross-section.

The tangent vector is given by T = (dr/dζ) = (dr/dφc)/(dζ/dφc).
The normal vector is given by N = (1/κ)(dT /dζ), and the binormal
vector is given by B = T × N .

The rate of the change of the tangent vector related to the
parameter ζ measurses the curvature, and is given by dT /dζ =
(dT /dφc)/(dζ/dφc).

The curvature of the helix is constant for constant values of the
radius of the cylinder (R), the step’s angle (δp) and the parameters (r,
θ) of the cross-section. The curvature is given by the first Serret-Frenet
equation of a curve r(ζ) in the space according to dT /dζ = κN . Thus,
the curvature is

κ =
∣∣∣∣dT

dζ

∣∣∣∣ =
1 + Ct

R(1 + tan2(δp) + Ct)
, (A2)

where

Ct =
r2

R2
sin2θ + 2

r

R
sin θ +

r2

R2
sin2(δp)cos2θ,

and the radius of curvature is given by ρ = 1/ κ.
The rate of the change of the binormal vector related to the

parameter ζ measurses the torsion, and is given by dB/dζ =
(dB/dφc)/(dζ/dφc).

The torsion of the helix is constant for constant values of the radius
of the cylinder (R), the step’s angle (δp) and the parameters (r, θ) of
the cross-section. The torsion is given by the second Serret-Frenet
equation of a curve r(ζ) in the space according to dB/dζ = −τN .
Thus, the torsion is

τ =
∣∣∣∣dB

dζ

∣∣∣∣ =
tan δp

R(1 + tan2(δp) + Ct)
, (A3)

where Ct is given above, and the radius of torsion is given by σ = 1/τ .



188 Menachem and Mond

APPENDIX B.

The elements of the matrices (G(1)mm
′

00 , etc.) are given by:

G
(1)mm

′

00 =
∫ a

0
J1

(
P1m

′
r

a

)
J1

(
P1m

r

a

)
rdrδ1n,

G
(1)mm

′

01 =
∫ a

0
g(r)J1

(
P1m′

r

a

)
J1

(
P1m

r

a

)
rdrδ1n,

G
(1)mm

′

02 =
∫ a

0
J1

(
P1m

′
r

a

)
J1

(
P1m

r

a

)
r3drδ1n,

G
(1)mm

′

03 =
∫ a

0
g(r)J1

(
P1m′

r

a

)
J1

(
P1m

r

a

)
r3drδ1n,

G
(1)mm

′

04 =
∫ a

0
g2(r)J1

(
P1m

′
r

a

)
J1

(
P1m

r

a

)
r3drδ1n,

G
(1)mm

′

05 =
∫ a

0
k2g(r)J1

(
P1m′

r

a

)
J1

(
P1m

r

a

)
rdrδ1n,

G
(1)mm

′

06 =
∫ a

0
J1

(
P1m

′
r

a

)
J1

(
P1m

r

a

)
r5drδ1n,

G
(1)mm

′

07 =
∫ a

0
g(r)J1

(
P1m

′
r

a

)
J1

(
P1m

r

a

)
r5drδ1n,

G
(1)mm

′

08 =
∫ a

0
gr

(
P1m′

a

)
J1

′
(
P1m

′
r

a

)
J1

(
P1m

r

a

)
rdr,

G
(1)mm

′

09 =
∫ a

0
grJ1

(
P1m

′
r

a

)
J1

(
P1m

r

a

)
r2drδ1n,

G
(1)mm

′

10 =
∫ a

0
J1

′
(

P1m
′ r

a

)
J1

(
P1m

r

a

)
r2drδ1n,

G
(1)mm

′

11 =
∫ a

0
grJ1

′
(

P1m
′ r

a

)
J1

(
P1m

r

a

)
r3drδ1n,

G
(1)mm

′

12 =
∫ a

0
g2(r)J1

(
P1m′

r

a

)
J1

(
P1m

r

a

)
r5drδ1n,

G
(1)mm

′

13 =
∫ a

0
grJ1

′
(

p
′

1m′ r

a

)
J1

(
P1m

r

a

)
drδ1n,
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G
(1)mm

′

14 =
∫ a

0
grJ1

(
p
′

1m′ r

a

)
J1

(
P1m

r

a

)
r2drδ1n,

G
(1)mm

′

15 =
∫ a

0
J1

(
P

′

1m
′
r

a

)
J1

(
P1m

r

a

)
rdrδ1n,

G
(1)mm

′

16 =
∫ a

0
J1

′
(

P
′

1m′ r

a

)
J1

(
P1m

r

a

)
r2drδ1n.

Similarly, the remaining elements are obtained. The coefficients
are obtained directly from the algebraic system of equations (18a)–
(18d) and are expressed as functions in s-plane. Similarly, the other
coefficients are obtained.

APPENDIX C.

The other transverse components of the fields are finally expressed in
a form of transfer matrix functions as follows

Eθ(r, θ, ζ) = E+
θ0(r)e

−jkhζζ +
jωµ0

R
hζ sinθ cosθcos2(δp)

∑
m

′
Cm

′

S1 (ζ)J1(ψ)

+
jωµ0

R
hζ sin2 θcos2(δp)

∑
m

′
Dm

′

S1 (ζ)J1(ψ)

+jωµ0h
2
ζ cos θ

∑
m′

Cm
′

S1 (ζ)
dJ1

dr
(ψ)

+jωµ0h
2
ζ sin θ

∑
m′

Dm
′

S1 (ζ)
dJ1

dr
(ψ)

+
1
R

cos2 θcos2(δp)
∑
m

′
Am

′

S2 (ζ)J1(ξ)

+
1
R

sin θ cos θcos2(δp)
∑
m′

Bm
′

S2 (ζ)J1(ξ)

−1
r
hζ sin θ

∑
m′

Am
′

S2 (ζ)J1(ξ) +
1
r
hζ cos θ

∑
m′

Bm
′

S2 (ζ)J1(ξ),

(C1)
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Hr(r, θ, ζ) = H+
r0(r)e

−jkhζζ +
jωε

R
hζ cos2 θcos2(δp)

∑
m′

Am
′

S1 (ζ)J1(ξ)

+
jωε

R
hζ sin θ cos θcos2(δp)

∑
m

′
Bm

′

S1 (ζ)J1(ξ)

−jωε

r
h2

ζ sin θ
∑
m

′
Am

′

S1 (ζ)J1(ξ)

+
jωε

r
h2

ζ cos θ
∑
m′

Bm
′

S1 (ζ)J1(ξ)

+
1
R

sin θ cos θcos2(δp)
∑
m

′
Cm

′

S2 (ζ)J1(ψ)

+
1
R

sin2 θcos2(δp)
∑
m′

Dm
′

S2 (ζ)J1(ψ)

+hζ cos θ
∑
m

′
Cm

′

S2 (ζ)
dJ1

dr
(ψ)+hζ sin θ

∑
m

′
Dm

′

S2 (ζ)
dJ1

dr
(ψ),

(C2)

Hθ(r, θ, ζ) = H+
θ0(r)e

−jkhζζ− jωε

R
hζ sin θ cos θcos2(δp)

∑
m′

Am
′

S1 (ζ)J1(ξ)

−jωε

R
hζ sin2 θcos2(δp)

∑
m

′
Bm

′

S1 (ζ)J1(ξ)

−jωεh2
ζ cos θ

∑
m′

Am
′

S1 (ζ)
dJ1

dr
(ξ)

−jωεh2
ζ sin θ

∑
m

′
Bm

′

S1 (ζ)
dJ1

dr
(ξ)

+
1
R

cos2 θcos2(δp)
∑
m

′
Cm

′

S2 (ζ)J1(ψ)

+
1
R

sin θ cos θcos2(δp)
∑
m′

Dm
′

S2 (ζ)J1(ψ)

−1
r
hζ sin θ

∑
m′

Cm
′

S2 (ζ)J1(ψ)+
1
r
hζ cos θ

∑
m′

Dm
′

S2 (ζ)J1(ψ).

(C3)
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