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Abstract—This article discusses the effect of geometry on the surface
plasmon resonances. The static dielectric polarizability of a sphere
suffers a singularity when its permittivity relative to the surroundings
is −2. This well-known resonance condition is changed when the shape
of the particle is no longer a sphere. In this article the character of
the resonances is studied, with a particular emphasis on a two-layer
sphere.

1. INTRODUCTION

As is well known, the dielectric response of a small sphere may have
a very strange behavior if the permittivity is allowed to be negative.
The normalized polarizability of a homogeneous dielectric sphere with
relative permittivity ε is

αn =
α

ε0V
= 3

ε − 1
ε + 2

(1)

Here the absolute polarizability (the ratio between the dipole
moment and the field creating it) is normalized by the volume of the
sphere V and the free-space permittivity ε0.

Obviously the polarizability grows without limit if the permittivity
approaches the value −2. Especially peculiar is the fact that this result
arises from purely electrostatic considerations where the solution of
Laplace equation suffices in calculating the polarizability.

It is certainly counterintuitive to attach arbitrarily large
polarizability values to small scatterers. Small particles are Rayleigh
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(in other words, very inefficient) scatterers. But a large polarizability
means a large dipole moment, and consequently this would also entail
a scattering cross section much larger than the geometric cross section.
However, the condition that is necessary for such resonating behavior is
also quite strange: negative permittivity. But again, today when very
much interest is focused into the study of metamaterials which often
not only possess negative permittivity but also negative permeability,
we may perhaps be psychologically more open than before to broaden
the allowed ranges for the various quantities and parameters in the
materials characterization [1].

The condition ε = −2 creates such a drastic behavior in the
dielectric response of the particle that it has been much studied
from many different viewpoints and branches in physics, optics, and
engineering. Therefore it is understandable that the condition is known
by different names and labels. A mild expression is “polarization
enhancement” which it certainly can be said to be, a stronger one
is “Mossotti catastrophe,” where the name reminds us of the famous
scientist Octavio Mossotti and his studies on materials modeling
from the mid-19th century [2]. Very often the infinity condition (or
conditions, because there may be several of them for more complex
shapes than a homogeneous sphere, as shall be seen later in this study)
is termed “normal mode” or “surface mode”. It is also important to
remember that negative values of permittivity are inherently band-
limited phenomena and only at a certain frequency such a condition can
hold (also accompanied with an imaginary part of the permittivity).
The infinity condition goes hence often under the name “Fröhlich
frequency” referring to the frequency for which the (real part of the)
permittivity hits the value −2. The text by Bohren and Huffman [3]
is very enlightening in discussing the interpretation of the Fröhlich
conditions.

It is also understandably natural to call this strong phenomenon as
“resonance” due to the infinity, possibly softened by losses. However, it
is important to remember that the resonating character does not arise
from a particular match of a wave between length scale and temporal
variation as in an “ordinary” resonance but it is a phenomenon which
can emerge from arbitrarily small structures.

The geometry of the negative-permittivity particle has a strong
effect on its surface-plasmonic properties. In the literature, studies
can be found where the spectra of normal modes have been analyzed
for cubes and other rectangular and polyhedral particles [4–8]. These
studies have shown that the simple behavior of a spherical case is
suddenly lost and the resulting resonance spectrum becomes very
complicated.
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In the present article, the aim is to take a closer look at
the spherically symmetric case and its surface plasmonic responses.
Instead of deforming the “perfect” symmetry of sphere with sharp
corners and edges, let us allow a radial variation in the structure of the
sphere. The question of interest: how does the layeredness of a sphere
affect the way its electric response becomes resonant in the domain of
negative permittivities?

To start this study, first we shall look at the field behavior for a
homogeneous sphere when the Fröhlich resonance is near, then the way
how an ellipsoidal structure will affect this behavior, and finally move
on to the radially layered sphere.

2. SURFACE PLASMON ON A SPHERE

The basic problem of a homogeneous dielectric sphere in a
homogeneous z-directed electric field E0uz (which can be derived from
the potential −E0z = −E0 r cos θ) has the well-known solution for the
scalar potential inside (φ1) and outside (φo) the sphere [9]:

φ1 = −E0
3

ε + 2
r cos θ (2)

φo = −E0r cos θ + E0
ε − 1
ε + 2

a3
1

r2
cos θ (3)

and here a1 denotes the radius of the sphere and ε its relative
permittivity (it is assumed to be floating in the free space). From
these relations it is seen that the internal field is decreased (and the
potential flattened) by the factor 3/(ε+2) compared with the incoming
field amplitude and the field in the close neighborhood of the sphere is
perturbed by the dipole field which is decaying as r−3 (the potential
as r−2).

Figure 1 shows the behavior of the potential inside and in the
neighborhood of the sphere for two situations: far away and close to
the surface plasmonic case.

3. ELLIPSOID

The case of a dielectric ellipsoid can fortunately be also treated
analytically. The internal electric field and dipole moment of the
ellipsoid, when posed into a uniform electric field is dependent on the
axis ratios of the ellipsoid and its permittivity [11]. If the field points
along one of the ellipsoid axes, the polarizability (ratio of the dipole
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Figure 1. Potentials in the vicinity of the sphere with two different
permittivities. Note the beginning of the development of a surface
plasmon for the case of sphere with negative permittivity. As the
permittivity decreases and passes the value −2, the internal field
direction suddenly swaps and becomes opposite.

moment to the external constant field) is

αn =
ε − 1

1 + N(ε − 1)
(4)

where N is the depolarization factor along this axis. Its value depends
on the shape of the ellipsoid [12, 13]. The three depolarization factors
for any ellipsoid satisfy

Nx + Ny + Nz = 1 (5)

A sphere has three equal depolarization factors of 1/3. The other two
special cases are a disc (depolarization factors 1, 0, 0) and a needle
(0, 1/2, 1/2). For ellipsoids of revolution, prolate and oblate ellipsoids,
various closed-form expressions for the factors can be found in [11].

The important observation to be gleaned from (4) is that the
resonance condition depends on the depolarization factor in the
following manner:

ε = −1 − N

N
(6)

Therefore a spheroid (ellipsoid of revolution) has two Fröhlich
resonances (for two orthogonal incident field directions) of which one
happens for ε < −2 and the other for −2 < ε < 0. If the ellipsoid
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has three unequal axes, there are three resonances of which at least
one is smaller than −2 and at least one larger than −2 (but of course
negative).

4. MULTILAYER SPHERE

If the geometry of the scatterer is spherically symmetric the potential
problem can be solved more easily than in the more general case. For
example, consider a particle that has a homogenous spherical core
(radius a2, relative permittivity ε2) surrounded by a spherical shell
(radius a1, relative permittivity ε1) according to Figure 2. Again a
constant static incident field E0uz illuminates the particle.

z
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2

1

E free space

ε

a

a



ε

Figure 2. The core–and–shell sphere in a uniform electric field.

Laplace equation allows two type of solutions: a constant field
and the dipole field in each of the three domains. The potential which
satisfies the boundary conditions can be written [10] as

φ2 = −E0
9ε1

(ε1 + 2)(ε2 + 2ε1) + 2β(ε1 − 1)(ε2 − ε1)
r cos θ (7)

φ1 = −E0
3(ε2 + 2ε1) − 3(ε2 − ε1)(a2/r)3

(ε1 + 2)(ε2 + 2ε1) + 2β(ε1 − 1)(ε2 − ε1)
r cos θ (8)

φo = −E0r cos θ+E0
(ε1−1)(ε2+2ε1)+β(1+2ε1)(ε2−ε1)
(ε1+2)(ε2+2ε1)+2β(ε1−1)(ε2−ε1)

a3
1

r2
cos θ (9)

where β = a3
2/a3

1 is the volume fraction that the core occupies from
the whole particle. (Note that no dipole term is present in the core
region, in the function φ2)
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From the amplitude of the dipole component in the external
domain, the equivalent dipole moment of the particle can be identified,
and the proportionality factor is the polarizability, which reads [11]

αn = 3
(ε1 − 1)(ε2 + 2ε1) + β(2ε1 + 1)(ε2 − ε1)
(ε1 + 2)(ε2 + 2ε1) + 2β(ε1 − 1)(ε2 − ε1)

(10)

This expression reveals us the resonance conditions, in other words
the values for the permittivity and structure parameters for which the
polarizability grows large. Let us take a closer look at the two different
cases, where either the core or the shell is plasmonic.

In the following, all the numerical examples are calculated for the
case β = 0.03 which means that the radius ratio is a2/a1 = 3

√
0.03 ≈

0.31.

Plasmonic core

How does an “ordinary” dielectric coating affect the plasmonic
behavior of a sphere? In other words, the case of infinite value for the
polarizability αn requires a certain negative value for the permittivity
of the core ε2 which is dependent on the (positive) value of the shell
ε1. Figure 3 shows the behavior of the polarizability as a function of
the core permittivity ε2 with the shell permittivity values ε1 = 1 (no
shell) and ε1 = 2.
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Figure 3. The polarizability of a plasmonic core (as a function of its
permittivity ε2) with a cover outside that has permittivity ε1 = 2. The
core occupies a volume of β = 0.03. For comparison the polarizability
curve of an uncovered sphere is shown with dashed line.

The effect of a dielectric coating is that the Fröhlich condition
ε2 = −2 will be shifted to more negative values. This is also obvious
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from the requirement that the denominator of the polarizability (10)
vanish:

ε2 = −2ε1
ε1 + 2 − β(ε1 − 1)
ε1 + 2 + 2β(ε1 − 1)

(11)

Plasmonic coating

The case when the shell is plasmonic and the core “ordinary” dielectric
is more interesting. As an example, Figure 4 shows the effect of a
hollow core (void or bubble, ε2 = 1) inside a plasmonic covering ε1 on
the polarizability. It can be observed that two plasmonic resonances are
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Figure 4. The polarizability of a plasmonic shell (as a function of
its permittivity ε1) which has a hollow core that occupies a volume of
β = 0.03. Note the two resonances and the fact that the one closer to
zero-permittivity is much narrower.

created which are located on the ε1 axis to both ways from −2. One of
these behaves like the dielectrically-covered case of Figure 3 (ε1 < −2)
but the other resonance is moved to larger values of permittivity.
This provides a way to create plasmonic resonances closer to zero-
permittivity with a spherical symmetric structure.

The positions of the two resonances can again be calculated from
the divergence of expression (10):

ε1 = −ε2 + 4 + 2β(ε2 + 1) ±
√

[ε2 + 4 + 2β(ε2 + 1)]2 − 16ε2(1 − β)2

4(1 − β)
(12)

Potential distributions

How do the potentials and fields look like when a plasmon creeps into
the scatterer? Visualization can be done using the expressions for the
potentials that have been given in the earlier sections.
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For the case of a plasmonic core with a dielectric cover, Figure 5
shows the scalar electric potential over the z-axis through the center
of the sphere (here the shell permittivity is assumed ε1 = 2). For
values ε2 > 1, the potential slope is small (field is small inside the
sphere), but when the core permittivity goes negative, the electric field
is strongly amplified, undergoes a singularity where it swaps direction
(at ε2 ≈ −3.91, cf. Equation (11)) and then stabilizes back to the
low-internal-field behavior. Indeed, both cases ε2 → ±∞ seem to be
identical.
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Figure 5. The potential of a core-plus-shell sphere. ε1 = 2 and
the permittivity of the core varies ε2 = 20, 2, .1,−1,−2,−3 (left) and
ε2 = −4.5,−5,−7,−10,−20 (right). The core occupies a volume of
β = 0.03 corresponding to radius ratio of around 0.31. Note that
the field direction in the core changes as the resonance condition
ε2 ≈ −3.91.

On the other hand, the case of a plasmonic cover over a hollow
bubble (ε1 < 0 and ε2 = 1) shows a more detail-rich behavior, as
can be expected from the polarizability curve of Figure 4 that showed
bifurcating resonances. Electric potential distributions in the case of
a spherical void with β = 0.03 are shown in Figures 6–7.

These figures show that unlike in the case of a plasmonic core,
now the surface plasmon can be generated both at the inner boundary
and the outer boundary of the shell, and hence the character of the
field distribution is also much more elaborate. For example, the
narrow character of the inner-boundary plasmon and the breadth of
the outer one are very conspicuous in the figures. Also the swapping
of the internal field direction over the two “resonance” conditions from
Equation (12), ε1 ≈ −0.459,−2.18 can be seen from these figures.

Another look at the potential distributions can be taken if the
potential cuts through the center are juxtaposed into a surface plot
with varying negative permittivity parameter. First, in Figure 8, this
potential is depicted for a homogeneous dielectric sphere, and the
expected ε = −2 resonance shows itself clearly.

A very similar three-dimensional plot would be the result
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Figure 6. The potential of a core-plus-shell sphere. ε2 = 1 and
the permittivity of the shell varies ε1 = 20, 1, .1,−.1,−.34 (left) and
ε1 = −.55,−.6,−.8,−1 (right). The core occupies a volume of β = 0.03
corresponding to radius ratio of around 0.31. Note that the plasmon is
located at the inner boundary (between core and shell), and after the
first resonance ε1 ≈ −0.459 is overtaken, the field direction switches.
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Figure 7. The potential of a core-plus-shell sphere. ε2 = 1 and the
permittivity of the shell varies ε1 = −1,−1.2,−1.5,−1.8 (left) and
ε1 = −2.8,−3,−4,−5 (right). The core occupies a volume of β = 0.03
corresponding to radius ratio of around 0.31. Note that the plasmon
now has moved to the outer boundary, and after the second resonance
ε1 ≈ −2.18 again the field direction switches.

for a dielectrically-covered plasmonic sphere. However, when the
characteristics of the electric potential of a hollow plasmonic shell
is plotted, the result is shown in Figure 9. These provide another
illuminating look into the narrowness and position of the two
resonances that are created for the spherical void.

A third illustration of the plasmon can be taken by plotting the
potential as height within a planar cut through the center of the sphere
(either the xz or the yz-plane of Figure 2). This is done for the hollow
plasmonic sphere in Figure 10 for certain values of the shell permittivity
that are close to the two resonances. There figures are perhaps the most
effective in transmitting an image of the two distinct plasmons that are
localized either on the inner shell boundary (the narrow resonance) or
the outer boundary (the broad resonance).
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Figure 8. Potential through the center of a homogeneous sphere as a
function of the permittivity. The sphere surface is crossed at z = ±1.
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Figure 9. Potential through the center of a hollow sphere as a function
of the permittivity ε1. The parameter β = 0.03, and the boundaries
are at points z = ±1, z = ±0.31.

Zero-permittivity shell

In addition to the special attention of the present paper (surface-
geometric effects on the normal mode structure of small scatterers),
another connected and interesting case is the one which involves
material with vanishing permittivity, ε = 0. Let us take a closer look
at the potential and field distributions of a core-plus-shell sphere where
the covering layer has permittivity ε1 = 0.

Figure 11 shows the amplitudes of the potential and the electric
field over the z axis in the ε1 = 0 case. The field inside the core
vanishes totally. In other words, the ε1 = 0 -covering shields its inside
from external fields just like a metal or a very high-permittivity layer.
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Figure 10. Potential in the vicinity of a hollow sphere with negative
permittivity. Left: case close to the “narrow” resonance, located at the
inner boundary of the shell. Right: “broad” outer boundary resonance.

However, what is different between these two cases is that for the metal
cover, the field vanishes also in the cover but as Figure 11 shows, the
electric field for the zero-permittivity shell does penetrate into the
cover. Field exists through the sphere because there is a potential
difference across it.
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Figure 11. Potential and field for a hollow sphere with zero-
permittivity shell.

How does the field avoid the core but enter the layer? Figure 12
shows the direction and the amplitude of the field distribution in the
xz plane.

Because the layer has permittivity ε1 = 0, no flux exists there, and
hence the external field (outside the particle) cannot have any radial
component on the boundary. Therefore it has to “flow around” the
sphere, avoiding it like a river perturbed by an island. The boundary
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conditions require that the electric field be tangential on the surface of
a zero-permittivity material (since normal component is excluded by
the zero flux requirement in the shell). Also on the inner boundary
one must notice that the field on the side of the ε1 = 0 -domain is
normal to the boundary (because there is no field in the core and the
tangential electric field needs to be continuous). These observations
can be visually appreciated in Figure 12.

(a) |x, y| < 1.5

(b) −0.4 < x < 0 < y < 0.4 (c) 0 < x < 0.6; 0.7 < y < 1.3

Figure 12. Field distribution in the xz-plane for a hollow sphere with
zero-permittivity shell. The lower figures are close-ups of the fields
across the inner (b) and outer (c) boundary of the shell.
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It is interesting to note—and as a matter of fact quite obvious—
that the polarizability of a ε1 = 0 -covered sphere is −3/2, totally
independently of the core size β and the core permittivity ε2.

5. DISCUSSION

The expressions, results, and illustrations of the surface plasmonic
behavior of layered spheres that have been presented above give rise
to several observations.

• The singular behavior of the polarizability is not a wave
resonance but a electrostatic phenomenon in the sense that all its
characteristics are known from the solution of Laplace equation
and scalar potential. At the same time it is necessary to
remember that any material response characterized with negative
permittivity is not compatible with statics. Materials with
strongly frequency-dependent material response, e.g. Lorentz-
dispersive media, can display effectively negative permittivity
behavior. But such a frequency region is of course band-
limited. However, if the particle is very small compared with the
wavelength, we can neglect retardation effects and can assume
the field distribution be in-phase over the whole region of interest.
Then the solution of the electrodynamic problem can be found
from the electrostatic one. And the singularity is there no matter
how small the particle is.
A related problem is present: since the negative values of the
permittivity are only allowed for dispersive materials, Kramers–
Kronig-relations [9, 14] dictate that the medium is dissipative and
contains losses. Therefore for practical calculations the imaginary
part of the permittivity has to be included. However, since the
relations connecting the spectra of the real and imaginary parts
are global integrals, a negative value of the real part does not
necessary imply a large imaginary part at the same frequency but
the losses may be concentrated around another spectral region.

• Particle shape has effect on the value of the negative permittivity
corresponding to the Fröhlich resonance. We saw that the
dielectric covering shifts the resonance into more negative values,
cf. Equation (11). On the other hand, with ellipsoids, oriented in
a certain direction, it was possible to achieve Fröhlich resonances
with permittivities closer to zero (using depolarization factor
values N larger than 1/3, see Equation (6)).
However, in the case of a hollow sphere (an “ordinary” dielectric
covered with plasmonic material, ε1 < 0) we could see that one
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plasmonic resonance was indeed located in the interval −2 < ε1 <
0.

• For the plasmonic coating case, there are two resonances. But the
character of these two is very different: the one “closer to zero”
(−2 < ε1 < 0) is very narrow but the one further away (ε1 < −2)
has a broad extent. One could say that the single resonance that
takes place in a plasmonic core with dielectric coating falls between
these two in this respect. Also the plasmon −2 < ε1 < 0 is
localized at the inner boundary of the shell whereas the other one
is extended more broadly but clearly in the neighborhood of the
outer boundary.

• A very interesting observation is that even if the geometry of the
particle becomes more complicated than a homogeneous sphere,
the spectrum of the resonances remains simple. Only one or
at most two resonances are generated. This is is stark contrast
with the case of a cube that displays a very complex structure of
polarizability singularities for negative permittivity values [6].
Again this is a reason to remind that the “resonances” in the
polarizability are different from the wavelength-related resonances
in cavities. For a spherical metal cavity (or a spherical dielectric
resonator for that matter) there exists an infinite number of
resonant frequencies, just like for a cubic cavity. However, the
normal modes for surface plasmons are a different story: for
a homogeneous sphere there is only one singularity, for a cube
several.

• Important physics can also be gleaned from the analysis of the
field behavior of a zero-permittivity shell. Such a covering acts
similarly with a metal shell (ε1 → ±∞) in the Faraday-cage sense
that the core is shielded from any outside fields. But the difference
is that for a metal shell, the field is zero also in the covering, and
in the other case, non-zero field (even if not flux density) exists in
the ε1 = 0 -layer.
Also the polarizability of a metal-covered spherical core (αn = 3)
and that of the ε1 = 0 -covered core (αn = −3/2) are independent
of the size or the material of the core.

• And finally, it is worth noting that analytical results for the
plasmonic behavior can be calculated for multilayer spheres with
arbitrary number of layers and the findings of this article can be
greatly generalized. Closed-form expressions of the polarizabilities
and potential and field functions can be calculated using the
transmission-line approach presented in [10].
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