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Abstract—Two parallel dipoles are assessed for antenna diversity.
The three-dimensional radiation pattern is considered for signals
correlation coefficient. The pattern analysis reveals that, depending on
dipole spacing, three types of diversity techniques are generated: space,
amplitude-pattern and phase-pattern diversity. The weighting of each
technique in signals correlation coefficient mitigation is investigated.
The results show that for closely spaced dipoles, the generated phase-
pattern diversity is the most dominant factor which greatly reduces
the signals correlation coefficient.

The diversity configuration is measured in a rich scattering
environment. Results include signals correlation coefficient, diversity
gain for selection combining and maximum ratio combining, effective
diversity gain and antenna radiation efficiency can be demonstrated.
We show that in rich multipath channel the minimum spatial distance,
for effective diversity gain performance, is reduced from 0.5λ for
uncoupled dipoles to 0.15λ for coupled dipoles.

1. INTRODUCTION

Antenna diversity plays a crucial role in wireless communications
over fading channels being the topic of considerable research for
many decades [1]. In recent days, there has been increasing use
of antenna diversity in mobile terminals and in indoor small base
stations. In indoor environments, the angular spread of scattering
field on the antennas is large and gives short spatial de-correlation
distance. The diversity performance in such multipath environment
depends directly on the antennas de-correlation distance [2]. The trend
of recent development on the small communication devices is to design
closely spaced antenna elements to achieve an effective diversity system
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within the available small space. The resulting closely spaced antenna
elements exhibit mutual coupling [3]. The antenna de-correlation
distance is significantly affected by the mutual coupling. Measurements
in the past [1] and our recent research [4] show that closely spaced
dipole antennas (0.05 wavelengths apart) can still give a low signals
correlation, in contrast to previous work on uncoupled dipoles showing
that 0.5 wavelengths spacing is needed.

A variety of studies has analytically examined the diversity
performance of coupled antennas. These studies are performed in
two categories: one considers the mutual impedance, mutual coupling
or scattering parameters of the antennas [5–8] and the others insist
on the effect of coupling on the antenna radiation pattern and the
resulting correlation between the received signals [9–14]. The available
analytical models based upon the mutual impedance provide an
approximation of the diversity performance. This is because that
we do not know the exact current distribution along the coupled
antennas [6]. An alternative method is to consider the diversity
performance using embedded element pattern defined in [14]. The
present paper gives a detail analysis of the correlation coefficient
of two parallel dipoles with various spacing. We treat the same
geometry used by Kildal and Rosengren [13], but we use a numerical
approach instead of their classical method. Our analysis based upon
the complex pattern shows a composite form of the space and the
pattern diversity for the dipole spacing less than 0.4λ. A rigorous
analysis of the radiation pattern divides the pattern diversity into
amplitude-patterns and phase-patterns diversity. The relative impacts
of these diversity techniques on the signals correlation coefficient are
separately investigated. It is shown that, the phase-patterns diversity
is the most dominant factor in correlation mitigation for small dipole
spacing. It is also shown that the patterns can have very similar shapes
and still be uncorrelated if the phase-patterns are different.

The simulations are followed by laboratory measurements carried
out inside a reverberation chamber [15]. We use Supelec large
reverberation chamber as a facility for testing the diversity antennas
[16]. The dimensions of the chamber are 3 meters long, 1.80 meters
wide and 2.80 meters high. The chamber makes use of a mechanical
stirrer. The measurements are performed at 2450 MHz with two half-
wave dipoles. The signals correlation coefficient is precisely measured
with high spatial resolution. The selected high frequency and the large
chamber size make the measurement accuracy good. The apparent
diversity gains for the selection combining (SC) and the maximum
ratio combining (MRC) versus dipoles separations are computed from
the measured complex signals. The measured apparent diversity gain
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illustrates some variations (±0.5 dB) in small antenna separation that
is explained in Section 3.3. Effective diversity gain which represents the
gain over a single antenna and includes the effect of both correlation
coefficient and radiation efficiency is also measured by the same manner
explained in [13]. The mean received power degradation at the coupled
dipoles is measured and is compared with the modeled radiation
efficiency.

2. CORRELATION COEFFICIENT AND PATTERN
ANALYSIS

The signals correlation between two antenna configurations is a
performance factor that shows the diversity effects of multiple
antennas. In Rayleigh fading channel the complex correlation
coefficient (ρc) is given by [1, 17, 18]
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where Ω(θ, ϕ) is the spatial angles in steradian (θ and ϕ are depicted
in Fig. 1), E1θ, E1ϕ, E2θ and E2ϕ are the complex envelopes of the θ
and ϕ components of the field patterns of the antenna for each port
excitation; Pθ and Pϕ are the probability distributions of the power
incident on the antenna in the θ and ϕ polarizations, respectively; X
is the cross polarization power ratio and is defined as the mean received
power in the vertical polarization to the mean received power in the
horizontal polarization. The incident field powers are normalized to
unity and the antenna power gains are normalized to isotropic.

In an indoor environment and equally inside a reverberation
chamber there are many nearby scatters, so the signals are arriving
from more isotropically scenarios, therefore a uniform scattering field
distribution is supposed [19]. To provide a good agreement with
the experimental measurement setup (see Section 3), the correlation
coefficient (1) is derived in an isotropically scattered field environment
(Pθ = Pϕ = 1/4π) and unpolarized case (X=1). Then, if the antennas
are vertically polarized, as is the case in parallel side-by-side and z-
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Figure 1. Two parallel (half-wave) dipoles horizontally separated with
distance d.

oriented dipoles (E1ϕ = E2ϕ = 0), (1) is simplified to

ρc =
1
4π

∫
Ω

E1θ(Ω) · E∗
2θ(Ω)dΩ =

1
4π

∫
Ω

|C(Ω)|ejΨ(Ω)dΩ (2)

Equation (2) is also expressed as a function of the coupling-pattern
magnitude and coupling-pattern phase factors, |C(Ω)| and Ψ(Ω),
respectively. The envelop correlation coefficient, i.e., the correlation
coefficient between signals envelop, in Rayleigh distributed multipath
channels is approximately given by the square of the complex
correlation [5]. We have shown that in a rich field scattering
environment (i.e., reverberation chamber) the correlation coefficient
of the signal powers (ρP1P2) and the signal voltages (ρV1V2) are closely
equal and both satisfies [16]

ρe = ρV1V2 = ρP1P2
∼= |ρc|2 (3)

The envelop correlation between two identical patterns which are
circularly symmetric and horizontally separated with distance d is
given by the square of the zero order Bessel function |J0(βd)|2, where
β is the wave number. This is so called Clarke function [5, 20] and
shows the spatial diversity effects. The theoretical envelop correlation
between two half-wave dipoles (Fig. 1), which are parallel, z-oriented
and horizontally separated with distance d, is computed from the dipole
antenna element factor (|E1θ| = |E2θ| = A cos(π/2 cos θ)/ sin θ) and
the coordinate translation term (Ψ(Ω) = βd cos ϕ sin θ) by applying
into (2) and (3). Fig. 2 shows the theoretically calculated envelop
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Figure 2. (- - -) Theoretical envelop correlation between two half-wave
dipoles with separation distance d, computed from the antenna element
factor by assuming an isotropically scatters; (—) Clarke’s function.

correlation coefficient against distance. The calculated result is similar
to the Clarke function. As a point to note, the curve will be the same
as Clarke function when the scattered field is uniformly distributed in
the antenna azimuth plane.

The signals correlation coefficient varies in the same manner with
antenna separation if no mutual coupling effect between the antennas is
assumed [5]. In practical diversity applications, the antennas are both
matched to 50Ω source impedances. When the antennas are brought
closer, the mutual coupling between the antennas is increased [4]. As a
result, the coupling alters somewhat the current (amplitude and phase)
along the antennas. The direct result of the new current distribution
is a modified radiation patterns, lead to a novel form of diversity in
addition to the space diversity. To examine the impact of the generated
diversities on the correlation coefficient, no expressions for the coupled
antenna patterns exist, motivating the use of full-wave electromagnetic
solutions.

The dipole antenna configuration (Fig. 1) is simulated using time-
domain transmission line matrix (TD-TLM) method code. The TLM
method is a three-dimensional volumetric time domain method that
provides a full temporal field solution to the Maxwell equations. In this
analysis, two half-wave dipoles are horizontally separated with distance
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d and one is located at the centre of the computational domain. The
simulated dipoles radius is 1.2 mm i.e., 0.01λ for 2450 MHz. Because
we are considering narrow-band systems, single-frequency antenna
excitation is assumed. The TLM grid uses 88 cells per wavelength in z-
direction and 160 cells per wavelength in x and y directions. This fine
grid resolution permits the accurate calculation of the dipoles currents
at very close spacing.

The radiation field pattern of the antennas is complex value and
can be expressed as field amplitude and phase in relation to the spatial
angles, Ω (θ, ϕ). The 3-D complex embedded element pattern of each
dipole by assuming the next dipole is Z0 terminated (for instance,
Z0 = 50Ω) is computed in amplitude and phase, separately. Using the
numerical analysis code, accurate estimation of the antenna currents
at the presence of the coupling is obtained and a rigorous value
of the patterns are computed. The numerically computed complex
patterns are applied into (2), (3) and the envelop correlation coefficient
is derived. The simulated envelop correlation against distance is
depicted in Fig. 3. Small envelop correlation is illustrated even for
small apart, for instance for d = 0.05λ gives ρe = 0.35. As shown,
the envelop correlation, for small antenna separations, is significantly
reduced compared to the theoretical value (see Fig. 2 and Fig. 3).
This indicates that the assumption that the patterns are identical
and circularly symmetric is no longer suitable when we calculate the
embedded element patterns.

Here we explain the observed low signals correlation by the
analysis of the farfield pattern. The radiation field amplitude and
phase values, both, impact the signals correlation coefficient. To
evaluate the related effects, the coupling-pattern amplitude, |C(Ω)|,
and the coupling-pattern phase, Ψ(Ω), are separately computed from
the modeled patterns. Referring to Fig. 1 and (2), we divide the
coupling-pattern phase, Ψ(Ω), into: the coordinate translation term
and an assumed phase-patterns difference generated by the coupling,
∆Φ(Ω), i.e.,

Ψ(Ω) = βd cos ϕ sin θ + ∆Φ(Ω), Ω(θ, ϕ) (4)

Now we consider the following cases:
1) If the dipole spacing is more than one wavelengths (d > λ), the

mutual power coupling between the antennas is too small (less than
−18 dB) [4]. The far-field patterns are similar. Therefore, the coupling-
pattern amplitude is theoretically given by the square of the element
factor of an isolated dipole (i.e., |C(Ω)| = [A cos(π/2 cos θ)/ sin θ]2);
the coupling-pattern phase is generated due to their different locations
i.e., ∆Φ(Ω) = 0 in (4). By this assumption, the signal correlation
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Figure 3. Correlation coefficient as a function of the dipole
spacing (wavelength), simulated and measured inside an isotropically
scattered field environment, (- - -) theoretical calculated; (...) overall
simulated; (—) simulated using amplitude-pattern diversity effects;
(- . - . -) simulated using phase-pattern diversity effects; (–•–) overall
measured inside reverberation chamber.

versus dipole spacing follows the theoretical curve given in Fig. 3 and
is known as the space diversity.

2) The numerically computed coupling-pattern amplitude, |C(Ω)|,
is replaced by the theoretical value and the coupling-pattern phase,
Ψ(Ω), is supposed to be varying according to the space factor i.e.,
∆Φ(Ω) = 0 in (4). The envelop correlation versus dipole spacing
is computed by (2) and (3). The result including the effects of
the amplitude-pattern diversity is illustrated in Fig. 3. As shown,
the correlation coefficient is slightly reduced compared to the space
diversity curve. The maximum effect is observed for d = 0.2λ and the
correlation is alleviated about 0.15.

3) The numerically computed coupling-pattern phase, Ψ(Ω), is
applied into (2) and the coupling-pattern amplitude is set to be
equal to the theoretical value. The correlation coefficient is computed
containing the effects of the assumed phase-pattern diversity, ∆Φ(Ω).
Fig. 3 illustrates the relative effects of the phase-pattern diversity.
As can be seen, due to the phase-pattern diversity the correlation
coefficient for small separations is greatly reduced compared to the
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theoretical curve. The maximum effect is observed for d = 0.1λ and
the correlation is reduced more than 0.7. As shown, for d < 0.4λ the
impact of the phase-pattern diversity on the correlation mitigation is
stronger than the amplitude-pattern diversity.

The above analyses reveal that, the phase-pattern diversity is the
most dominant factor in signals correlation mitigation in the coupled
antennas. It is important to point out that in compact antenna
diversity arrangement, if a significant mutual coupling exists the phase-
pattern information is essential for diversity performance evaluation.
The idea is effective and simplifies the design of antenna pattern-
diversity systems, where low correlation coefficient is subjected to
small overlapped radiation patterns and the phase-pattern diversity
effect is being neglected [21–23]. To illustrate this term, the embedded
element pattern of the dipole diversity configuration for two different
separations (d = 0.1λ and d = 0.2λ) are shown in Fig. 4. The farfield
patterns for both cases are highly overlapped but due to the phase
difference between the patterns the received signals are uncorrelated
i.e., ρe = 0.1 and 0.05, respectively.
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y 

Figure 4. Embedded element patterns of two closely spaced dipole
antennas for two different separation distances (a) d = 0.1λ (b)
d = 0.2λ; the bolded line shows the 3 dB beam-width. The radiation
patterns are highly overlapped but the patterns are still uncorrelated.

We have shown that the composite form of the space and the
phase-pattern, i.e., Ψ(Ω), diversity is the most efficient diversity
techniques for the coupled dipoles. Illustration of the pure phase-
pattern diversity, ∆Φ(Ω), requires careful simulation of the diversity
antennas. We have simulated the antenna structure shown in Fig. 1
by the assumption that the excited antenna is always located at the
centre of the coordinate system. This means that the pattern of the
dipole 1 is computed at the presence of the dipole 2, then the pattern
of dipole 2 is computed when the two antennas are repositioned i.e.,
dipole 2 is at the centre of the coordinate. Again the spherical field
pattern will be taken, which is a mirror image of the first field pattern
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in this situation. By the present approach the effect of the different
locations (space diversity) is removed from the farfield patterns and
the phase difference between the two simulated patterns is related to
the phase-pattern diversity, i.e., Ψ(Ω) = ∆Φ(Ω). Fig. 5 illustrates the
spatial phases-pattern difference for d = 0.1λ dipole spacing. In the
absence of the mutual coupling, the phase-pattern difference for all
spatial angles will be zero.
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Figure 5. Illustration of the pure phase-pattern diversity, ∆Φ(Ω),
versus spatial angles Ω(θ, ϕ) for dipole spacing, d = 0.1λ.

3. ANTENNA MEASUREMENT

3.1. Measurement Setup

Reverberation chambers have large popularity for electromagnetic
immunity testing. In recent years, there has been increasing use
of reverberation chambers for wireless antenna tests in multipath
environments [4, 13–16, 23]. The measurements in the present paper
are performed in Supelec reverberation chamber. The measurement
setup is depicted in Fig. 6. The metal walls of the chamber
allow a large field to be built up inside the chamber. A large
stirrer in the form of four tilted cross paddles is installed at the
ceiling and stirs the cavity modes of the chamber by turning. The
reverberation chamber corresponds to a spatially uniform multipath
propagation channel in which all directions of arrivals are equally
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Figure 6. Experimental measurement setup for multipath generation
consisted in: large reverberation chamber with one rotating stirrer;
one transmitting antenna (dipole) installed on the wall at hTx = 2.2 m
next to the stirrer; two half-wave dipole receiving antennas with an
adjustable distance; network analyser as the transmitter and receivers;
personal computer for controlling the stepper motor and the data
analysis.

probable [26, 27, 15]. Whenever the input field is perfectly stirred, the
resulting electromagnetic field within the chamber (in one point) can
be seen as the superposition of many independent plane waves from
all directions and therefore the field is a complex Gaussian process.
As a matter of fact the amplitude of the complex electromagnetic
field is Rayleigh distributed and the phase is uniformly distributed.
In the present work, to provide an environment with perfectly stirred
field the transmitting antenna is a dipole, wall mounted at a height of
2.2 m and is horizontally polarized and installed at the left side of the
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rotating stirrer (see Fig. 6). The receiving antennas are two similar
half-wave dipoles that are fed with coaxial line through a quarter-
wavelength balun. The dipoles are vertically polarized to avoid direct
coupling from the transmitting antenna. They are fixed at the working
volume of the chamber with sufficient distance (more than 5λ) from
the stirrer and the metallic walls at a height of 1.5 m. This large
distance from the surrounding metallic objects avoid the mutual effects
of the environment on the antenna characteristics. An E8358A Agilent
vector network analyzer is used as both transmitter and receiver,
which allows coherent channel sounding. Some modifications at the
network analyzer port connections are made that permits to use it
as a three ports instrument, one for transmitting and the two others
for receiving. It is set to work in single trace, single frequency and
zero span mode that permits to acquire the received signals in time
domain. The chamber is excited using a CW signal at 2450 MHz
generated by the transmitter system of the network analyzer. The
stirrer is programmed and is continuously rotating with a constant
angular velocity of ω = 2π/100 (rad/sec) i.e., one revolution takes
100 sec. The amplitude of the received signal is modulated due to
the fading generated by the rotating stirrer. The signals amplitude
variations are detected by the receiver system of the network analyzer
and the signals are sampled and stored inside the internal buffer of
the network. The internal buffer can record up to 1601 samples of the
signals. Using the single trace mode the signal samples are recorded
and then stored in an external disk for offline processing.

The first-order statistics (complex Gaussian distribution) and the
second order-statistics (auto-correlation of the real and imaginary
parts, cross-correlation of the real-imaginary parts, level crossing
rate and average fade duration) of the measured fading signals are
examined [16]. The measurement illustrates good agreement between
the reverberation chamber fading emulator and the fading simulators
related to Clarke [24] and Jakes [25]. The fading amplitude for one
revolution of the stirrer is Rayleigh distributed. The scattered field
cross-polarization ratio is unity. The measurement inside the chamber
is repeatable by the stirrer revolution.

The above approach offers a reasonable measurement time for
signals acquisition i.e., the measurement time for single frequency with
two receiving antennas takes only 100 sec. The chamber is naturally
shielded from any interfering signals through the measurements.

In the measurement procedure we have avoided the use of
frequency stirring used in [13, 14]. This is because, when the
frequency is changed the normalized distance between the antennas is
corrupted and this gives smaller accuracy. Also the frequency stirring
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makes changes in the antenna port impedances (if the antennas are
narrowband) and this reduce the accuracy of the single frequency
measurement. Further, small frequency stirring would not generate
uncorrelated fading signal samples.

3.2. Signals Correlation Coefficient

In the diversity test procedure the dipole antennas are connected to
the receivers. The complex S-parameters between the transmitter port
and the dipole receiving antennas are simultaneously sampled with
a rate of 1601 samples per revolution of the rotating stirrer. The
sample numbers are sufficient and can describe the manner in which
the multipath channel change (modulates) the transmitted signals at
2450 MHz (this can be tested through the samples autocorrelation
function) [16]. The received signals are synchronized with the
transmitter therefore the signals phase can be evaluated, accurately.
One dipole antenna is fixed and the next one is adjustable and the
distance can be varied. The distance between the parallel dipoles are
adjusted from 0.025λ up to λ and the measurements are repeated for
one revolution of the stirrer and for each antenna apart. In small dipole
spacing more resolutions are applied. The received signals are recorded
and are used for offline processing.

Considering the received signals as x1(t) and x2(t) (in complex
base-band representation) the complex correlation coefficient between
the signals is defined as

ρc =
E {(x1(t) − x1)(x2(t) − x2)∗}√

E {|x1(t) − x1|2}E {|x2(t) − x2|2}
(5)

where E is the expectation value and the bar indicates time average.
The envelope correlation coefficient between the diversity signals are
computed (3). Fig. 3 shows the measured correlation coefficient against
separation distance. Small correlation coefficient is measured even for
small dipole spacing. The measurement and simulation results are in
good accordance with a maximum error of about 0.07 for d = 0.3λ.
This small discrepancy is explained by the way that, in the simulation
procedure the non-exciting antenna element is locally connected to
50Ω terminal impedance, even when the antenna resonance length is
moved from the exciting frequency (due to the mutual coupling). In
the measurement procedure, we are not able to locally connect the
dipole antennas to the 50Ω loads and they are connected through the
quarter-wavelength balun to the coaxial line. The terminal loads of two
dipoles, in small separations, are drifted from the 50Ω impedances (for
the measurement frequency) by to the mutual coupling effects. This
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generates a condition that both antennas are not locally connected
to 50Ω and various terminal impedances depending on the separation
distance between the antennas are generated. This term illustrates
more effects on the diversity gain variations (Section 3.3).

3.3. Diversity Gain

Diversity gain is the performance factor characterizing a diversity
system. It depends on the correlation coefficient, power imbalance
in diversity branches and signals combining. In order to investigate
the full diversity benefit, we utilize the concept of effective diversity
gain introduced in [13, 14]. For present paper the diversity gain is
determined from the data at 0.1 level on the diversity cumulative
distribution function (CDF) and assuming SC and MRC [1]. Accurate
measurement of the diversity gain in smaller levels requires large
number of uncorrelated signal samples.

The CDF plot of the measured signals for various separations is
computed. Fig. 7 illustrates the CDF plot of the received signal powers,
P1 and P2 (for instance, d = 0.2λ), normalized to the mean branch
power, also the CDF of signals after combining. The CDF plot of the
received powers using single dipole, with no additional antenna close
to it, is also plotted. The apparent diversity gain is obtained from the
difference in dB between the signal powers in diversity branches and
after signal combining at 0.1 CDF level. To avoid the mutual effect of
the power imbalance on the diversity gain estimation, the difference
in branches mean powers is verified through the measurement and
lies within ±0.3 dB interval. Fig. 8 shows the measured apparent
diversity gains versus dipoles separation. As shown, the diversity gain
for d > 0.5λ is constant about 5 dB for SC and 6.5 dB for MRC. Small
variations within ±0.5 dB at close distances (0.05λ < d < 0.5λ) are
depicted. As it was explained different terminal impedances on the
various spacing are generated and the mutual effect gives diversity
gain variations. The termination effects can be compensated by the
measuring frequency shift or by applying an appropriate matching
network at the antenna ports (not performed in this work).

It is important to note that, the measured diversity gain
of the present phase-pattern diversity system is the same as the
space diversity system [22], if an equivalent correlation coefficient is
considered.

In Fig. 7 it was shown that the CDF plot of a single antenna
compared to diversity configuration is shifted to the right. This is
because, a single antenna in a multipath environment receives more
mean power than coupled antennas, where the radiation efficiency is
reduced by the absorption and mismatch effects [13]. To include this
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Figure 7. CDF of the measured signal powers inside reverberation
chamber for dipole spacing d = 0.2λ; P1 and P2 are the measured
signal powers in the diversity branches; PSC and PMRC are the signal
power after diversity combining; PSingle is the signal power received
with a single antenna with no antenna close to it.

effect in the diversity gain, we extract the gain in relation to the CDF
plot of a single antenna measured at the identical propagation channels
(effective diversity gain). Fig. 9 illustrates the measured effective
diversity gain versus dipoles separation. As shown, the gain is smoothly
reduced (about 1 dB) within 0.5λ and 0.15λ apart; in smaller distances
the gain is rapidly dropped. This is a good result showing the limit
of spacing between coupled antennas for effective diversity application.
It can also be concluded that, a small correlation coefficient is not the
sufficient condition for optimum diversity gain performance.

3.4. Antenna Efficiency

In this part we compare the modeled antenna radiation efficiency
with the measured mean powers inside the reverberation chamber.
The radiation efficiency is most conventionally calculated in transmit
mode and it is the same on reception, due to reciprocity. In the
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coupled antennas the radiation efficiency is degraded by absorption
in neighboring antenna or by impedance mismatch at the antenna
terminals. The antenna efficiency for various dipole separations is
calculated using TLM method by exciting one antenna and 50Ω
terminating of the next antenna. Integrating the loss (material loss
and power absorption at the next 50Ω terminal load) over calculating
volume and considering the mismatch effects, gives the overall antenna
efficiency. Antenna efficiency in diversity prototype is compared to
single antenna efficiency, with no additional antenna close to it, and
the overall efficiency degradation versus dipoles distance is computed
and is plotted in Fig. 10.
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Figure 10. Simulated radiation efficiency degradation (dB) and
the measured mean signal power degradation (dB) in diversity
configuration compared to single dipole antenna, versus dipole spacing
(λ).

The mean received powers at the fixed dipole antenna port (see
Fig. 6), in diversity configuration are compared to that mean received
power with no additional antenna close to it. The mean power
degradation is evaluated and is depicted in Fig. 10. By comparing
the two curves in Fig. 10 we conclude that the mean received power
reduction, due to coupling, in diversity prototype is approximately
equal to the simulated antenna efficiency degradation factor. A
comparison among Figures 8–10 reveals that, the effective diversity
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gain at 0.1 CDF level (Fig. 9) is equal to the difference in dB between
apparent diversity gain in Fig. 8 and efficiency degradation factor in
Fig. 10. The measured and simulated degradation factors are in good
agreement with the measurements presented by Kildal [13].

4. CONCLUSION

This paper has presented the pattern analysis of two parallel dipoles in
diversity configuration. The correlation aspects of the parallel dipoles
are investigated in detail. Phase-pattern diversity is illustrated that
significantly reduces the signals correlation in small dipole spacing. It
was shown that, the radiation patterns can be highly overlapped but
still produce uncorrelated signals in multipath environments due to
their phase difference.

The diversity configuration is explored inside the multipath
channel of a reverberation chamber. A measurement setup is proposed
that offers a reasonable measurement time for signals acquisition.
Diversity performance factors include: signals correlation coefficient,
diversity gain for SC and MRC are measured. The diversity gain of
the phase-pattern diversity is comparable with the diversity gain of the
space diversity systems.

Mutual coupling is efficient for the signals correlation but reduces
the radiation efficiency. The effective diversity gain is a good indicator
gives the performance enhancement of the coupled antennas. The
minimum dipole spacing for optimum gain, based upon the effective
diversity gain, is measured and is about 0.15λ apart. Antenna radiation
efficiency can be used for effective diversity gain estimation from the
apparent diversity gain.
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