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ANALYSIS OF RADIATION FROM A
CYLINDRICAL-RECTANGULAR MICROSTRIP PATCH
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AIR GAP, USING THE ELECTRIC SURFACE
CURRENT MODEL
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Abstract—Radiation from a superstrate loaded cylindrical-rectangular
microstrip patch antenna with an air gap between the substrate and the
superstrate, is analyzed using the full-wave approach and the electric
surface current model. Results are presented in the form of normalized
radiation patterns for various thicknesses of the air gap and also for
superstrates made of lossy dielectric material, to show the effects of
these on the radiation from the antenna. Both axial and azimuthal
current elements are considered.

1. INTRODUCTION

Microstrip patch antennas are widely used as conformal antennas in
many practical applications. When a microstrip patch antenna is
employed as an outdoor antenna, a superstrate layer is generally added
on top of the patch to act as a radome to provide protection from
environmental hazards such as rain, snow, dirt, etc. As the addition
of a superstrate layer can change the characteristics of the microstrip
structure, being able to analyze a microstrip antenna loaded with a
superstrate is vital to understand how the radiation from it would
change with the type of superstrate being used.

Since the cylindrical-rectangular microstrip patch antenna is a
very popular type of conformal antenna, it has been analyzed in the
past using different methods. In [1, 2], the cavity model has been
used to analyze cylindrical-rectangular patch antennas, printed on a
dielectric substrate, while in [3, 4] the method of moments (MoM)
has been used for analyzing them. Similar antennas printed on a
chiral substrate have been analyzed in [5] using the MoM and the
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dyadic Green’s functions derived for the problem with reference to
[6, 7]. The MoM has been used in [8, 9] also, but for analyzing a
cylindrical-rectangular patch antenna loaded with a lossless dielectric
superstrate. The analysis of a cylindrical-rectangular microstrip patch
antenna using the electric surface current model (ESCM) was first
presented in [10, 11], with the main emphasis being to calculate the
radiation from the antenna. Recently, such an antenna loaded with a
lossless dielectric superstrate and fed by a coaxial probe is supposed
to have been analyzed in [12] using the ESCM, but no details of the
analysis have been given. The main advantage of using the ESCM
is being able to obtain a closed form solution. As such, the analysis
is simpler and the time taken for performing the analysis is much less
than that when using the MoM. Also, the ESCM can be used to analyze
a patch antenna loaded with a superstrate directly on top or spaced
away from the patch with an air gap, for which the cavity model cannot
be used.

In this paper, we analyze a cylindrical-rectangular microstrip
patch antenna loaded with a superstrate spaced away from the patch
and an air gap between the substrate and the superstrate, using the
ESCM, for superstrates made of lossy dielectric material, to investigate
the effects of the thickness of the air gap and the lossyness of the
superstrate material on the radiation from the antenna. The antenna is
modeled using an infinitely long concentric circular cylindrical micro-
strip structure consisting of a perfectly conducting ground cylinder
and coaxial cylindrical substrate, air gap, and superstrate layers. The
patch is assumed to be a perfect conductor of zero thickness printed
on the dielectric substrate. In order to perform the analysis, the patch
is replaced by an assumed surface current distribution, which in many
cases can be obtained using a cavity model approximation that is valid
as long as the radiation is small compared to the stored energy. To the
best of the authors’ knowledge, this is the first time a detailed analysis
of such a structure using the ESCM has been presented.

The structure of the rest of the paper is as follows. Section
2 describes the formulation of the problem which is carried out by
expressing the electromagnetic fields in each region in terms of a
two-dimensional inverse Fourier transform with unknown expansion
coefficients and then imposing the appropriate boundary conditions at
each interface between regions. The evaluation of the fields in the far
zone is described in Section 3, and the results obtained in the form
of normalized radiation patterns and directivity patterns for different
thicknesses of the air gap as well as for superstrate materials of different
permittivities are given in Section 4. Finally, some conclusions are
presented in Section 5.
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2. FORMULATION
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Figure 1. Geometry of the cylindrical-rectangular microstrip antenna
loaded with a superstrate and an air gap between the substrate and
the superstrate.

Consider a cylindrical-rectangular microstrip patch antenna
loaded with a dielectric superstrate and an air gap between the
substrate and the superstrate, as shown in Fig. 1. The microstrip
patch is mounted on an infinitely long cylindrical ground of radius a.
The cylindrical substrate (region 1) has a relative permittivity εr1 and
a thickness b − a, the air gap (region 2) has a relative permittivity
εr2 = 1 and a thickness c− b, while the cylindrical superstrate (region
3) has a relative permittivity εr3 and a thickness d − c. Region 4 is
free space with permittivity ε0 or relative permittivity εr4 = 1. The
permeability in all regions is assumed to be free space permeability µ0.
The curved rectangular patch located at the substrate-air gap interface
has a straight dimension 2L and a curved dimension 2bφ0 as shown in
Fig. 1, with 2φ0 being the angle subtended by the curved patch at the
center of the coaxial cylinders. Assuming a time harmonic dependence
of exp(jωt), the z components of the electric and magnetic fields in
the ith region for i = 1, 2, 3, 4 can be expressed in terms of functions in
a cylindrical coordinate system (ρ, φ, z) attached to the center of the
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coaxial cylinders as [13]

Eiz(ρ, φ, z) =
1
2π

∞∑
n=−∞

ejnφ
∫ ∞

−∞
dkz e

−jkzz[AinH
(2)
n (kiρρ) +BinJn(kiρρ)]

(1)

Hiz(ρ, φ, z) =
1
2π

∞∑
n=−∞

ejnφ
∫ ∞

−∞
dkz e

−jkzz[CinH
(2)
n (kiρρ)+DinJn(kiρρ)]

(2)
where kz is the propagation constant, k2

iρ = ω2µ0εi − k2
z , εi = ε0εri,

Ain, Bin, Cin, Din are the unknown expansion coefficients of harmonic
order n and functions of kz, and H(2)

n (x), Jn(x) are respectively, the
Hankel function of the second kind and the Bessel function, of order n
and argument x. The transverse field components Eiρ, Eiφ, Hiρ, Hiφ

in the ith region can be obtained from Eiz and Hiz as [14]

Eiρ = −jkz

k2
iρ

∂Eiz

∂ρ
− jωµ0

k2
iρρ

∂Hiz

∂φ
, Eiφ = − jkz

k2
iρρ

∂Eiz

∂φ
+
jωµ0

k2
iρ

∂Hiz

∂ρ
(3)

Hiρ =
jωεi
k2

iρρ

∂Eiz

∂φ
− jkz

k2
iρ

∂Hiz

∂ρ
, Hiφ = −jωεi

k2
iρ

∂Eiz

∂ρ
− jkz

k2
iρρ

∂Hiz

∂φ
. (4)

To solve for the unknown expansion coefficients, appropriate boundary
conditions for the tangential field components should be imposed at the
interfaces ρ = a, b, c, d. Imposing the boundary conditions E1z = 0
and E1φ = 0 at ρ = a yield

F (A1n, B1n, k1ρ, a) = 0 (5)

nkz

k2
1ρa
F (A1n, B1n, k1ρ, a) +

jωµ0

k1ρ
F ′(C1n, D1n, k1ρ, a) = 0 (6)

where
F (Pin, Qin, kiρ, ρ) = PinH

(2)
n (kiρρ) +QinJn(kiρρ)

F ′(Pin, Qin, kiρ, ρ) = PinH
(2)′
n (kiρρ) +QinJ

′
n(kiρρ)

for i = 1, 2, 3, 4, with H
(2)′
n (x) and J ′n(x) denoting the respective

derivatives of H(2)
n (x) and Jn(x), with respect to x.

The equations obtained by imposing the boundary conditions for
Eiz and Eiφ at each of the interfaces ρ = b, ρ = c, and ρ = d can be
written in the general form

p+1∑
i=p

(−1)iF (Ain, Bin, kiρ, !) = 0 (7)
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p+1∑
i=p

(−1)i

{
nkz

k2
iρ!
F (Ain, Bin, kiρ, !) +

jωµ0

kiρ
F ′(Cin, Din, kiρ, !)

}
= 0

(8)
with B4n = D4n = 0, and the two equations associated with each of
the interfaces ρ = b, ρ = c, and ρ = d obtained by substituting p = 1
! = b, p = 2 ! = c, and p = 3 ! = d, respectively, in (7) and (8).

The general form of the equations resulting from imposing the
boundary conditions for Hiz and Hiφ at each of the interfaces ρ = c
and ρ = d can be obtained from (7) and (8), respectively, by replacing
Ain, Bin by Cin, Din and vice versa, and replacing µ0 by −εi.

Ain, Bin, Cin, Din for i = 1, 2, 3 can then be expressed in terms
of A4n and C4n using the above equations that resulted from imposing
the boundary conditions for the tangential electric and magnetic fields
as

Cin = σa
i A4n + σc

i C4n (9)
Din = τa

i A4n + τ c
i C4n (10)

Ain = αa
iA4n + αc

i C4n (11)
Bin = βa

i A4n + βc
i C4n (12)

with σe
i , τ

e
i , αe

i , β
e
i for i = 1, 2, 3, e = a, c defined in Appendix A.

By applying the discontinuity boundary condition ρ̂×(H2−H1) =
J at ρ = b, where Hi is the magnetic field in region i and J is the
surface current on the patch, we get H1z −H2z = Jφ, H2φ −H1φ = Jz.
Substituting for H1z, H2z from (2) and for H1φ, H2φ from (4), and
then taking the Fourier transforms of both sides of the equations yield

J̃φ(n, kz) =
2∑

i=1

(−1)i−1F (Cin, Din, kiρ, b) (13)

J̃z(n, kz) =
2∑

i=1

(−1)i−1

[
jωεi
kiρ

F ′(Ain,Bin,kiρ,b)−
nkz

k2
iρb
F (Cin,Din,kiρ,b)

]

(14)

where
J̃ζ(n, kz) =

1
2π

∫ π

−π
dφ

∫ ∞

−∞
dz Jζ(φ, z) e−jnφejkzz. (15)

The two equations obtained by substituting from (9)–(12) in (13) and
(14) can be written in a matrix form as[

J̃z(n, kz)
J̃φ(n, kz)

]
=

[
M11(n, kz) M12(n, kz)
M21(n, kz) M22(n, kz)

] [
A4n

C4n

]
(16)
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in which

M11(n, kz) =
2∑

i=1

(−1)i−1

{
jωεi
kiρ

[αa
iH

(2)′
n (kiρb) + βa

i J
′
n(kiρb)]

−nkz

k2
iρb

[σa
iH

(2)
n (kiρb) + τa

i Jn(kiρb)]

}
(17)

M21(n, kz) =
2∑

i=1

(−1)i−1 [σa
iH

(2)
n (kiρb) + τa

i Jn(kiρb)]. (18)

Explicit expressions ofM12(n, kz) andM22(n, kz) can be obtained from
(17) and (18), respectively, by replacing αa

i , β
a
i , τa

i , and σa
i by αc

i , β
c
i ,

τ c
i , and σc

i , respectively.
Equation (16) can now be solved to yield

A4n(kz) =
M22(n, kz)
∆(n, kz)

J̃z(n, kz) −
M12(n, kz)
∆(n, kz)

J̃φ(n, kz) (19)

C4n(kz) = −M21(n, kz)
∆(n, kz)

J̃z(n, kz) +
M11(n, kz)
∆(n, kz)

J̃φ(n, kz) (20)

where we have shown explicitly the dependence of A4n and C4n on kz,
and

∆(n, kz) =M11(n, kz)M22(n, kz) −M12(n, kz)M21(n, kz).

3. RADIATED FIELDS

Expressions for the axial and azimuthal components of the electric
field in the region exterior to the coaxial cylinders can be obtained
by substituting i = 4 in (1) and (3), respectively. The expressions
of these field components in the far zone transverse to the radial
direction can then be obtained from the above by using the asymptotic
expressions for the Hankel functions [13] and evaluating the resulting
infinite integrals over kz using the saddle point method [15] as

Eθ(r, θ, φ) = − 1
sin θ

e−jk0r

πr

∞∑
n=−∞

jn+1ejnφA4n(k0 cos θ) (21)

Eφ(r, θ, φ) =
η0

sin θ
e−jk0r

πr

∞∑
n=−∞

jn+1ejnφC4n(k0 cos θ) (22)

where r, θ, φ are the spherical coordinates of the field point with respect
to an origin located at the center of the coaxial cylinders, k0 is the free
space wavenumber and η0 is the free space wave impedance.
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3.1. Radiation from an Axial Patch Antenna

In this case we consider the patch dimensions 2L and 2bφ0 in Fig. 1 to
be equal to half a wavelength and the patch width w, respectively, and
the surface current Js on the patch to be axially directed. Assuming
the variation of Js with the azimuthal coordinate φ to be negligible, it
can be written in terms of an effective relative permittivity εeff as [11]

Js(φ, z) =


 ẑ

I0
w

cos(k0

√
εeffz), −λ̄0 ≤ z ≤ λ̄0, −φ0 ≤ φ ≤ φ0

0, otherwise
(23)

where I0 is the magnitude of the current, λ̄0 = λ0/(4
√
εeff) with

λ0 = 2π/k0, φ0 = w/(2b), ẑ is the unit vector along the z direction,
and

εeff =
εr1 + 1

2
+
εr1 − 1

2
1√

1 + 10 (h/w)
(24)

as in [16, 17], with h being the thickness of the substrate.
The Fourier transform of this current is given by

J̃sz(n, kz) =
I0
πb

sinc
(
nw

2b

)
k0

√
εeff

k2
0 εeff − k2

z

cos

(
kz

λ0

4
√
εeff

)
(25)

where sinc(x) = sin(x)/x.
Substituting for J̃sz(n, kz) from (25) and J̃sφ(n, kz) = 0 in (19)–

(20), using the expressions of A4n(kz) and C4n(kz) so obtained in (21)
and (22), respectively, noting that M21(−n, kz) = (−1)n+1M21(n, kz),
M22(−n, kz) = (−1)nM22(n, kz), ∆(−n, kz) = ∆(n, kz), and after
simplifying, we can write the electric field components in the far zone as

Eθ(r, θ, φ) = − I0
π2(k0b) sin θ

e−jk0r

r

√
εeff

εeff − cos2 θ
cos

(
π cos θ
2
√
εeff

)

∞∑
n=0

εn j
n+1 cos(nφ) sinc

(
nw

2b

)
M22(n, k0 cos θ)
∆(n, k0 cos θ)

(26)

Eφ(r, θ, φ) =
I0η0

π2(k0b) sin θ
e−jk0r

r

√
εeff

εeff − cos2 θ
cos

(
π cos θ
2
√
εeff

)

∞∑
n=0

εn j
n sin(nφ) sinc

(
nw

2b

)
M21(n, k0 cos θ)
∆(n, k0 cos θ)

(27)

where εn = 1 for n = 0 and εn = 2 for n > 0.
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3.2. Radiation from an Azimuthal Patch Antenna

In this case we consider the patch dimensions 2bφ0 and 2L in Fig. 1
to be equal to half a wavelength and w, respectively, and the surface
current Js on the patch to be azimuthally directed. Assuming the
variation of Js with the z coordinate to be negligible, we can then
write [11]

Js(φ, z) =


 φ̂

I0
w

cos(k0b
√
εeffφ), − λ̄0

b
≤ φ ≤ λ̄0

b
, −w

2
≤ z ≤ w

2
0, otherwise.

(28)
The Fourier transform of this current is given by

J̃sφ(n, kz) =
I0
πb

sinc
(
kzw

2

)
k0

√
εeff

k2
0 εeff − (n/b)2

cos

(
n

b

λ0

4
√
εeff

)
. (29)

Substituting for J̃sφ(n, kz) from (29) and J̃sz(n, kz) = 0 in (19)–(20),
using the expressions of A4n(kz) and C4n(kz) so obtained in (21)
and (22), respectively, noting that M11(−n, kz) = (−1)nM11(n, kz),
M12(−n, kz) = (−1)n+1M12(n, kz), and after simplifying, we can write
the electric field components in the far zone as

Eθ(r, θ, φ) =− I0
π2(k0b)

e−jk0r

r sin θ
sinc

(
k0w

2
cos θ

)
∞∑

n=0

εn
jn sin(nφ)

√
εeff

εeff −
(
n

k0b

)2 cos

(
nπ

2k0b
√
εeff

)
M12(n, k0 cos θ)
∆(n, k0 cos θ)

(30)

Eφ(r, θ, φ) =
I0η0

π2(k0b)
e−jk0r

r sin θ
sinc

(
k0w

2
cos θ

)
∞∑

n=0

εn
jn+1 cos(nφ)

√
εeff

εeff −
(
n

k0b

)2 cos

(
nπ

2k0b
√
εeff

)
M11(n, k0 cos θ)
∆(n, k0 cos θ)

.

(31)

3.3. Directivity

The directivity of an antenna in the direction θ, φ is given by

D(θ, φ) =
4πP (θ, φ)∫ 2π

0

∫ π

0
P (θ, φ) sin θ dθ dφ

(32)
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where P (θ, φ) is the power radiated per unit solid angle in the direction
θ, φ which can be written in terms of the θ and φ components of the
electric field in the far zone as

P (θ, φ) =
r2

2η0

Re[Eθ(r, θ, φ)E∗
θ (r, θ, φ) + Eφ(r, θ, φ)E∗

φ(r, θ, φ)] (33)

with the asterisk denoting the complex conjugate and Re[Z] denoting
the real part of the complex number Z. Substituting from (26) and
(27) in (33), for the axial patch antenna we can write

P (θ, φ) =
I20

2π4η0(k0b)2 sin2 θ

( √
εeff

εeff − cos2 θ

)2

cos2
(
π cos θ
2
√
εeff

)

Re

{ ∞∑
n=0

∞∑
v=0

εnεv j
n−v sinc

(
nw

2b

)
sinc

(
vw

2b

)
Ψnv(θ, φ)

}
(34)

where

Ψnv(θ, φ) = M22(n, θ)M∗
22(v, θ) cos(nφ) cos(vφ)

+η2
0 M21(n, θ)M∗

21(v, θ) sin(nφ) sin(vφ) (35)

with M2i(u, θ) denoting M2i(u, k0 cos θ)/∆(u, k0 cos θ) for i = 1, 2.
Integrating both sides of (34) over θ from 0 to π and over φ from
0 to 2π yields∫ 2π

0

∫ π

0
P (θ, φ) sin θ dθ dφ =

2πI20
2π4η0(k0b)2

∞∑
n=0

εn sinc2
(
nw

2b

)
In (36)

where

In =
∫ π

0

{
|M22(n, θ)|2 + η2

0 (1 − δn0)|M21(n, θ)|2
sin θ

}
( √

εeff
εeff − cos2 θ

)2

cos2
(
π cos θ
2
√
εeff

)
dθ (37)

with δn0 being the Kronecker delta. Explicit expressions similar to
those in (34) and (36) can be obtained for the azimuthal patch antenna
also by substituting in (33) from (30) and (31), and then integrating
the resulting expression over θ and φ.

4. RESULTS

Results are presented as plots of normalized radiation patterns in the
horizontal plane (θ = 90◦) versus the azimuth angle (φ) for both axial
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and azimuthal patch antennas, and also as plots of directivity versus
the elevation angle (θ) in the φ = 90◦ plane, for the axial patch antenna.

We have verified that our analysis and the software written for
performing the analysis are correct by reproducing the results in
Figs. 3–5 and Figs. 7–8 of [10] as well as those in Figs. 2 and 4 of
[11], by substituting d = c = b in the software used for calculating the
radiation patterns and the directivity. Fig. 2 shows the reproduced
results in Fig. 3 of [10] for a = 0.25λ0 and h = 0.05λ0.
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Figure 2. Plot of directivity versus elevation angle for a wraparound
antenna with a = 0.25λ0 and h = 0.05λ0, for different substrate relative
permittivities εr1.

We have calculated results for a cylindrical-rectangular microstrip
patch antenna of dimensions a = 5λ0, h = 0.006a, w = 0.04a, with
a substrate of relative permittivity εr1 = 2.2 and a superstrate of
thickness 0.06a. When performing calculations, retaining 50 terms
in the infinite series associated with Eθ and Eφ has been sufficient
to get a four significant digit accuracy in the calculated results. The
same accuracy can be obtained with a lesser number of terms, when
the antenna dimensions are smaller. From the numerical experiments
performed we have found that when a = 3λ0 and a = λ0, retaining
30 and 20 terms respectively, is sufficient to obtain a four significant
digit accuracy in the calculated results. The calculations were done in
a SunFire 880 Solaris 8 UNIX server and took only 10 seconds of CPU
time on the average for calculation of the normalized patterns such as
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Figure 3. Variation of the normalized pattern with the azimuth angle
for a cylindrical-rectangular microstrip antenna loaded with an air gap
and a superstrate, with a = 5λ0, h = 0.006a, w = 0.04a, d− c = 0.06a,
εr1 = 2.2, and an axial patch, for various thicknesses (t = c − b in
wavelengths) of the air gap, when the relative permittivity εr3 of the
superstrate is 4.0.

those in Fig. 3 for all four thicknesses of the air gap.
The plots in Fig. 3 show how the normalized radiation pattern

varies with the thickness of the air gap for a cylindrical-rectangular
axial patch antenna loaded with an air gap and a superstrate made of
a lossless material of relative permittivity εr3 = 4.0. Fig. 4 shows the
corresponding plots for a similar configuration when the superstrate is
made of a lossy material of relative permittivity εr3 = 4.0−j0.5. As can
be seen from the plots, for each air gap thickness, the introduction of
the loss broadens the pattern in the main lobe region without causing
any significant change to the pattern outside this region. Also we can
observe a narrowing of the main lobes of the patterns in both Figs. 3
and 4, as the thickness of the air gap t is increased from 0 to 1.5λ0.

The plots in Figs. 5 and 6 show how the normalized radiation
pattern varies with the thickness of the air gap, for a cylindrical-
rectangular azimuthal patch antenna loaded with an air gap and super-
strates made of lossless and lossy materials of relative permittivities
εr3 = 4.0 and εr3 = 4.0 − j0.5, respectively. When there is no air
gap (t = 0), the patterns for the azimuthal patch antenna are much
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Figure 4. Variation of the normalized pattern with the azimuth angle
for the antenna considered in Fig. 3 for various thicknesses (t = c − b
in wavelengths) of the air gap, when εr3 = 4.0 − j0.5.

narrower than the corresponding patterns for the axial patch antenna,
in the main lobe region. However, when there is an air gap, for a
particular thickness of the air gap, the patterns of both antennas for
each value of εr3 are almost the same in the main lobe region, but the
sidelobe levels of the azimuthal patch antenna are significantly higher
than those of the axial patch antenna. The main lobes of the patterns
in Figs. 5 and 6 also become narrower as the thickness of the air gap
is increased from 0 to 1.5λ0.

Fig. 7 shows the behavior of the patterns in response to a change
in the lossyness of the superstrate material for the axial patch antenna
considered in Figs. 3 and 4, when the air gap thickness is held constant
at 1.5λ0. It can clearly be seen from these plots the broadening of
the main lobes of the patterns with the increasing lossyness of the
superstrate material. A similar behavior of patterns can be observed
for the azimuthal patch antenna also, but with higher sidelobe levels
than that for the axial patch antenna, for a particular value of εr3.

Finally, Fig. 8 shows how the directivity of the axial patch antenna
considered in Fig. 4 changes with the elevation angle in the φ = 90◦
plane, for different thicknesses t of the air gap. From these patterns
we can see that the directivity of the antenna increases with t. In all
of the above figures, ripples appear on the plots as the size of the air
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Figure 5. Variation of the normalized pattern with the azimuth angle
for a cylindrical-rectangular microstrip antenna loaded with an air gap
and a superstrate, with a = 5λ0, h = 0.006a, w = 0.04a, d− c = 0.06a,
εr1 = 2.2, and an azimuthal patch, for various thicknesses (t = c− b in
wavelengths) of the air gap, when the relative permittivity εr3 of the
superstrate is 4.0.
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Figure 6. Variation of the normalized pattern with the azimuth angle
for the antenna considered in Fig. 5 for various thicknesses (t = c − b
in wavelengths) of the air gap, when εr3 = 4.0 − j0.5.
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Figure 7. Variation of the normalized pattern with the azimuth angle
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superstrate relative permittivity εr3, when the air gap thickness is held
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gap t increases from 0 to 1.5λ0. This is due to the interference caused
by reflections. These ripples are more prominent for t ≥ λ0.

5. CONCLUSION

A cylindrical-rectangular microstrip patch antenna loaded with a
superstrate and an air gap between the substrate and the superstrate
has been analyzed using the ESCM. Results have been presented in the
form of normalized radiation patterns for both axial and azimuthal
patch antennas and also as directivity patterns for an axial patch
antenna, for superstrates made of lossless and lossy dielectric material.
This is the first time such a structure has been comprehensively
analyzed using the ESCM. From the results obtained it is clear that
the thickness of the air gap and the loss of the superstrate material
has a significant effect on the radiation from these antennas.

APPENDIX A. COEFFICIENTS ASSOCIATED WITH
EQUATIONS (9) TO (12)

The coefficients σe
i , τ

e
i , αe

i , β
e
i , for i = 1, 2, 3 and e = a, c associated

with (9)–(12) are given below.

σa
3 = −α0
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jωµ0k3ρd
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1 −

k2
3ρ

k2
4ρ

)
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with
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βa
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Explicit expressions of βe
2 and τ e

2 are obtained from those of αe
2 and

σe
2, respectively, by replacing Jn(k2ρc) by −H(2)

n (k2ρc) and J ′n(k2ρc) by
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Explicit expressions of βe
1 and τ e

1 are obtained from those of αe
1 and

σe
1, respectively, by replacing Jn(k1ρa) and J ′n(k1ρa) in the numerators

by −H(2)
n (k1ρa) and −H(2)′

n (k1ρa), respectively.
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