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Abstract—An approach is proposed to obtain some exact explicit
solutions in terms of elliptic functions to the Novikov-Veselov equation
(NVE[V (x, y, t)] = 0). An expansion ansatz V → ψ =

∑2
j=0 ajf

j

is used to reduce the NVE to the ordinary differential equation
(f ′)2 = R(f), where R(f) is a fourth degree polynomial in f . The well-
known solutions of (f ′)2 = R(f) lead to periodic and solitary wave like
solutions V . Subject to certain conditions containing the parameters
of the NVE and of the ansatz V → ψ the periodic solutions V can
be used as start solutions to apply the (linear) superposition principle
proposed by Khare and Sukhatme.

1. INTRODUCTION

The Novikov-Veselov (NV) equation [1] as a “natural” two-dimensional
generalization of the celebrated Korteweg-de Vries (KV) equation [2]
has relevance in nonlinear physics (in particular in inverse scattering
theory) [3, 4] and mathematics (cf. e.g., [5, 6]).

As regards to physics, Tagami [3] derived solitary solutions of the
NV equation by means of the Hirota method. Cheng [4] investigated
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the NV equation associated with the spectral problem (∂x∂y +u)ψ = 0
in the plane and presented solutions by applying the inverse scattering
transform. With regards to mathematics, Taimanov [5] investigated
applications of the (modified) NV equation to differential geometry
of surfaces. Ferapontov [6] used the (stationary) NV equation to
describe a certain class of surfaces in projective differential geometry
(the so-called isothermally asymptotic surfaces). Apart from these
applications solutions of the NV equation are interesting in and of
themselves.

In the following we derive some solutions of the NV equation
by combining a symmetry reduction method [7, 8] and the Khare-
Sukhatme superposition principle [9–12].

2. ELLIPTIC SOLUTIONS

2.1. General Considerations

Following Novikov and Veselov [1] we consider the system

Vt = ∂3V + ∂3
V + 3∂(uV ) + 3∂(uV ), (1)

∂u = ∂V, (2)

where ∂ = 1
2 (∂x − i∂y), ∂ = 1

2 (∂x + i∂y) are the Cauchy-Riemann
operators in R

2. System (1), (2) is equivalent to

Vt =
1
4

(Vxxx − 3Vxyy) + 3V (u1x + u2y) + 3(u1Vx + u2Vy), (3)

Vx = u1x − u2y, −Vy = u1y + u2x (4)

with u(x, y, t) = u1(x, y, t) + iu2(x, y, t), where u is defined up to an
arbitrary holomorphic function ϕ = ϕ1 + iϕ2 so that ϕ1x = ϕ2y, ϕ1y =
−ϕ2x. (4) imply

u1 = −2∂−1
x ∂yD̃V + V + ϕ1, u2 = −2D̃V + ϕ2. (5)

The operator D̃ := (∂−1
x ∂y + ∂−1

y ∂x)−1 is well-defined [13, (6)], so
that u1, u2 can be inserted into (3). Traveling wave solutions

V (x, y, t) = ψ(z), z = x+ ky − vt (6)

imply ∂−1
x = k∂−1

y and thus lead to ϕ ≡ const. = C0 + iC1. Hence, (3)
can be written as

−vψz =
1 − 3k2

4
ψzzz + 6

1 − 3k2

k2 + 1
ψψz + 3ψz(C0 + C1k). (7)
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Following an approach outlined previously [7, 8, 14] it seems useful
to find elliptic (traveling wave) solutions of the form (p = 2 follows from
balancing the linear term of highest order with the nonlinear term in
(7))

ψ(z) =
p∑

j=0

ajf(z)j , p = 2 (8)

with [15] (
df(z)
dz

)2

= αf4 + 4βf3 + 6γf2 + 4δf + ε ≡ R(f). (9)

The coefficients a0, a1, a2, α, β, γ, δ, ε are assumed to be real but
otherwise either arbitrary or interrelated.

Inserting (8) into (7) and using (9) we obtain a system of algebraic
equations that can be reduced to yield the nontrivial solutions

α = 0, β = − 2a1

1 + k2
, γ = − 4a0

1 + k2
+

2F
3(3k2 − 1)

, δ, ε arbitrary,

subject to a2 = 0, 3k2 − 1 �= 0, (10)

α = − 2a2

1 + k2
, β = − a1

1 + k2
, γ =

F

6(3k2 − 1)
− a2

1 + 4a0a2

4a2(1 + k2)
,

δ =
1

8a2
2

(
a3

1 − 12a0a1a2

1 + k2
+

2a1a2F

3k2 − 1

)
, ε arbitrary,

subject to a2 �= 0, 3k2 − 1 �= 0 (11)

with F = v + 3C0 + 3kC1.
Thus, the coefficients of the polynomial R(f) are (partly)

determined leading to solutions f(z) of (9). As is well known [15,
p. 4–16], [16, p. 454] f(z) can be expressed in terms of Weierstrass’
elliptic function ℘(z; g2, g3) according to

f(z) = f0 +
R′(f0)

4
[
℘(z; g2, g3) −

1
24
R′′(f0)

] , (12)

where the primes denote differentiation with respect to f and f0 is a
simple root of R(f).

The invariants g2, g3 of ℘(z; g2, g3) and the discriminant ∆ =
g32 − 27g23 are related to the coefficients of R(f) [17, p. 44]. They are
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suitable to classify the behaviour of f(z) and to discriminate between
periodic and solitary wave like solutions [8].

Solitary wave like solutions are determined by (cf. (12) and
Ref. [18, p. 651–652])

f(z) = f0 +
R′(f0)

4
[
e1 −

R′′(f0)
24

+ 3e1csch2(
√

3e1z)
] , � = 0, g3 < 0, (13)

where e1 =
1
2

3
√

|g3| in (13).

In general, f(z) (according to (12)) is neither real nor bounded.
Conditions for real and bounded solutions f(z) can be obtained by
considering the phase diagram of R(f) [19, p. 15]. They are denoted
as “phase diagram conditions” (PDC) in the following. An example of
a phase diagram analysis is given in [14].

2.2. Periodic Solutions

At first the coefficients according to (10) are considered. For simplicity
we assume ε = 0, so that f0 = 0 is a simple root of (9). The solution
(12) can be evaluated to yield

V (x, y, t) = a0 + a1

· 3(1 + k2)(1 − 3k2)δ
(1 + k2)F + 6a0(1 − 3k2) + 3(1 + k2)(1 − 3k2)℘(x+ ky − vt; g2, g3)

(14)

with g2, g3 according to (10) and [8].
Evaluating (12) with coefficients according to (11) (with ε = 0 for

simplicity) in the same manner we obtain periodic solutions depending
on a0, a1 and a2.

2.3. Solitary Wave Like Solutions

To find the subset of solitary wave like solutions of the NV equation
according to (10), (13) the discriminant ∆ must vanish. This is given
if δ = 0 or δ = − (6a0(1−3k2)+(1+k2)F )2

8a1(1−3k2)2(1+k2)
.

For g3 < 0 we obtain solitary wave like solutions and here the
PDC is fulfilled automatically for g3 < 0.

If δ = 0, ε = 0, f0 = 6a0(1−3k2)+(1+k2)F
2a1(3k2−1)

, we obtain (cf. (8), (13))
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V (x, y, t) = a0 +
6a0(1 − 3k2) + (1 + k2)F

2(3k2 − 1)
sech2

·
[√

− 6a0

1 + k2
+

F

3k2 − 1
(x+ ky − vt)

]
. (15)

If δ = − (6a0(1−3k2)+(1+k2)F )2

8a1(1−3k2)2(1+k2)
, ε = 0, f0 = 0, (8) reads

V (x, y, t) = a0 +
6a0(1 − 3k2) + (1 + k2)F

4(3k2 − 1)
tanh2

·
[√

F

2(1 − 3k2)
+

3a0

1 + k2
(x+ ky − vt)

]
. (16)

Subject to (10) (15), (16) represent general physical traveling
solitary wave solutions of the NV equation for ε = 0. While periodic
solutions depend on a0 and a1, solitary solutions only depend on a0.

Solitary wave like solutions according to (11) can be obtained by
an analogous procedure.

3. SUPERPOSITION SOLUTIONS

Khare and Sukhatme proposed a superposition principle for nonlinear
wave and evolution equations (NLWEEs) [9]. They have shown
that suitable linear combinations of periodic traveling-wave solutions
expressed by Jacobian elliptic functions lead to new solutions of the
nonlinear equation in question. Combining the approach above with
this superposition principle we have evaluated the following start
solutions for superposition [20]

f(z) =



−3γ+
√

9γ2−16βδ
4β dn2

(
1
2

√
3γ+

√
9γ2−16βδz, 2

√
9γ2−16βδ

3γ+
√

9γ2−16βδ

)
,

βδ > 0, γ > 0,

4δ

−3γ+
√

9γ2−16βδ
sn2

(
1
2

√
−3γ+

√
9γ2−16βδz, 3γ+

√
9γ2−16βδ

3γ−
√

9γ2−16βδ

)
,

βδ > 0, γ < 0,

−3γ+
√

9γ2−16βδ
4β cn2

(
(9γ2−16βδ)

1
4√

2
z,

3γ+
√

9γ2−16βδ

2
√

9γ2−16βδ

)
, βδ < 0.

(17)
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In (10) we choose ε = 0 for simplicity and thus, we obtain start
solutions for superposition according to (17). As an example we
consider solutions of the form dn2 for p = 3, further results for cn2,
sn2 and according to (11) can be obtained in the same manner.

According to (8), (10) the start solution for superposition reads

V (x, y, t) = a0 + a1 A dn2(µ(x+ ky − vt),m), (18)

with A, µ, m according to (17), so that the superposition ansatz can
be written as

Ṽ (x, y, t) = a0 + a1 A

3∑
i=1

dn2

[
µ(x+ k y − v3 t) +

2(i− 1)K(m)
3

,m

]
.

(19)
Inserting Ṽ (x, y, t) (denoting di = dn

(
µ(x + ky − v3t) +

2(i−1)K(m)
3 ,m

)
) into (7) (v → v3) and using well known relations for

c2
i and s2i [22, p. 16] leads to

6Aa1µm(1 − 3k2)
(
µ2 − 2Aa1

1 + k2

) 3∑
i=1

cid3
i si

−12A2a2
1mµ(1 − 3k2)
1 + k2

3∑
i=1

d2
i

3∑
j �=i

cjdjsj

−2Aa1µm

(
6a0(1−3k2)

1 + k2
+3(C0+C1k)+(2−m)(1−3k2)µ2+v3

)
3∑

i=1

cidisi = 0. (20)

Remarkably, µ2 − 2Aa1
1+k2 vanishes automatically [20, (13)]. By use

of [23], (20) reads

−2Aa1µm

(
6a0(1−3k2)

1 + k2
+ 3(C0+C1k)+(2−m)(1−3k2)µ2+v3

)
3∑

i=1

cidisi−2Aa1µm

(
−12Aa1(1−3k2)(m−1+q2)

(1+k2)(1−q2)

) 3∑
i=1

cidisi = 0.

(21)
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Thus, the speed v3 in the superposition solution (19) is given by

v3 =
6a0(3k2 − 1)

1 + k2
− 3(C0 + C1k) + (2 −m)(3k2 − 1)µ2

+
12Aa1(3k2 − 1)(m− 1 + q2)

(1 + k2)(q2 − 1)
. (22)

The start solution V and the superposition solution Ṽ are shown
in Fig. 1.
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Figure 1. V and Ṽ (cf. (18), (19)) for c = −1, k = 1, a0 = −1,
a1 = −1, C0 = 1, C1 = 1, δ = 4 (therefore: v3 = −8.66008).

4. CONCLUSION

For the NV equation we have shown that a rather broad set of traveling
wave solutions according to (6), (8) and subject to the nonlinear
ordinary differential equation (9) can be obtained. Periodic and
solitary wave solutions can be presented in compact form in terms
of Weierstrass’ elliptic function and its limiting cases (� = 0, g3 ≤ 0),
respectively. The phase diagram conditions (PDC) yield constraints
for real and bounded solutions. Finally, it is shown that application of
the Khare-Sukhatme superposition principle yields new periodic (real,
bounded) solutions of the NV equation.
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