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Abstract—We present a general dyadic vector circuit formalism,
applicable for uniaxial magneto-dielectric slabs, with strong spatial
dispersion explicitly taken into account. This formalism extends the
vector circuit theory, previously introduced only for isotropic and
chiral slabs. Here we assume that the problem geometry imposes
strong spatial dispersion only in the plane, parallel to the slab
interfaces. The difference arising from taking into account spatial
dispersion along the normal to the interface is briefly discussed.
We derive general dyadic impedance and admittance matrices, and
calculate corresponding transmission and reflection coefficients for
arbitrary plane wave incidence. As a practical example, we consider a
metamaterial slab built of conducting wires and split-ring resonators,
and show that neglecting spatial dispersion and uniaxial nature in
this structure leads to dramatic errors in calculation of transmission
characteristics.

1. INTRODUCTION

It is well known that many problems dealing with reflections from
multilayered media can be solved using the transmission line analogy
when the eigen-polarizations are studied separately (see e.g., [1]). In
this case, the amplitudes of tangential electric and magnetic fields are
treated as equivalent scalar voltages and currents in the equivalent
transmission line section. In order to account for an arbitrary
polarization, Lindell and Alanen introduced a vector transmission-
line analogy [2], where vector tangential electric and magnetic fields
serve as equivalent voltage and current quantities. Later on, the vector
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transmission-line analogy was further extended for isotropic and chiral
slabs into a vector circuit formalism, with the slabs represented as two-
port circuits with equivalent impedances and admittances [3, 4]. This
vector circuit theory has been successfully applied to study plane wave
reflection from chiral slabs [5], and extended to uniaxial multilayer
structures [6].

Recent emergence of metamaterials and the subsequent growth
of research interest to their properties, revitalized the importance
of analytical methods for studying artificial media, in particular,
for proper calculation of the reflection and transmission properties.
The most prominent examples of metamaterials [7] involve split-ring
resonators [8] interlayered with a wire structure, being organized in an
essentially anisotropic manner (e.g., like shown in Fig. 1a). Effective
permittivity (permeability) tensors in such metamaterials correspond
to those of uniaxial dielectric (magnetic) crystals, and the principal
values of both tensors differ from unity along one direction only.
Moreover, the presence of wire medium imposes significant spatial
dispersion for all waves with an electric field component along the
wires [9].

These peculiarities drive the properties of such metamaterials far

Figure 1. a) A TM-polarized plane wave incident on a slab
implemented using an array of wires and split-ring resonators. b)
Macroscopic representation of a uniaxial magneto-dielectric slab.
Subscripts + and − denote the fields at the left and right sides of
the slab, respectively.
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apart from what can be described in terms of the isotropic vector circuit
theory, and raise a clear demand for an appropriate generalization. The
corresponding theory extension is the main objective of this paper.

2. TRANSMISSION MATRIX

Let us consider a spatially dispersive slab having thickness d and
characterized by the following material parameter dyadics (Fig. 1b)

ε = εt(kt)It + εnnn, µ = µtIt + µnnn, (1)

where n is the unit normal vector for the slab and It = I − nn is
the transversal unit dyadic. We consider plane wave excitation and
move from the physical space to the Fourier space by a transformation
∇t → −jkt. For plane waves, kt simply stands for the transversal
propagation factor. Physically we could as well assume that the slab
is illuminated by a source located electrically far away from the slab.
Notation ε(kt) stresses the spatially dispersive nature of the slab in
the tangential plane, and indicates the dependence of the permittivity
component from the tangential propagation factor.

Starting from the Maxwell equations the following set of equations
can be derived for the tangential field components

∂

∂z
n × Et = −jωµtHt +

1
jωεn

kt × kt × Ht, (2)

∂

∂z
n × Ht = jωεt(kt)Et −

1
jωµn

kt × kt × Et. (3)

Next, we integrate eqs. (2) and (3) over z from 0 to d:

n × Et+ − n × Et−

d
= −jωµtĤt +

1
jωεn

kt × kt × Ĥt, (4)

n × Ht+ − n × Ht−

d
= jωεt(kt)Êt −

1
jωµn

kt × kt × Êt. (5)

Above Et+ ,Ht+ refer to the fields at the left side of the slab, and
Et− ,Ht− refer to the fields at the right side of the slab, Fig. 1a. The
averaged fields in eqs. (4) and (5) are defined as

Êt =
1
d

∫ d

0
Etdz, Ĥt =

1
d

∫ d

0
Ht dz. (6)
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After mathematical manipulation (4) and (5) transform into

Et− − Et+ = −jωµtdA · n × Ĥt, (7)

Ht− − Ht+ = jωεt(kt)dB · n × Êt. (8)

Above dyadics A and B are defined as

A = It −
ktkt

ω2µtεn
=

ω2µtεn − k2
t

ω2µtεn

kt kt

k2
t

+
n × kt n × kt

k2
t

, (9)

B = It −
ktkt

ω2µnεt(kt)
=

ω2µnεt(kt) − k2
t

ω2µnεt(kt)
kt kt

k2
t

+
n × kt n × kt

k2
t

. (10)

The general solution for the transverse electric field inside the slab
reads (now the interest lies only on wave propagation in z-direction)

Et(z) = A · e−jβz + B · ejβz, (11)

where A and B are constant vectors and the z-component of
propagation factor is different for TM and TE polarizations:

β = β(kt) = βTM

kt kt

k2
t

+ βTE

n × kt n × kt

k2
t

=

√
εt(kt)

εn

(
ω2µtεn−k2

t

)kt kt

k2
t

+

√
µt

µn

(
ω2µnεt(kt)−k2

t

)n × kt n × kt

k2
t

.

(12)

Constant vectors A and B are determined from the boundary
conditions

E(0) = Et−, E(d) = Et+, (13)

and the following expressions can be derived

A =
(
e−jβd − ejβd

)−1

·
(
Et+ − Et− · ejβd

)
, (14)

B = −
(
e−jβd − ejβd

)−1

·
(
Et+ − Et− · e−jβd

)
. (15)

After integrating (11) over z from 0 to d we get for the averaged electric
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field (note that all the dyadics are commutative)

Êt =
1
jd

(Et+ + Et−) · β−1 ·
(
e−jβd − ejβd

)−1

·
(
2It − e−jβd − ejβd

)

= (Et+ + Et−) · β
−1

·
tan

(
βd

2

)
d

. (16)

Similarly for the magnetic field

Ĥt = (Ht+ + Ht−) · β
−1

·
tan

(
βd

2

)
d

. (17)

Inserting (16) and (17) into (7) and (8) leads to the following result

Et− − Et+ = −jωµtdA · n × (Ht+ + Ht−) · β
−1

· f, (18)

Ht− − Ht+ = jωεt(kt)dB · n × (Et+ + Et−) · β
−1

· f. (19)

Above we have denoted f = tan(βd/2)/d. Fields at the upper side
of the slab can be expressed with the help of the fields at the lower
side of the slab and the following result is obtained after mathematical
manipulation:

Et+ = cos (βd) · Et− + jωµt sin (βd) · β
−1

· A · (n × Ht−), (20)

n × Ht+ = cos (βd) · (n × Ht−) + j
1

ωµt
sin (βd) · (β

−1
· A)−1 · Et− .

(21)

Writing (20) and (21) into a matrix form we identify the dyadic
transmission matrix for the slab, Fig. 2a:(

Et+

n × Ht+

)
=

(
α11 α12

α21 α22

)
·
(

Et−
n × Ht−

)
, (22)

where the transmission components read

α11 = α22 = cos(βTMd)
kt kt

k2
t

+ cos(βTEd)
n × kt n × kt

k2
t

, (23)

α21 = j
ωεt(kt)

βTM

sin(βTMd)
kt kt

k2
t

+ j
βTE

ωµt
sin(βTEd)

n × kt n × kt

k2
t

, (24)

α12 = j
βTM

ωεt(kt)
sin(βTMd)

kt kt

k2
t

+ j
ωµt

βTE

sin(βTEd)
n × kt n × kt

k2
t

. (25)
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Figure 2. Different representations for the slab: a) A two-port
transmission line section. b) Vector T-circuit. c) Vector Π-circuit.
The orientation of the unit vector n is in all the cases the same as
depicted in a).

We immediately notice that if the slab is local and isotropic, coefficients
(23)–(25) reduce to those obtained earlier for an isotropic slab [3].

The exact boundary condition for a slab on a metal ground plane
follows directly from (20) with Et− = 0:

Et+ = Z(kt) · n × Ht+ , (26)

where the impedance operator reads

Z(kt) = j
βTM

ωεt(kt)
tan(βTMd)

kt kt

k2
t

+ j
ωµt

βTE

tan(βTEd)
n × kt n × kt

k2
t

.

(27)

3. IMPEDANCE AND ADMITTANCE MATRICES

From (22) it is straightforward to derive the impedance and admittance
matrices for the slab(

Et+

Et−

)
=

(
Z11 Z12

Z21 Z22

)
·
(

n × Ht+

n × Ht−

)
, (28)
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n × Ht+

n × Ht−

)
=

(
Y 11 Y 12

Y 21 Y 22

)
·
(

Et+

Et−

)
, (29)

where the dyadic impedances and admittances depend on the
transmission components in the following way

Z11 = α11 · α
−1
21 , Z12 = −α11 · α

−1
21 · α22 + α12, (30)

Z21 = α
−1
21 , Z22 = −α

−1
21 · α22, (31)

Y 11 = α22 · α
−1
12 , Y 12 = α21 − α22 · α

−1
12 · α11, (32)

Y 21 = α
−1
12 , Y 22 = −α

−1
12 · α11. (33)

The corresponding T and Π-circuit representations are presented in
Fig. 2b and Fig. 2c, respectively.

4. REFLECTION AND TRANSMISSION DYADICS

Introducing dyadic reflection and transmission coefficients R and T ,
eq. (22) can be written as two equations in the following form:

(It + R) · Einc
t = α11 · T · Einc

t + α12 · Z
−1

0 · T · Einc
t , (34)

Z
−1

0 · (It − R) · Einc
t = α21 · T · Einc

t + α22 · Z
−1

0 · T · Einc
t , (35)

where Einc denotes the incoming electric field and Z0 is the free space
impedance dyadic (seen by the tangential fields)

Z0 = η0 cos θ
kt kt

k2
t

+
η0

cos θ

n × kt n × kt

k2
t

. (36)

From eqs. (34) and (35) we can readily solve the transmission and
reflection dyadics:

T = 2
(

α11 + α22 + α12 · Z
−1

0 + Z0 · α21

)−1

· It, (37)

R =
(

α11 + α12 · Z
−1

0

)
· T − It. (38)

5. PRACTICALLY REALIZABLE SLABS

A typical example which fits into the general model presented above,
is a slab of metamaterial, implemented as an array of conducting wires
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and split rings resonators (WM–SRR structure), Fig 1a. The wires are
assumed to be infinitely long in the y-direction. Moreover, the number
of wires in the x-direction, and the number of split-ring resonators both
in the x- and y-directions is assumed to be infinite.

For the case shown in Fig. 1a the non-local permittivity dyadic
reads [9]

ε = εxuxux + εyuyuy + εzuzuz, (39)

εx = εz = εh, εy = εh

(
1 −

k2
p

k2 − k2
y

)
, (40)

where εh is the permittivity of the host matrix, kp is the plasma wave
number, k is the wave number of the host medium, and ky is the
y-component of the wave vector inside the lattice. Generalization of
the dyadic for a case when the wires are periodically arranged along
two directions (double-wire medium with non-connected wires [10]) is
straightforward.

A commonly accepted permeability model as an effective medium
description of dense (in terms of the wavelength) arrays of split-ring
resonators (SRRs) and other similar structures reads (see e.g., [11–13])

µ = µxuxux + µyuyuy + µzuzuz, (41)

µx = µh

(
1 +

Λω2

ω2
0 − ω2 + jωΓ

)
, µy = µz = µh, (42)

where µh is the permeability of the host medium, Λ is the amplitude
factor (0 < Λ < 1), ω0 is the undamped angular frequency of the
zeroth pole pair (the resonant frequency of the array), and Γ is the
loss factor. These parameters can be theoretically estimated for any
particular case [12]. The permeability model is valid when the SRRs
are small in terms of the wavelength. When the SRRs are positioned
to the locations where the quasi-static magnetic field produced by the
wires is zero (to the symmetry planes), there is no near field coupling
between the two fractions [14] and the whole metamaterial can be
characterized by the permittivity and permeability in the form above.

The derivation presented above holds for the WM–SRR structure
only when the wires are parallel to the slab interfaces and the tangential
propagation factor is restricted to the interval 0 ≤ kt < k. In this case
a plane wave incident on the slab excites only TM and TE wave. If
the slab is excited by a source, located close to the surface, or the
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source is inside the slab, an additional TEM wave will be excited by
the source, [9]. The same happens for an incident plane wave, if kt = k.
Note that, when the wires are perpendicular to the interface different
approach is needed. Recently, authors of [15] considered a slab with
wires perpendicular to the interfaces and presented another method to
calculate the transmission coefficient for such a slab.

6. SPECIFIC EXAMPLES

Here we present some calculated results for plane wave transmission
through the WM-SRR slab in Fig. 1b. We compare the transmission
coefficient calculated when the slab is assumed to be uniaxial and non-
local with the transmission coefficient obtained when: (i) the slab is
assumed to be uniaxial but local, or (ii) the slab is assumed to be
isotropic and local. Local model for the permittivity means that ky = 0
in (40). Next, we study the angular dependence of the transmission
coefficient at certain frequencies when the effective refractive index
of the slab is close to zero. For simplicity, only an example of TM
polarization is considered.

For this analysis we assume the following parameters: slab
thickness d = 150 mm, εh = ε0, and kp = 104.7 m−1 (the corresponding
plasma frequency is fp = 5 GHz); µh = µ0, Λ = 0.4, ω0 = 2π ·2.5 GHz,
Γ = ω0/50. The permittivity and permeability dyadics are calculated
in accordance with equations (39)–(40) and (41)–(42), respectively.
The frequency dependence of the permeability and permittivity are
shown in Fig. 3.

Fig. 4 compares the exact transmission coefficient to the
transmission coefficient calculated when the slab is assumed to be
local [case (i)]. Only for the normal incidence (not plotted) the results
are the same. At small incidence angles (e.g., θ = π/6) there is a
transmission maximum around 3 GHz. This maximum corresponds
to the frequency range where both Re{ε} and Re{µ} are negative
and relatively close to unity in magnitude. In this situation a planar
slab can bring a point source to a focus without spherical aberration
[16]. In a certain frequency above 3 GHz Re{µ} becomes positive while
Re{ε} remains negative, leading to a stop-band. At frequency f = fp

permittivity becomes positive and waves can propagate through the
slab. Note that when the permittivity is assumed to be non-local
the position of the pass-band edge is predicted at remarkably higher
frequencies compared to the local model.

For larger incidence angles (e.g., θ = π/3) the maxima around 3
GHz disappear and the transmission coefficient obeys an increasing
behavior starting at f0 (the resonant frequency for µt). Indeed,
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Figure 3. The effective permeability and permittivity of the slab.
The permittivity has been calculated for normal incidence.

Figure 4. Transmission coefficient (absolute value) as a function of
frequency at different incidence angles. Exact transmission coefficient
(thick lines) is compared to the transmission coefficient calculated
using local permittivity model (thin lines). Solid lines: θ = π/6, dashed
lines: θ = π/3.
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Figure 5. Transmission coefficient (absolute value) as a function of
frequency at different incidence angles. Exact transmission coefficient
(thick lines) is compared to the transmission coefficient calculated
using local and isotropic permittivity model (thin lines). Solid lines:
θ = π/6, dashed lines: θ = π/3.

eq. (12) for βTM shows that the term Re{k2
0(µt − sin2 θ)} is negative

at frequencies f > f0. Thus, a pass-band will appear in the frequency
interval f0 < f < fp because in this interval also Re{ε} is negative.

Fig. 5 compares the exact transmission coefficient to the
transmission coefficient calculated when the slab is assumed to be
local and isotropic [case (ii)]. Clearly the assumption that the slab
is isotropic and local leads to severe errors except for the normal
incidence.

For an additional illustration we study the angular dependence of
the transmission coefficient at certain frequencies when the effective
refractive index n of the slab is close to zero while Re{µt} > 0 ∧
Re{µt} 
= µ0, and Re{εt} > 0 ∧ Re{εt} 
= ε0. Comparison is made
between the results given by the non-local and local models (in both
models the slab is assumed to be uniaxial). An interest to this problem
arises from recent suggestions for microwave applications benefiting
from slabs having low value for both Re{µ} and Re{ε} [17].

In practise the condition n ≈ 0, Re{µt} > 0 ∧ Re{εt} > 0 occurs
at frequencies slightly above fp. We have to bear in mind, however, the
physical limitation of the permeability model (42): the model is valid
at low frequencies and at frequencies relatively close to the magnetic
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Figure 6. Transmission coefficient (absolute value) as a function of the
incidence angle at certain frequencies. Exact transmission coefficient
(thick lines) is compared to the transmission coefficient calculated
using local permittivity model (thin lines). Solid lines: f = 1.05 × fp,
dashed lines f = 1.20 × fp.

resonance. Here we assume that in the vicinity of fp the permeability
model is still valid. The transmission coefficients are depicted in Fig. 5.
It shows that transmission maxima, covering a wide range of angles
from 50 to 80 degrees appear when the non-local model is used. These
maxima are not predicted when the local permittivity model is used.
This behavior can be explained by considering the z-component of the
propagation factor, which in this case can be written in the following
form:

β2
TM

k2
0

=

(
1 −

k2
p

k2
0 cos2 θ

)(
µt − sin2 θ

)
. (43)

In order for a wave to propagate through the slab, both terms inside the
parentheses [the right side of eq. (43)] must be simultaneously positive
or negative. For small incidence angles both are positive and for large
angles both are negative. In a certain range of angles, however, these
terms are of opposite sign, leading to a stop-band.

Effectively condition n ≈ 0 can also be achieved in photonic
crystals in the vicinity of the stop-band edge, e.g., [18–20]. This feature
is reported to be important for practical applications (e.g., [21]).
Accordingly, we can apply the developed method to study the
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Figure 7. Transmission coefficient (absolute value) as a function of
the incidence angle at certain frequencies when the slab is assumed
to consist only of wires. Exact transmission coefficient (thick lines)
is compared to the transmission coefficient calculated using local
permittivity model (thin lines). Solid lines: f = 1.05 × fp, dashed
lines f = 1.20 × fp.

transmission characteristics of the slab only in the presence of wires.
In uniaxial crystals the role of spatial dispersion at frequencies where
ε ≈ 0 has been studied earlier in [22]. Fig. 6 shows the calculated results
(note the range of incidence angles). The transmission maxima seen
at certain angles correspond to thickness resonances of the slab. The
results indicate that the slab can be utilized as an effective angular filter
at microwave frequencies. Note that when the permittivity is assumed
to be local, some maxima are also seen in the transmission coefficient,
however, the location of these maxima is incorrectly predicted.

7. CONCLUSIONS

In this paper we have formulated a vector circuit representation
for spatially dispersive uniaxial magneto-dielectric slabs. A dyadic
transmission matrix and the corresponding impedance and admittance
matrices have been derived. The results take into account spatial
dispersion along the planes parallel to the slab interfaces.

The presented results allow the exact calculation of the
transmission and reflection coefficient for a plane wave with arbitrary
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incidence angles. This model is applicable, for example, to a typical
metamaterial implemented as a lattice of conducting wires and split-
ring resonators. It has been shown that for accurate transmission
analysis the uniaxial nature of such a slab, and the spatial dispersion
in the wire media must be taken into account. The calculated results
also indicate the feasibility of the slab to operate as an effective angular
filter at microwave frequencies.

ACKNOWLEDGMENT

This work has been done within the frame of the European
Network of Excellence Metamorphose. The authors wish to thank
Professor Constantin Simovski and Dr. Ari Viitanen for stimulating
discussions.

REFERENCES

1. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of
Waves, IEEE Press, Piscataway, NJ, 1991.

2. Lindell, I. V. and E. Alanen, “Exact image theory for the
Sommerfeld haf-space problem, part III: General formulation,”
IEEE Trans. Antennas Propagat., Vol. AP-32, 1027–1032,
Oct. 1984.

3. Oksanen, M. I., S. A. Tretyakov, and I. V. Lindell, “Vector circuit
theory for isotropic and chiral slabs,” J. Electromagnetic Waves
Appl., Vol. 4, 613–643, 1990.

4. Tretaykov, S., Analytical Modeling in Applied Electromagnetics,
Artech House, Norwood, MA, 2003.

5. Viitanen, A. J. and P. P. Puska, “Reflection of obliquely incident
plane wave from chiral slab backed by soft and hard surface,” IEE
Proc. Microwaves, Antennas and Propagat., Vol. 146, 271–276,
Aug. 1999.

6. Serdyukov, A., I. Semchenko, S. Tretyakov, and A. Sihvola, Elec-
tromagnetics of Bi-anisotropic Materials; Theory and Applica-
tions, Gordon and Breach Science Publishers, 2001.

7. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser,
and S. Schultz, “Composite medium with simultaneously negative
permeability and permittivity,” Phys. Rev. Lett., Vol. 84, 4184–
4187, May 2000.

8. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart,
“Magnetism from conductors and enhanced nonlinear phenom-



Progress In Electromagnetics Research, PIER 63, 2006 293

ena,” IEEE Trans. Microwave Theory Tech., Vol. 47, 2075–2084,
Nov. 1999.

9. Belov, P. A., R. Marqués, S. I. Maslovski, I. S. Nefedov,
M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong
spatial dispersion in wire media in the very large wavelength
limit,” Phys. Rev. B, Vol. 67, 113103, March 2003.

10. Nefedov, I. S., A. J. Viitanen, and S. A. Tretyakov, “Electromag-
netic wave refraction at an interface of a double wire medium,”
Phys. Rev. B, Vol. 72, 245113, 2005.

11. Kostin, M. V. and V. V. Shevchenko, “Artificial magnetics based
on double circular elements,” Proc. Bianisotropics’94, 49–56,
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