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Abstract—Broken rotor bars and end-ring are common faults in
three-phase squirrel-cage induction motors. These faults reduce the
developed toque and increase the speed fluctuations of the motor.
Meanwhile, developed unsymmetrical magnetic generates noise and
vibration in the motor. Local heat around the broken bars may
gradually break the adjacent bars and the motor will be finally out
of service.

Finite element method (FEM) is the most accurate technique
for diagnosis and analysis of induction motor, because it can
include all actual characteristics of the healthy and faulty induction
motors. However, current density is generally considered as input
for performance computation process, while fault can inject a large
harmonics to the stator current. These harmonics may not be ignored
in the fault diagnosis of the motor. In addition, all FE applications
consider the steady-state mode of operation.

In this paper, a three-phase voltage-fed squirrel-cage induction
motor with rotor broken bars is proposed and analyzed for the
starting period of the motor. Both no-load and on-load cases are
considered. Also, concentrated rotor broken bars under one-pole and
the distributed rotor broken bars under different poles are studied and
compared.
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1. INTRODUCTION

Heavy loaded induction motors particularly those that are iteratively
started and stopped, exposed to the faults such as rotor broken bars
and end rings which lead to asymmetry of the squirrel-cage rotor.
Such faults disturb operation of the motor and shorten its lifetime.
Therefore, diagnosis and detection of faults in induction motors can
preserve good performance of the motor and its normal lifetime [1].
The basis of any reliable diagnosis method is inclusion of the real
behaviors and conditions of a faulty motor. At this end, a proper
modeling is the first step in this process. A model that could include
discrete stator windings distribution, magnetic non-linearity of the
core, used elements in the motor, slots and rotor bars, topology of
the motor structure and spatial and time harmonics is a convenient
model for a faulty diagnosis of induction motors.

The initial steps in fault detection were based on the measurement
of speed oscillations, noise and stray flux which had low reliability.
Until 1987, there was limitation on the type and degree of fault and
no general and wide spread technique was available to study a faulty
induction motor with different number of rotor broken bars and pole
number. Norton theorem was used in [2] to analyze an induction
motor with broken rotor bar. However, in [2], it has been assumed
that there is no coupling between rotor and stator and just the rotor
cage behavior in air gap has been investigated. The inter-bars current
in the broken bar rotor was considered in [3], where it was assumed
that the induced voltage in broken bar and two surrounded bars have
the identical amplitude and phase angle, while this assumption is only
acceptable if a large number of poles present, not in two-pole motors.
The test on a faulty induction motor shows that the inter-bar current
generates axial vibration with speed equal to 4 times the rated speed
of the motor [4] which is applicable for fault diagnosis. Estimation
and measurement of the apparent resistance of the broken bar has
been suggested for fault diagnosis [5]. This has been done off-line
which reduce the accuracy of the method [5]. Magnetic asymmetry is
visible on both d and q components of the stator currents, while the
load fluctuations affects only on the q component [6]. It is noted that
dq model of induction motor unable to include all fault assumptions,
because dq transformations have not taken into account spatial and
time harmonics and relationship and the effects of these harmonics
upon the leakage fluxes, magnetic inductance, currents, torque, ohmic
losses and core losses [7, 8]. Winding function has been employed in
healthy and broken bar induction motor [9]. Normally, symmetrical air
gap has been assumed in the application of winding function method
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[10, 11]; however, the basic equation has been revised in [12] and
indicated that the winding function method for uniform and non-
uniform air gap differ.

Diagnosis and analysis methods of induction motors using old
model, lumped parameters and winding function method have two
basic drawbacks. The first is a modeling algorithm that addresses the
lack of comprehensive field fault data bases. The second is an algorithm
that addresses the difficulty in distinguishing between degrees of faults
[13]. A proper and accurate method that has been suggested to resolve
this is application of finite element method (FEM). The reasons are
that having precise magnetic field distribution and performance of
motor make it possible to predict performance of the faulty motor
due to the change of parameters [14]. The FEMs are also based on the
magnetic field distribution and are suitable tools for analysis of faulty
induction motors considering complicated and non-linear behavior of
the motor. Field distribution within induction motor with five broken
bars has been determined in [15]. An induction motor with a broken
bar has been analyzed using time stepping finite element method in
[16]. One difficulty in analysis of a faulty induction motor by the
FEM is that current density in any region is considered as input of
equations. This is possible for the proposed steady-state case where
current harmonics are ignored, but in the case of rotor broken bars,
there are a large number of injected harmonics to the stator current
and it is impossible to neglect them. Therefore, the current density of
different windings must be calculated using alternative method. This
method has been proposed as time stepping finite element coupled
state-space method [17–21]. This method estimates the inductances
of the motor using the TSFE method, and solutions are inputs of the
state-space section. Following the state-space equations, the solutions
of this section are considered as inputs of the FEM. This is the trend
for achieving the convergence.

For simulation using the TSFE-SS method, the initial values of
rotor current and angular position must be estimated, the numerical
convergence of winding currents depend on the proper estimate of these
values. It is particularly true when an inverter model under no-load
and full load is simulated. Meanwhile, in this method the FE is only
used to evaluate inductances of the motor; the rest of computations
and analyses are carried out using state-space equations. Finally, the
influence of broken bars distribution in different poles has not been
considered while this effect differs for concentrated and distributed
broken bars.

This paper presents a solution for the above-mentioned problems.
At this end, a very precise and suitable model containing the spatial
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and time harmonics, magnetic saturation, stator winding distribution,
effects of rotor slots and topology of the non linear magnetic circuits
are presented. A faulty voltage-fed induction motor is analyzed and
diagnosed in this paper. In this case, terminal voltages are accounted
for input values and output current are computed. Therefore, in
addition to a very accurate computation all problems due to coupling
between two FE and state-space softwares are removed.

FEMs have been so far applied to the steady-state analysis of
faulty induction motor. However, if induction motor does frequently
starts and stops, breakage of rotor bars is possible in the restarting
case. Meanwhile, there are some problems such as noise, large UMP
and even arcing during starting of rotor broken bars case. This is the
reason for the analysis of rotor broken bar induction motor from stall
up to the steady-state mode.

Finally, transient analysis of broken-bar induction motor from
starting up to the steady-state conditions for no-load and on-load cases
are given.

2. ROTOR BROKEN BARS

Cracked or broken rotor bars and end-ring are common faults in three-
phase squirrel-cage induction motors. Rotor bars faults are often
occurred more than that of molded rotor. The former rotor bar can
be easily repaired. The temperature rise around the cracked bars can
eventually break the bars and electric arc produces around broken bars
region. This can damage the laminations of the rotor body close to
the broken bars region. This is the reason for passing the broken bar
current from the adjacent bars, and these adjacent bars transfer larger
current and generate a larger stress. Therefore, a new stage of cracking
begins; for this reason when a rotor bar is broken, the adjacent bars
are opposed on a fault due to large applied stress. It means following
the first broken bar and after a short period, other bars may be broken
[22]. The following reasons can lead to cracking or broken rotor bars
[23]:

1. Thermal stress due to over-load, non-uniform heat distribution,
hot spot and arc.

2. Magnetic stresses due to electromagnetic forces, magnetic
asymmetry forces, noises and electromagnetic vibrations.

3. Residual stress from the fabrication process.
4. Dynamic stress due to rotor axial torque and centrifugal forces.
5. Circumferential stress due to wearing and pollution of rotor

material by chemical materials and humidity.
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6. Mechanical stress due to mechanical fatigue of different parts, ball-
bearing damage, loosens laminations etc.

Figure 1 shows two distributed models and cage rotor in a healthy
motor. As shown, two adjacent bars form a loop. Fig. 2 shows the
distributed model of rotor cage when a rotor bar has been broken.
As shown, the currents of two loops consisting the proposed bar, are
identical.

 

I I I I

Figure 1. Distributed rotor cage in healthy induction motor.
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Figure 2. Distributed rotor cage in induction motor with one broken
rotor bar.

3. TRANSIENT ANALYSIS OF A FAULTY INDUCTION
MOTOR

The FEM can be used for steady-state analysis of induction motor in
the eccentricity condition. It is also possible to analyze the transient
behavior of induction motor by the FEM. This is required in the
control of induction motor in order to obtain the optimal time response.
Meanwhile, the transient analysis of the motor is required for on-line
fault diagnosis of the motor.

A voltage-fed three-phase induction motor is analyzed from stall
up to the steady-state mode in which the continuous motion of rotor
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is considered using the TSFE method. The FE matrix equations,
electric circuit equations and electromechanical equations are solved
every step. The couple solver part of Opera-2d is used in order to
allow the user to study the transient behavior of the motor.

There are three fundamental parts in the transient analysis of
induction motor: (1) modeling of motor, (2) connecting electrical
circuits and supply modeling, and (3) electromechanical connections.

Figure 3. Cross-section of proposed induction motor.

3.1. Modeling Squirrel Cage Induction Motor

The proposed three-phase squirrel-cage induction motor, with cross-
section shown in Fig. 3, is modeled taking into account the properties
of the various parts including stator, rotor, shaft, rotor bars and air
gap. Meanwhile, a special attention is paid to the moving parts of the
motor, because magnetic forces and positions influence, in turn, the
magnetic field within the motor. In the model, the voltage is applied
as input and the total current is the unknown value. The transient
equations of the external circuit that show the electrical supply and
circuit elements are combined with the equations of the FEM. Also
the motion equations are combined with the field equations of the
FEM. Finally, in the moving electromagnetic systems, it is necessary
to introduce the speed in the equations. The equation which covers
this section is as follows:

∇×
(

1
µ
�V × �A

)
+ σ

(
∂ �A

∂t
− �v × (∇× �A)

)
= �J (1)

Using a reference frame which is assumed constant under the study
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part, the relative speed v is expressed as follows:

∇×
(

1
µ
∇× �A

)
+ σ

(
∂ �A

∂t

)
= �J (2)

In the FE analysis, such reference frame is created by placing
a mesh on the surface of the moving part and movement or
transformation occur only within the elements that are placed around
the moving element [20].

3.2. Connection of Electrical Circuits and Supply Modeling

All rotor bars and stator conductors that have been presented in
the circuit model are shown using the real constants in the FEM.
Additional resistance and inductance place in series with the every
phase of the winding. The induction motor is supplied by a three-phase
sinusoidal supply. Rotor bars in the relevant circuit are in parallel.
Three stator windings of phases a, b and c have identical turns number
and resistances. Three-phase symmetrical voltages are applied to the
stator. The two-dimensional propagation equation is as follows:

∇× �v∇× �A = �J (3)

where J and A are taken to be in z direction and independent of z.
The current density is as follows:

�J = σ
�Vb

l
− σ

∂ �A

∂t
+ σ�v × �B (4)

where the amplitude of gradient of Vb in z direction is Vb/l. Fig. 4
shows the physical interpretation of Vb.

Finite Element Area

1

Vb

Figure 4. Physical interpretation of Vb.



60 Faiz, Ebrahimi, and Sharifian

The first term in the right hand side of (4) shows the current
density due to the power supply. The second term shows the induced
current density and the third term indicates the produced current
density by the series voltage. It is not possible to separate its different
parts experimentally due to mathematical concept of (4). Therefore,
the time-dependent magnetic propagation equation is as follows:

∇× �v∇× �A = σ
�Vb

l
− σ

∂ �A

∂t
+ σ�v ×∇× �A (5)

Using a reference frame which is considered constant in respect
with the studied element, the relative speed v is zero and (5) is
simplified as follows:

∇× �v∇× �A = σ
�Vb

l
− σ

∂ �A

∂t
(6)

For combining the circuit and field equations, it is necessary
to calculate the total current of every conductor. This is done by
integration of (6) over the cross-section of the conductor as follows:

i =
∫∫ (

σ
Vb

l
− σ

∂A

∂t

)
dxdy (7)

The total current of every conductor is related to the voltage
supply through lumped resistance Rext and inductance and Lext. So
the time-dependent circuit equation that expresses this relationship is
determined. The basic element of a circuit is a bar that is defined
as an individual conducting region having length l in z direction. A
series connected bars forms the coils. These coils can be connected in
parallel.

Suppose bars b1, b2, · · ·, bn are connected in series to form a coil.
All bars in a coil carry the total current, but the successive bars carry
this current in the opposite direction. Two ends of the coil leave the
FE region and are connected to the voltage source. Resistance and
reluctance from these two ends are modeled by lumped resistance Rext

and inductance Lext.
The applied voltage to the external terminals of coil is Vc and

terminal voltage in the FE region is vt. The voltages of the bars that
form the coils (means for coil C) are:

Vt, c =
∑
b∈c

dbVb (8)
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where db is equaled to +1 or −1 and it shows the polarity of bar b. In
Fig. 4, bar 1 is positive, bar 2 is negative, · · ·, Vb has been shown in
Fig. 3. Therefore:

Vc = {db}T
c {Vb}c + Lext(dic/dt) +Rextic (9)

It means that this equation is used to relate the FE region with
Vb characteristic to external circuits and sources with Rext, Lext and
Vc.

If the coils are connected in parallel, an individual circuit forms
in the output terminals of the system. The general case consisting
of connection of P coils in parallel with supply Vs, internal resistance
Rs and inductance Ls has been shown in Fig. 5. The governing RL

Rext Lext

Vc

Bar 1

Bar n

Finite Element Area
(a)

1

Rext

Rext

Rext

Lext

Lext

LextLS

RS

VS

coil P

coil 2

coil 1

F
in

ite
 E

le
m

en
t A

re
a

(b)

. . .

. . .

Bar 3
Bar 2

Figure 5. Forming coils: (a) series bars, (b) parallel bars.
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equation of this combination is as follows:

Vs = RT
s

∑
ic + Ls

∑
dic/dt+ Vc (10)

And its matrix form is:

Vs = Rs{1}T {i}c + Ls{1}T {di/dt}c + Vc (11)

where {i} is the column matrix with dimension P and all elements are
1. In general system of equations, for every set of parallel coils, there is
an equation similar to (11). So the developed electromagnetic torque
of the motor is as follows:

Te = (Leff/µ0)
∫

Γ

[(
�B.�n

) (
�r. �B

)
− 0.5B2 (�r × �n)

]
dΓ (12)

where, �n is the unit vector normal to the contour, �r is the vector
pointing from the axis rotation to a point on the contour. The discrete
developed electromagnetic torque is obtained as follows:

Te =
(
2Leffr

2/µ0

) n∑
i=1

BriBθi∆θi (13)

where r is the radius of the contour, n is the number of elements passed
the contour over a pole pitch, Br and Bθ is the normal and tangential
component of the magnetic flux density respectively in each element.

3.3. Electromechanical Connections

The induction motor motion equation can be expressed as follows:

Te − Tl = j(dωr/dt) +Bmωr (14)
ωr = dθ/dt (15)

The on-load faulty induction motor increases the unsymmetrical
magnetic torque that increases unbalanced magnetic pull (UMP), level
of noise and vibration. This particularly sensible in the steady-state
mode. This is the reason for analysis of faulty on-load induction motor
from stall up to the steady-state mode.

Damping factor and friction torque have been also included in this
paper. The friction torque consists of friction between the shaft, and
flange or bal-bearing and different parts of the load. It value at stall
is larger than that very low speed. Velocity of torque is presented by
Bmωr. The load torque includes a part of the torque that is useful
in developing work. Characteristic of the load torque depends on the
load type and its application. This is taken to be fixed here and equal
to the rated torque of the motor.
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(a) (b)

(c) (d)

Figure 6. Flux distribution: (a) beginning of healthy motor starting,
(b) steady-state operation of healthy motor, (c) beginning of faulty
motor starting, (d) steady-state operation of faulty motor.

4. RESULTS

Figure 6 shows the magnetic flux distribution in the starting and
stead-state mode of induction motor operation for healthy and broken
bars. The reasons for asymmetry of the flux lines are eddy current
particularly in the slots of the rotor, sever changes of slip at the
beginning of starting period and very high starting current (Fig. 6(a)).
In addition injected harmonic currents and saturation due to the
broken bars also cause asymmetry of the flux lines (Fig. 6(c)).When
the healthy induction motor approaches the steady-state, the flux
lines are more symmetrical distributed (Fig. 6(b)), while in broken
bar motor the flux lines distribution are still unsymmetrical in the
steady-state mode (Fig. 6(d)). Fig. 7(a) shows time variations of
phase a current for the three-phase healthy motor and no-load starting.
At the starting the current, flux and flux density are high and core
saturates. If magnetization characteristic has not been included in
the analysis of the starting of the motor, the teeth potential increases
considerably. This leads to a large electromagnetic torques at the
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Figure 7. Time variations of current of a healthy induction motor:
(a) without load, (b) with full load.

starting instant. However, analysis of the starting of the motor
including the magnetization characteristic considerably reduces the
developed torque compared with the constant permeability. In both
cases the rate of the torque variations is large due to the quick changes
of the slip at the beginning of the starting. Fig. 8 exhibits time
variations of the torque, of a healthy no-load induction motor. The
current of the bar just before the break passes the adjacent bars just
after bar break. In addition to a deeper saturation of the core and
the injected harmonics to the current, the rms currents in the bars
adjacent to the broken bar increase. However, raise of the broken
bars leads to more serious problems in the motor. Figs. 9(a) and
10(a) show the time variations of the current for 1 and 6 broken
bars respectively. More broken bars lead to more asymmetry of the
magnetic flux density distribution which causes quick variations of
the torque profiles (Figs. 11(a) and 12(a)). Starting of an on-load
induction motor differs with that of the no-load motor. The starting
period in this case is shorter that that of the no-load case. Meanwhile,
instantaneous current, torque and speed at no-load are comparable
with that of the full-load case. At the same time, difference between
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Figure 8. Time variations of torque of a healthy induction motor: (a)
without load, (b) with full load.
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Figure 9. Time variations of current of a faulty induction motor, with
1 broken bar: (a) without load, (b) with full load.
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Figure 10. Time variations of current of an induction motor, with 4
broken bars: (a) without load, (b) with full load.
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Figure 11. Time variations of torque of a faulty induction motor,
with 1 broken bar: (a) without load, (b) with full load.
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Figure 12. Time variations of torque of a faulty induction motor,
with 4 broken bars: (a) without load, (b) with full load.

their steady-state cases is clearer. Fig. 7(b) show the time variations
of a healthy on-load induction motor at starting. Figs. 9(b) and 10(b)
exhibit the time variations of the on-load induction motor with 1 and 6
broken bars. Since the motor has been started on-load the steady-state
torque must be equal to the rated speed (Figs. 11(b) and 12(b)).

5. CONCLUSIONS

This paper analyzed a broken-bar voltage-fed three-phase squirrel-
cage induction motor in transient case. The basic problem with the
FEMs in the analysis of a faulty induction motor is high contents of
the harmonics in the stator current, and this leads to calculation of
the windings current such that more complicated FE computations
required. Meanwhile, using voltage-fed induction motor in this paper
resolved all the difficulties. It is noted that this paper considered
the transient mode of operation of a faulty motor. Therefore
electromagnetic torque versus speed has been obtained which was not
determined in the previous work where only steady-state case was
studied. The influence of the broken bars upon the speed profiles of
the motor was determined.
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It has been shown that in broken bars motor the stator current
characteristics and the torque are sensibility varied. The speed profiles
oscillate due to the broken bars and the settling time becomes shorter.
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