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Abstract—This paper presents an icosahedron-based spherical
antenna array for phase mode processing. In this topology, the inter-
element spacing is almost identical. This feature is useful for three-
dimensional beam scanning and for reducing the effects of mutual
coupling. The use of directional elements in this array for wideband
synthesis is discussed, and our results show that the use of such
elements can overcome the limitations of rapid variations in the
amplitude of the far-field mode over a wide frequency band and enable
such array to synthesize wideband patterns.

1. INTRODUCTION

The analysis and synthesis of circular antenna arrays has been studied
using the concept of phase mode excitation over the past four decades
[1–7]. The excitation of planar circular antenna arrays can be
conveniently analyzed in terms of a Fourier series [1], and each term
of the series is called a phase mode. When a circular array is excited
by a phase mode, the far-field radiation pattern has the same phase
variation with azimuth angle and a constant amplitude given by a
Bessel function coefficient. These properties are mainly due to their
symmetry and 360◦ coverage. This kind of circular antenna array can
be implemented conveniently by using a Butler matrix network [2].
The use of directional elements in circular array can overcome the
limitation of rapid variation in the amplitude of the far-field and allow
such arrays to be used in wideband applications [3].

Recently, this concept is extended to the spherical phase mode
[8] and the spheroidal phase mode [9] based on spherical and
spheroidal array geometries respectively. These results show that
similar characteristics to a circular phase mode have been obtained in
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three-dimensions. The interest of such spherical or spheroidal antenna
arrays is based on the possibility to scan a single or multiple beams
through the whole three-dimensional space with low grating lobe levels
[8–14]. However, spherical or spheroidal arrays based on equiangular
sampling schemes can only scan the beam in the azimuth angle but not
the elevation angle electrically [8, 9]. This is because the distribution
of equiangular sampling scheme is not uniform in the elevation angle.
Furthermore, the sampling points for such array are much denser near
the poles than at the equator due to the equiangular topology, which
make the array suffer severe mutual coupling effects near the poles. To
take into account the effects of mutual coupling, the embedded element
pattern should be used. This kind of problems have been analyzed by
several papers [15–18].

The purpose of this paper is to present an improved topology
(based on an icosahedron) of spherical antenna arrays for phase mode
processing in order to overcome the above-mentioned limitations. In
this icosahedron-based topology, the inter-element spacing is almost
identical. This attractive property can be used for three-dimensional
beam scanning and for reducing the effects of mutual coupling. The use
of directional elements in this array is discussed which shows that the
amplitude of the far-field mode does not go to zero for any frequency
so that this proposed array can be used for wideband synthesis.

2. TOPOLOGY

A spherical antenna array with equal separation between neighboring
elements is desirable for three-dimensional beam scanning and for
reducing the effects of mutual coupling. Designing such an array is
equivalent to the problem of symmetrically dividing a spherical surface
about a center point into areas of congruent polygons. The geometry
so formed is a regular polyhedron [19]. However, there are only five
regular polyhedra, i.e., tetrahedron, cube, octahedron, dodecahedron
and icosahedron [20]. Each polyhedron has an inscribed sphere and a
circumscribing sphere, the spheres being concentric. The best angular
resolution among the five regular polyhedra is given by the icosahedron
[19], which has 12 vertices, 20 equilateral triangular faces and 30 edges
as shown in Fig. 1.

To increase the number of array elements, each equilateral triangle
can be subdivided into a number of smaller equilateral triangles in
terms of subdivision scheme named ’alternative breakdown scheme
with frequency v’ [21] as shown in Fig. 1, where v is the number of
subdivisions of the edge of the equilateral triangle. The number of the
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Figure 1. Icosahedron with a subdivision scheme (v = 3) on one face.

vertices of all the subdivided triangles N can be calculated by

N = 10v2 + 2 (1)

However, this is an approximate method in the sense that when these
vertices are projected onto the inscribed or circumscribing sphere,
the separation between neighboring elements is no longer exactly the
same. This is because the vertices are now located at various points in
between the inscribed and circumscribing sphere, instead of all lying
on the circumscribing sphere for the original icosahedron.

In order to obtain equal distance between elements on the surface
of the inscribed or circumscribing sphere, the vertices on the triangular
surface need to be rearranged before mapping to the spherical surface.
Unfortunately, it is a well-known group-theoretical result that there
are no completely uniform distribution on the sphere for N > 20 [22].
In this paper, we make use of the method of area equalization [22]
to obtain approximately equal distance. Without loss of generality,
we assume an inscribed sphere with radius a. Since each face of the
icosahedron can be projected onto a region on the inscribed sphere
bounded by three great circles, and any face of this circumscribing
icosahedron can be rotated to lie in the z = a plane by multiplying an
appropriate rotation matrix. Therefore, we only need to consider this
triangular face. The area equalization is to find a mapping, (x, y, a) →
(x′, y′, a), on this triangular face whose Jacobian is proportional to
the inverse of the Jacobian of the mapping from the inscribed unit
sphere to the triangular plane, where (x, y, a) and (x′, y′, a) denote
the coordinates of the vertices before and after mapping respectively.
Therefore, the Jacobian of these two mappings is a constant, and this
combined mapping is a equal-area mapping. Because the Jacobian of
the mapping from the sphere to the plane is (a2+x2+y2

a2 )
3
2 , the mapping
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(x, y, a) → (x′, y′, a) should satisfy the nonlinear partial differential
equation

det
(
∂x′/∂x ∂x′/∂y
∂y′/∂x ∂y′/∂y

)
= C

(a2 + x2 + y2

a2

)− 3
2 (2)

where C is a proportionality constant of mapping which is the ratio of
the area of the triangle to the area of the triangular region mapping
on the inscribed sphere and is given by

C =

√
3

4
[9 tan2(

π

5
) − 3]a2

4πa2

20

≈ 1.21

Solving the partial differential equation (2), the coordinates of the
vertices after mapping, (x′, y′, a), can be calculated by the following
equations 



y′ = a

√
2C√

3
tan−1

[√
3

√
a2 + 4y2 − a√
a2 + 4y2 + 3a

]

x′ =
(xy′
y

)√
a2 + 4y2

a2 + x2 + y2

(3)

After projecting these adjusted vertices (x′, y′, a) onto the inscribed
sphere surface, and by placing an antenna element on each vertex,
an icosahedron-based spherical antenna array is obtained which
can provide approximately equal distance between the neighboring
elements. The average distance between the neighboring elements d
is approximately given by

d ≈ 3.81a√
N

(4)

3. SPHERICAL ANTENNA ARRAYS

3.1. Spherical Phase Mode

The spherical phase modes or spherical harmonics are the angular
portion of the solution to the Helmholtz’s or the space-dependence
of the electromagnetic wave equation in spherical coordinates, which
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is defined in [8] as

Y m
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pm

l (cos θ)ejmφ (5)

where θ and φ are respectively the polar and azimuthal coordinates in
spherical coordinate system, l is the degree of the spherical phase mode,
j =

√
−1. Pm

l are the associated Legendre functions which means the
standing spherical waves in θ and the exponential term ejmφ means
the travelling spherical waves in φ [23].

Due to the completeness property of spherical phase mode, any
square integrable function f(θ, φ) over the surface of the sphere can be
expanded in a double series of spherical phase modes, which is given
by [24]

f(θ, φ) =
∞∑
l=0

l∑
m=−l

fmlY
m
l (θ, φ) (6)

and the coefficients fml can be obtained using spherical Fourier
transform

fml =
∫∫

s
f(θ, φ)Y m

l
∗(θ, φ)ds (7)

where ds is the element of the solid angle. Therefore, an excitation
function on the surface of a sphere can be expressed as a linear
combination of spherical phase modes.

For illustration, consider one spherical phase mode Y m′
l′ as the

excitation function, and the corresponding far-field radiation pattern
can be represented by

D(θ, φ) =
1
4π

∫∫
s′
Y m′

l′ (θ′, φ′)ej	β·	ads′ (8)

where a is the radius of the sphere, the direction of �a is (θ′, φ′), the
wavenumber β = 2π/λ, the direction of �β is (θ, φ). And (8) can be
finally expressed by [8]

D(θ, φ) = jl′jl′(βa)Y m′
l′ (θ, φ) (9)

where jl′(βa) is a spherical Bessel function of the first kind. (9) shows
that the far-field radiation pattern has the same spherical phase mode
form as the excitation function.
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3.2. Directional Element Pattern

Although it is possible to obtain any desired far-field radiation pattern
in three-dimension by means of breaking the pattern down into a series
of spherical harmonics and exciting each of them around spherical array
with appropriate coefficients separately, (9) shows that the amplitude
of the far-field mode jl′(βa) vary rapidly with a/λ, which means the
array is narrowband. [8] anticipate that the raised cosine pattern
would be optimum directional element pattern with spherical phase
mode excitations, and [3, 1] show that the use of directional elements
can overcome the similar problem in circular antenna arrays. Our
theoretical calculations show that the use of directional elements can
overcome these limitations and give almost the same amplitudes of
the far-field mode excited by different spherical phase modes. The
simulation results will be given in Section 4.

Let us assume that the individual element pattern is raised cosine
pattern (1 + cosψ) rotated around the normal axis of the elements
on the sphere (a pencil-beam radiation pattern), where ψ is the angle
between �a and �β. And each element has θ (or φ) polarization. The
far-field radiation pattern excited by spherical phase mode Y m′

l′ (θ′, φ′)
can be represented by

�D(θ, φ) = θ̂
1
4π

∫∫
s′
(1 + cosψ)Y m′

l′ (θ′, φ′)ej	β·	ads′ (10)

The plane wave in the far-field can be expressed by

ej	β·	a =
∞∑
l=0

(2l + 1)jljl(βa)Pl(cosψ) (11)

Differentiating both side of (11) with respect to βa,

j cosψej	β·	a =
∞∑
l=0

(2l + 1)jl d

d(βa)
jl(βa)Pl(cosψ) (12)

and using the spherical harmonic addition theorem [25],

Pl(cosψ) =
4π

2l + 1

l∑
m=−l

Y m
l

∗(θ′, φ′)Y m
l (θ, φ) (13)
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we can get,

(1 + cosψ)ej	β·	a = 4π
∞∑
l=0

l∑
m=−l

jl
(
jl(βa) − j

d

d(βa)
jl(βa)

)
· Y m

l
∗(θ′, φ′)Y m

l (θ, φ) (14)

Substituting (14) into (10), and using the orthogonality property of
spherical harmonics over the sphere [25],∫∫

s
Y m1

l1
∗(θ, φ)Y m2

l2
(θ, φ)ds = δl1,l2δm1,m2 (15)

The far-field radiation is obtained as,

�D(θ, φ) = θ̂jl′
(
jl′(βa) − j

d

d(βa)
jl′(βa)

)
Y m′

l′ (θ, φ) (16)

Comparing with (9), (16) shows that a spherical array with
directional element pattern excited by a spherical phase mode also
leads to a far-field radiation pattern with the same phase mode. But
the amplitude of the far-field mode is no longer a single spherical Bessel
function but is a sum of such functions, which prevents the amplitude
going to zero for any value of βa. Furthermore, for electrically large
spherical arrays (βa � l(l + 1)/2), the asymptotic expansions of
spherical Bessel functions can be used [25],

jl(x) ≈ 1
x

sin
(
x− lπ

2

)
(17)

and

d

dx
jl(x) ≈ 1

x
cos

(
x− lπ

2

)
(18)

Therefore the far-field radiation pattern becomes

�D(θ, φ) = θ̂
1

(βa)
ej(βa−π

2
)Y m′

l′ (θ, φ) (19)

(19) shows that for electrically large arrays the amplitude of the far-
field mode is inversely proportional to frequency, and do not have any
nulls. Furthermore, the amplitude does not depend on the degree of
the exciting spherical phase mode, which means that the use of such
directional element pattern can give almost the same amplitudes of the
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far-field mode excited by different spherical phase modes for electrically
large arrays. In addition, the phase of the far-field mode only varies
with frequency linearly. Therefore, a linear coefficient with frequency
in both amplitude and phase, such as (βae−jβa), can be added to the
excitation functions in order to compensate this decay, and keep the
same radiation pattern in a wide bandwidth.

3.3. Icosahedron-based Arrays

For the spherical arrays, N elements will be set in terms of preceding
method presented in Section 2. The excitation at each element will
be the value of the spherical harmonic Y m

l at the coordinates of the
element (ai = a, θi, φi), i = 1, ..., N , which can be considered as a
product of Y m

l with a spatial sampling function S(θ, φ). The sampling
function for this distribution is given as follows,

S(θ, φ) =
N−1∑
i=0

wiδ(θi,φi) (20)

where the weights wi of the array elements are all the same due to the
symmetry of the topology, and given by

wi =
4π
N
, i = 1, ..., N (21)

and the far-field radiation pattern (8) can be rewritten by

D(θ, φ) =
1
4π

N−1∑
i=0

wiY
m
l (θi, φi)ej	β·	ai

=
1
N

N−1∑
i=0

Y m
l (θi, φi)ej	β·	ai (22)

When a spherical harmonic is excited in this array distribution,
there will be other harmonics radiating in the far-field, which distort
the far-field pattern. Our calculations show that when the inter-
element spacing d given in (4) is small, e.g., d < λ/2, or equivalently
the number of array elements N > 58(a/λ)2, the distortion of
this icosahedron-based topology is negligible. In this condition, if
rotated raised cosine pattern elements are used in an electrically large
icosahedron-based array as mentioned in Section 3.2, The far-field
pattern becomes,

�D(θ, φ) ≈ θ̂
1

(βa)
ej(βa−π

2
)Y m

l (θ, φ) (23)
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The amplitude and the phase variance with frequency also can
be compensated by multiplying a appropriate coefficient, such as
(βae−jβa), which is presented in Section 3.2. Therefore, this
icosahedron-based arrays can be used to wideband applications with
the concept of spherical phase mode processing, such as UWB systems.

4. RESULTS AND DISCUSSION

Fig. 2 shows the far-field radiation patterns excited by a spherical
phase mode Y 2

3 , with a/λ = 3.33 and the number of the array elements
N = 3612 (v = 19 in (1)) for the comparison with the results in [8]
with N = 4096. It shows that the pattern for this icosahedron-based
antenna array is practically the same as the theoretical pattern in [8]
for both amplitude and phase.

5
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-0.01

Figure 2. Far-field radiation pattern of icosahedron-based antenna
array excited by spherical phase mode Y 2

3 with a/λ = 3.33 and
N = 3612. (phase is represented on gray scale)

Fig. 3(a) and 3(b) show the amplitudes of the far-field mode
excited by spherical phase mode Y 0

1 and Y 2
3 versus a/λ for both

isotropic element pattern and the rotated raised cosine pattern
respectively in the case of zero inter-element spacing. It can be
noticed that the nulls are cancelled due to the effect of the directional
pattern. This is because in (16), jl′(βa) is approximately a maximum
when jl(βa) → 0, and vice versa (except for βa → 0 when l > 1).
Therefore, the concept of spherical phase mode can be used for
wideband synthesis.
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Figure 3. Amplitudes of the far-field mode excited by spherical phase
modes Y 0

1 and Y 2
3 versus the radius of array in wavelengths a/λ.

Fig. 4 shows the amplitudes of the far-field mode excited by
spherical phase mode Y 2

3 versus a/λ for both zero inter-element spacing
case and icosahedron-based topology case respectively with rotated
raised cosine element pattern. The number of array elements are
N = 812 (d/a ≈ 0.134) and N = 256 (d/a ≈ 0.238) respectively.
It shows that the use of directional elements prevents the amplitude
of the far-field mode going to zero. And it is also seen that the far-
field patterns of the icosahedron-based array are approximately the
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same as the zero spacing array up to a/λ ≈ 4, i.e. d/λ ≈ 0.5 for
N = 812 and to a/λ ≈ 2, i.e. d/λ ≈ 0.5 for N = 256. This is because
when d/λ < 0.5, the distortion terms are negligible as presented in the
last section. When d/λ > 0.5 for the case N = 256, the difference
between the results of the zero-spacing array and icosahedron-based
array become larger and larger.
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Figure 4. Amplitudes of the far-field mode excited by Y 2
3 versus a/λ

for N = 812 and N = 252 with rotated raised cosine element pattern.

Fig. 5 shows the amplitudes of the far-field mode excited by
Y 0

1 with rotated raised cosine element pattern for a/λ = 10.0 and
d/λ ≈ 0.3 at 6.0 GHz with a compensation coefficient (βae−jβa). It
shows that with the compensation, the amplitudes of the far-field mode
are practically the same in a wide bandwidth (2–11 GHz). This is
because when the frequency is large, e.g., 2 GHz, the antenna array
can be seen as an electrically large array. Therefore, the icosahedron-
based array with directional element can be used in wideband synthesis
with spherical phase mode processing including UWB (3.1–10.6 GHz)
applications.

Because of the symmetry of the icosahedron-based antenna array,
it is possible to scan the beam electronically in the whole 4π steradians
of the space by rotating the excitation distribution through appropriate
polar and azimuth angle. Therefore, a number of applications, such
as broadband pattern synthesis, null steering, direction finding, and
superresolution presented in [4–7], can be used in both azimuth and
elevation angle.
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Figure 5. Compensated amplitudes of the far-field mode excited by
Y 0

1 with rotated raised cosine element pattern for a/λ = 10.0 and
d/λ ≈ 0.3 at 6.0 GHz.

Furthermore, all of antenna arrays suffer from the mutual coupling
effects, and these detrimental effects intensify as the space between
elements is decreased. As mentioned before, the effects of the mutual
coupling are so severe near the poles of the array using the equiangular
grid that the radiation pattern would be strongly affected. But for the
icosahedron-based topology, the elements distribution on the sphere
are almost uniform which can reduce the effects of mutual coupling.

5. CONCLUSION

An improved spherical antenna array has been presented in this paper.
Our results show that this icosahedron-based topology can be used
for phase mode processing. To overcome the limitations of rapid
variations in the amplitude of the far-field mode, the rotated raised
cosine pattern elements are used in this array, which enables us to
synthesize a wideband pattern without moving nulls. And a number
of attractive properties for applications are discussed such as electric
beam scanning in the whole three-dimensional space and reducing the
effects of mutual coupling.
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