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F. R. Cooray and J. S. Kot

CSIRO ICT Centre
P. O. Box 76, Epping, NSW 1710, Australia

Abstract—Radiation from a superstrate loaded cylindrical-rectangular
microstrip patch antenna with an air gap between the substrate and the
superstrate, is analyzed using the full-wave approach and the electric
surface current model. Results are presented in the form of normalized
radiation patterns for various thicknesses of the air gap and also for
superstrates made of lossy dielectric material, to show the effects of
these on the radiation from the antenna. Both axial and azimuthal
current elements are considered.

1. INTRODUCTION

Microstrip patch antennas are widely used as conformal antennas in
many practical applications. When a microstrip patch antenna is
employed as an outdoor antenna, a superstrate layer is generally added
on top of the patch to act as a radome to provide protection from
environmental hazards such as rain, snow, dirt, etc. As the addition
of a superstrate layer can change the characteristics of the microstrip
structure, being able to analyze a microstrip antenna loaded with a
superstrate is vital to understand how the radiation from it would
change with the type of superstrate being used.

Since the cylindrical-rectangular microstrip patch antenna is a
very popular type of conformal antenna, it has been analyzed in the
past using different methods. In [1, 2], the cavity model has been
used to analyze cylindrical-rectangular patch antennas, printed on a
dielectric substrate, while in [3, 4] the method of moments (MoM)
has been used for analyzing them. Similar antennas printed on a
chiral substrate have been analyzed in [5] using the MoM and the
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dyadic Green’s functions derived for the problem with reference to
[6,7]. The MoM has been used in [8,9] also, but for analyzing a
cylindrical-rectangular patch antenna loaded with a lossless dielectric
superstrate. The analysis of a cylindrical-rectangular microstrip patch
antenna using the electric surface current model (ESCM) was first
presented in [10, 11], with the main emphasis being to calculate the
radiation from the antenna. Recently, such an antenna loaded with a
lossless dielectric superstrate and fed by a coaxial probe is supposed
to have been analyzed in [12] using the ESCM, but no details of the
analysis have been given. The main advantage of using the ESCM
is being able to obtain a closed form solution. As such, the analysis
is simpler and the time taken for performing the analysis is much less
than that when using the MoM. Also, the ESCM can be used to analyze
a patch antenna loaded with a superstrate directly on top or spaced
away from the patch with an air gap, for which the cavity model cannot
be used.

In this paper, we analyze a cylindrical-rectangular microstrip
patch antenna loaded with a superstrate spaced away from the patch
and an air gap between the substrate and the superstrate, using the
ESCM, for superstrates made of lossy dielectric material, to investigate
the effects of the thickness of the air gap and the lossyness of the
superstrate material on the radiation from the antenna. The antenna is
modeled using an infinitely long concentric circular cylindrical micro-
strip structure consisting of a perfectly conducting ground cylinder
and coaxial cylindrical substrate, air gap, and superstrate layers. The
patch is assumed to be a perfect conductor of zero thickness printed
on the dielectric substrate. In order to perform the analysis, the patch
is replaced by an assumed surface current distribution, which in many
cases can be obtained using a cavity model approximation that is valid
as long as the radiation is small compared to the stored energy. To the
best of the authors’ knowledge, this is the first time a detailed analysis
of such a structure using the ESCM has been presented.

The structure of the rest of the paper is as follows. Section
2 describes the formulation of the problem which is carried out by
expressing the electromagnetic fields in each region in terms of a
two-dimensional inverse Fourier transform with unknown expansion
coefficients and then imposing the appropriate boundary conditions at
each interface between regions. The evaluation of the fields in the far
zone is described in Section 3, and the results obtained in the form
of normalized radiation patterns and directivity patterns for different
thicknesses of the air gap as well as for superstrate materials of different
permittivities are given in Section 4. Finally, some conclusions are
presented in Section 5.
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2. FORMULATION
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Figure 1. Geometry of the cylindrical-rectangular microstrip antenna
loaded with a superstrate and an air gap between the substrate and
the superstrate.

Consider a cylindrical-rectangular microstrip patch antenna
loaded with a dielectric superstrate and an air gap between the
substrate and the superstrate, as shown in Fig. 1. The microstrip
patch is mounted on an infinitely long cylindrical ground of radius a.
The cylindrical substrate (region 1) has a relative permittivity €,; and
a thickness b — a, the air gap (region 2) has a relative permittivity
ero = 1 and a thickness ¢ — b, while the cylindrical superstrate (region
3) has a relative permittivity €,3 and a thickness d — ¢. Region 4 is
free space with permittivity ¢, or relative permittivity ¢,4 = 1. The
permeability in all regions is assumed to be free space permeability .
The curved rectangular patch located at the substrate-air gap interface
has a straight dimension 2L and a curved dimension 2b¢, as shown in
Fig. 1, with 2¢, being the angle subtended by the curved patch at the
center of the coaxial cylinders. Assuming a time harmonic dependence
of exp(jwt), the z components of the electric and magnetic fields in
the 7th region for i = 1,2, 3,4 can be expressed in terms of functions in
a cylindrical coordinate system (p, ¢, z) attached to the center of the
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coaxial cylinders as [13]
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: M

1 & . 0 ks
Hi.(p,¢,2) = o Z dw[ dk e k= [CinHr(LQ)(kipp)+Din<]n(kipp)]

n=—oo
‘ ‘ (2)
where k, is the propagation constant, kfp = wlge; — k’g, € = €4€pi,

Ain, Bin, Cin, Din are the unknown expansion coefficients of harmonic
order n and functions of k., and Hf)(a:), Jn(x) are respectively, the
Hankel function of the second kind and the Bessel function, of order n
and argument . The transverse field components E;,, E;4, H;,, H;g
in the ith region can be obtained from E;, and H;, as [14]

_,& OE;. _jwﬂo OH;, o ]kz OE;, JW o OH;, (3)
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To solve for the unknown expansion coefficients, appropriate boundary
conditions for the tangential field components should be imposed at the
interfaces p = a, b, ¢, d. Imposing the boundary conditions Fi, = 0
and E14 =0 at p = a yield

E;, =

F(Ah"m Bin, klpa a) =0 (5)
k. '
n2 F(Alanln7klpaa) + JWMOF/(ClnaDlnaklpva) =0 (6)

where

F(Pm’ Qina kipa P) = PinHr(LQ)(kipp) + Qinjn(kipp)
F'(Pin, Qins kipy p) = Pin H (kipp) + Qin Ly (Kipp)

for ¢« = 1,2,3,4, with Hq(f)/(x) and J)(z) denoting the respective
derivatives of HL") () and J,(z), with respect to .

The equations obtained by imposing the boundary conditions for
E;. and E;4 at each of the interfaces p = b, p = ¢, and p = d can be

written in the general form

p+1 .
> (=1)'F(Ain, Bin, kip, 0) = 0 (7)

1=p
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p+1 .
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with By, = D4, = 0, and the two equations associated with each of
the interfaces p = b, p = ¢, and p = d obtained by substituting p = 1
0=0b,p=2p=c, and p=3 g = d, respectively, in (7) and (8).

The general form of the equations resulting from imposing the
boundary conditions for H;, and H;, at each of the interfaces p = ¢
and p = d can be obtained from (7) and (8), respectively, by replacing
Ain, Bin by Cin, Diy, and vice versa, and replacing p, by —¢;.

Ain, Bin, Cin, D;y, for i = 1,2,3 can then be expressed in terms
of Ay, and Cy, using the above equations that resulted from imposing
the boundary conditions for the tangential electric and magnetic fields
as

Cin = 0§ Asp + 0§ Cuyp, 9)
Dip = 78 Agn + 7 Can, (10)
Ay = oz;-lA4n + af Cun (11)
Bin = B Aan + 57 Cun (12)

with of, 77, af, B¢ for i = 1,2,3, e = a, ¢ defined in Appendix A.

By applying the discontinuity boundary condition px (Hy—H;) =
J at p = b, where H; is the magnetic field in region ¢ and J is the
surface current on the patch, we get Hy, — Hy, = Jy, Hop — H1y = J..
Substituting for Hy., Ho, from (2) and for H;4, Hay from (4), and

then taking the Fourier transforms of both sides of the equations yield

2
Jo(n,k:) = (=1)"""F(Cin, Din, kip, ) (13)
i=1
~ 2 . jwe nk
Jz(na kz) - Z(_1)171 [TFI(AinaBinakipub)_mF<Cin7Din7kipab)
i=1 w ip
(14)
where L -
Je(n, k) = —/ d¢>/ dz Je (¢, 2) e Indeik=z, (15)
™ J—m —00

The two equations obtained by substituting from (9)—(12) in (13) and
(14) can be written in a matrix form as

] - [ty ] [&] oo



140 Cooray and Kot

in which
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Explicit expressions of Mja(n, k) and Maa(n, k,) can be obtained from
(17) and (18), respectively, by replacing of, ¢, 77, and of by of, 5,
75, and of, respectively.

Equation (16) can now be solved to yield

Aunhe) = 2B T () - 22 Gy k) (10)
Cinlh:) = —%iz(n,kz) n %@(n,kz) (20)

where we have shown explicitly the dependence of A4, and Cy, on k.,
and

A(n, k) = Myi(n, k) Maa(n, k) — Mia(n, k) Mai(n, k).

3. RADIATED FIELDS

Expressions for the axial and azimuthal components of the electric
field in the region exterior to the coaxial cylinders can be obtained
by substituting ¢ = 4 in (1) and (3), respectively. The expressions
of these field components in the far zone transverse to the radial
direction can then be obtained from the above by using the asymptotic
expressions for the Hankel functions [13] and evaluating the resulting
infinite integrals over k, using the saddle point method [15] as

1 e—jkor o

Ey(r,0,0) = ey h— Z jntleing Ayp(kocos@)  (21)
Ey(r,0,¢) = -2 eSS 719 Oy (ko cos 0 22
p(1,0,0) = = &5— > 5" Can (ko cos ) (22)

where 7, 8, ¢ are the spherical coordinates of the field point with respect
to an origin located at the center of the coaxial cylinders, k, is the free
space wavenumber and 7, is the free space wave impedance.
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3.1. Radiation from an Axial Patch Antenna

In this case we consider the patch dimensions 2L and 2b¢, in Fig. 1 to
be equal to half a wavelength and the patch width w, respectively, and
the surface current Js on the patch to be axially directed. Assuming
the variation of Js with the azimuthal coordinate ¢ to be negligible, it
can be written in terms of an effective relative permittivity e.g as [11]

.o - _
Js(¢, Z) _ { ZE COS(kO €effz)7 _)\0 S z S )\07 —¢0 S ¢ S ¢0 (23)

0, otherwise

where Iy is the magnitude of the current, A, = Xo/(4\/eegt) With
= 27 /ky, &g = w/(2b), Z is the unit vector along the z direction,

and
€r1 + 1 €r1 — 1 1

2 2 J/1+10(hjw)

as in [16,17], with h being the thickness of the substrate.
The Fourier transform of this current is given by

- . Iy . nw ko\/€ett Ao

(24)

Eeff =

where sinc(z) = sin(z)/z.

Substituting for Jg.(n, k) from (25) and Jys(n,k,) = 0 in (19)-
(20), using the expressions of Ay, (k) and Cyy,(k.) so obtained in (21)
and (22), respectively, noting that Mai(—n, k.) = (—1)" " Moy (n, k),
Mos(—n,k,) = (—=1)"Maa(n,k.), A(—n,k,) = A(n,k;), and after
simplifying, we can write the electric field components in the far zone as

Iy ¢~ Jkor €off mcosf
Ep(r,0,¢) = —
(7,6, 9) w2(kob)sind r  eqg — cos20 €08 ( N )

Moa(n, ko cos )
Z £n 7" cos(ng) smc< 5% > A(n, o cos 6) (26)

Ton, e~ Jkor V/Eoff T cos 6
Ey(r,0
o(r:0,¢) 72(koeb)sinfd r  ee — cos 6 €08 N

M>i(n, ko cos0)
) 2
Z en j" sin(nae) leC( 2% ) A(n7 k, cos 9) 20

where €, =1 for n =0 and ¢, = 2 for n > 0.
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2. Radiation from an Azimuthal Patch Antenna

In this case we consider the patch dimensions 2b¢, and 2L in Fig. 1
to be equal to half a wavelength and w, respectively, and the surface
current Js on the patch to be azimuthally directed. Assuming the
variation of Jg; with the z coordinate to be negligible, we can then
write [11]

AIO 3 X0 5\0 w
Js(¢,2) = { ‘75; cos(koby/€cst @), e <¢p< ) <z<

0, otherwise.

The Fourier transform of this current is given by

7 Iy . k. w koy/€ctt n A

Jsp(n, k) = — smc( 5 ) e — (/D) cos (b 4\/@) . (29)
Substituting for Jss(n,k.) from (29) and J,.(n, k) = 0 in (19)-(20),
using the expressions of A4, (k) and Cyn(k.) so obtained in (21)
and (22), respectively, noting that Mii(—n,k,) = (=1)"Mii(n, k),
Mia(—n, k.) = (—1)" 1 Mis(n, k.), and after simplifying, we can write
the electric field components in the far zone as

Iy e Jkor kow
Ey(r,0,¢9) =— 2 cosf
o(r,0,0) (kb 7m0 smc( 5 COS )

i J"sin(ne)\/€or o nmw Mia(n, ko cos0)
( n )2 2kob\/eet |  A(n, ko cosf)
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0
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sinc cos
Fz(kob) rsin 6 2
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(30)

Ed’(r? 97 ¢) =

! ( n \?2 2koby/eott | A(n, kocos@)
"= €eff — | 77
kob
(31)
3.3. Directivity
The directivity of an antenna in the direction 0, ¢ is given by
47 P(6,

27 pmw
/ P(0,¢)sin6df do



Progress In Electromagnetics Research, PIER 67, 2007 143

where P(0, ¢) is the power radiated per unit solid angle in the direction
0, ¢ which can be written in terms of the 8 and ¢ components of the
electric field in the far zone as

2

P9,¢) = ;—% Re[Ey(r,0,9)Ey(r,0,¢) + Eg(r,0,0)E4(r,0,9)] (33)

with the asterisk denoting the complex conjugate and Re[Z] denoting
the real part of the complex number Z. Substituting from (26) and
(27) in (33), for the axial patch antenna we can write

P(0,9) o ( Veelt >2c082<7rcose>

- 2141y (kob)2 sin? 0 \ €of — cos? 0 2 /€t
> & nw W
Re Engy J" U sine| —— | sinc| — | Uy, (6, qﬁ)} (34)
(xs (5 me(5)
where
U0 (0, 9) = Maa(n, ) M354(v, 0) cos(neg) cos(ve)
175 Mai(n, 0) M3, (v,0) sin(ng) sin(ve) (35)

with May;(u, d) denoting Mo;(u, ko cos)/A(u, kycosf) for i = 1,2,
Integrating both sides of (34) over # from 0 to m and over ¢ from
0 to 27 yields

2m 213 > nw
P i S U S 2<_> 7,
/0 ; (0, ¢)sin 0 db do S (ko) nz:%s sine”| o (36)

where

sin 6

— 2
(%) COS2 <;rcosa> d9 (37)
Eeff COS \/@

with d,, being the Kronecker delta. Explicit expressions similar to
those in (34) and (36) can be obtained for the azimuthal patch antenna
also by substituting in (33) from (30) and (31), and then integrating
the resulting expression over 6 and ¢.

= [ Ml O+ 150 5 M)
" 0

4. RESULTS

Results are presented as plots of normalized radiation patterns in the
horizontal plane (# = 90°) versus the azimuth angle (¢) for both axial
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and azimuthal patch antennas, and also as plots of directivity versus
the elevation angle (#) in the ¢ = 90° plane, for the axial patch antenna.

We have verified that our analysis and the software written for
performing the analysis are correct by reproducing the results in
Figs. 3-5 and Figs. 7-8 of [10] as well as those in Figs. 2 and 4 of
[11], by substituting d = ¢ = b in the software used for calculating the
radiation patterns and the directivity. Fig. 2 shows the reproduced
results in Fig. 3 of [10] for a = 0.25), and h = 0.05,.

2 T T T T

epsri=1.0
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Figure 2. Plot of directivity versus elevation angle for a wraparound
antenna with a = 0.25), and h = 0.05),, for different substrate relative
permittivities €,1.

We have calculated results for a cylindrical-rectangular microstrip
patch antenna of dimensions a = 5\,, h = 0.006a, w = 0.04a, with
a substrate of relative permittivity €,; = 2.2 and a superstrate of
thickness 0.06a. When performing calculations, retaining 50 terms
in the infinite series associated with Ey and E, has been sufficient
to get a four significant digit accuracy in the calculated results. The
same accuracy can be obtained with a lesser number of terms, when
the antenna dimensions are smaller. From the numerical experiments
performed we have found that when a = 3)\, and a = ), retaining
30 and 20 terms respectively, is sufficient to obtain a four significant
digit accuracy in the calculated results. The calculations were done in
a SunFire 880 Solaris 8 UNIX server and took only 10 seconds of CPU
time on the average for calculation of the normalized patterns such as
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Figure 3. Variation of the normalized pattern with the azimuth angle
for a cylindrical-rectangular microstrip antenna loaded with an air gap
and a superstrate, with a = 5\y, h = 0.006a, w = 0.04a, d — ¢ = 0.06a,
€1 = 2.2, and an axial patch, for various thicknesses (t = ¢ — b in
wavelengths) of the air gap, when the relative permittivity €.3 of the
superstrate is 4.0.

those in Fig. 3 for all four thicknesses of the air gap.

The plots in Fig. 3 show how the normalized radiation pattern
varies with the thickness of the air gap for a cylindrical-rectangular
axial patch antenna loaded with an air gap and a superstrate made of
a lossless material of relative permittivity €,3 = 4.0. Fig. 4 shows the
corresponding plots for a similar configuration when the superstrate is
made of a lossy material of relative permittivity e,3 = 4.0—50.5. As can
be seen from the plots, for each air gap thickness, the introduction of
the loss broadens the pattern in the main lobe region without causing
any significant change to the pattern outside this region. Also we can
observe a narrowing of the main lobes of the patterns in both Figs. 3
and 4, as the thickness of the air gap t is increased from 0 to 1.5A,.

The plots in Figs. 5 and 6 show how the normalized radiation
pattern varies with the thickness of the air gap, for a cylindrical-
rectangular azimuthal patch antenna loaded with an air gap and super-
strates made of lossless and lossy materials of relative permittivities
€3 = 4.0 and €,3 = 4.0 — j0.5, respectively. When there is no air
gap (t = 0), the patterns for the azimuthal patch antenna are much
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Figure 4. Variation of the normalized pattern with the azimuth angle
for the antenna considered in Fig. 3 for various thicknesses (t = ¢ — b
in wavelengths) of the air gap, when €,3 = 4.0 — 50.5.

narrower than the corresponding patterns for the axial patch antenna,
in the main lobe region. However, when there is an air gap, for a
particular thickness of the air gap, the patterns of both antennas for
each value of €,3 are almost the same in the main lobe region, but the
sidelobe levels of the azimuthal patch antenna are significantly higher
than those of the axial patch antenna. The main lobes of the patterns
in Figs. 5 and 6 also become narrower as the thickness of the air gap
is increased from 0 to 1.5),.

Fig. 7 shows the behavior of the patterns in response to a change
in the lossyness of the superstrate material for the axial patch antenna
considered in Figs. 3 and 4, when the air gap thickness is held constant
at 1.5),. It can clearly be seen from these plots the broadening of
the main lobes of the patterns with the increasing lossyness of the
superstrate material. A similar behavior of patterns can be observed
for the azimuthal patch antenna also, but with higher sidelobe levels
than that for the axial patch antenna, for a particular value of €,3.

Finally, Fig. 8 shows how the directivity of the axial patch antenna
considered in Fig. 4 changes with the elevation angle in the ¢ = 90°
plane, for different thicknesses ¢ of the air gap. From these patterns
we can see that the directivity of the antenna increases with ¢. In all
of the above figures, ripples appear on the plots as the size of the air
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Figure 5. Variation of the normalized pattern with the azimuth angle
for a cylindrical-rectangular microstrip antenna loaded with an air gap
and a superstrate, with a = 5\y, h = 0.006a, w = 0.04a, d — ¢ = 0.06a,
er1 = 2.2, and an azimuthal patch, for various thicknesses (t = ¢—b in
wavelengths) of the air gap, when the relative permittivity €,3 of the
superstrate is 4.0.
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Figure 6. Variation of the normalized pattern with the azimuth angle
for the antenna considered in Fig. 5 for various thicknesses (t = ¢ —b
in wavelengths) of the air gap, when €,3 = 4.0 — j0.5.
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Figure 7. Variation of the normalized pattern with the azimuth angle
for the antenna considered in Figs. 3 and 4, for various values of the
superstrate relative permittivity €,3, when the air gap thickness is held
constant at 1.5\,.
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Figure 8. Variation of the directivity in the ¢ = 90° plane with
the elevation angle for the antenna considered in Fig. 4, for various
thicknesses of the air gap t = ¢ — b in wavelengths.
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gap t increases from 0 to 1.5\,. This is due to the interference caused
by reflections. These ripples are more prominent for t > A,.

5. CONCLUSION

A cylindrical-rectangular microstrip patch antenna loaded with a
superstrate and an air gap between the substrate and the superstrate
has been analyzed using the ESCM. Results have been presented in the
form of normalized radiation patterns for both axial and azimuthal
patch antennas and also as directivity patterns for an axial patch
antenna, for superstrates made of lossless and lossy dielectric material.
This is the first time such a structure has been comprehensively
analyzed using the ESCM. From the results obtained it is clear that
the thickness of the air gap and the loss of the superstrate material
has a significant effect on the radiation from these antennas.

APPENDIX A. COEFFICIENTS ASSOCIATED WITH
EQUATIONS (9) TO (12)

The coefficients of, 77, of, B, for i = 1,2,3 and e = a, ¢ associated

with (9)—(12) are given below.

O_a = —« Tlikz 1— k7§p (Al)
’ ° jwhioksod K3,
(2)’ /
o = an [@ L Jn““?’pd)] (A2)
k4p Hn (k‘4pd) Jn(kSpd)
with
imks,d
cy = T T, (kspd) B (k). (A3)
ey
O31in (k3pd)
T§ = A4
’ Jn(k?)pd) ( )
e HP (kypd) — oS HP (kspd) (45)
3 I (K3,d)
. kapera HSY (kapd) T (kspd)
O‘SZOlolkp T T (A6)
10613 Hy (kapd) — In(kspd)

k2
0f = ag— "k (1 ﬁ) (A7)

"jwesks,d \© K3,
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HY (kapd) — a3 HY (ks,d)
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]ﬂ'kaC k2p6r3 (2) e 7/
[ (kspc) + B3y (k3pc)|In(kapc)
2 k3p6r2
[0 H (o) + 5T (ko) () | (A10)
e nﬂ-kz k%p e (2) e
o5 = " 2w 1- k2 la5Hyy (kspe) + B5Tn(kspc)]Jn(k2pc)

L f ,
+37r22pc {kzp (0% 7(12) (kspc) + 75, (k3pc)] T (kape)
0

{5 ) + T (ap)) T, ) | (A1)

Explicit expressions of 35 and 75 are obtained from those of a§ and
o5, respectively, by replacing J,, (k2,c) by —H,SQ)(kgpc) and J}, (kapc) by
—HP (kype).

o = oS kagh) + 5T (hayh) () (A1)

T (ki pa) HS? (1 pb) — Ty (k1,b) HS (k1 pa)

C [oSHY (kapb) + 5 T (ko pb)kip T (kipa)  nks
12 (k1 pa) HSY (K pb) — T (k1 pb)HE (kypa)]ky, — J@Hok1pb

(1 Sy ) 05 (kagh) + 05T (aph)] T (Fr0)
Koo ) T (R pa) HI (K1 b) — T, (ki pb) HI (k)

. (A13)

Explicit expressions of 37 and 71 are obtained from those of af and
0§, respectively, by replacing Jy,(k1,a) and J),(k1,a) in the numerators

by —H,(ZQ)(kzlpa) and —HT(LQ)/(klpa), respectively.
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