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Abstract—Numerical simulations of emission for two-dimensional
randomly rough surfaces with an inhomogeneous layered medium are
presented. The inhomogeneous layered medium is modeled by a
generalized n-layered stratified media. The numerical method was
adopted from the physics-based two-grid method (PBTG). To ensure
the strict accuracy requirement while to relief the memory and CPU
resources, the PBTG in conjunction with the sparse-matrix canonical
grid method (SMCG) was used in this paper. In so doing the reflected
terms of the dyadic Green’s function that accounts for layered media
were added into the integral equations governing the surface tangential
fields. Since the reflected part of the dyadic Green’s function does not
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contain any singularity, the normal components of the fields remain
the same as in the case of homogeneous surfaces. It was found that
the elements of Green’s tensor are only important to the near-field
since they decay very fast as spatial distance goes beyond a few
wavelengths. The resulting integral equations are then solved by the
Method of Moment (MoM). Comparisons between the inhomogeneous
and the homogeneous rough surfaces suggest that the presence of
the inhomogeneous layered medium has non-negligible contributions
to emission, depending on the dielectric gradient and is polarization
dependent.

1. INTRODUCTION

Natural surfaces such as soil, snow-covered, and frozen ground surfaces
are better modeled as inhomogeneous dielectric rough surface where
variations exist both in surface height and subsurface permittivity.
Understanding of electromagnetic wave scattering and emission from a
two-dimensional inhomogeneous dielectric rough surface are of interest
to both remote sensing (soil moisture, sea ice, frozen land, etc.) and
optical imaging [1–12]. Among the various numerical methods, Pelosi
and Coccioli [13] applied a finite element method based on perturbation
formulation to deal with one-dimensional slightly rough surfaces with
multiple scattering being neglected. In [14], both differential method
and integral method were adopted to study the scattering from
randomly rough inhomogeneous films. They are able to treat the
surface and volume scattering by means of boundary-integral method.
Again, the surface considered was in one-dimensional.

From practical applications point of view, it is desirable to have
a numerical simulation of two-dimensional rough surfaces. where
the roughness heights vary in both horizontal directions. The most
common method that has been used in numerical simulations is the
surface integral equation method and its solution by the method
of moments (MoM) [15–17]. It has been shown that the physics-
based two-grid method (PBTG) can efficiently compute the accurate
surface fields on the dense grid in terms of CPU time and memory
requirements [18, 19]. Thus the PBTG in conjunction with the sparse-
matrix canonical grid method (SMCG) is adopted in this paper.

With the fast and yet accurate numerical simulation method
at hands, it is not difficult to study the effects of the surface
inhomogeneity on the microwave emissions. By viewing the Green’s
function of layered inhomogeneous media, it is noted that the reflect
term that accounts for the inhomogeneous effects is needed in addition
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Figure 1. Geometry of a rough surface with a layered medium ε(�r )
modeled by N layers of piecewise constant regions.

to a direct term. The original PBTG along with SCM is unchanged
for the direct term. What is needed is to add on the reflect term.
Mathematically, this is simple and straightforward. Numerically, it
is not really so, however. After some mathematical manipulations, it
is possible to split the reflect term, and cast them into the original
algorithm with minimum modifications. Comparisons between the
inhomogeneous and homogeneous rough surfaces suggest that the
presence of the inhomogeneous layered medium has non-negligible
contributions depending on the frequency and observation angle. In the
following section, the formulations that govern the wave interactions
with the inhomogeneous rough surfaces are given. Numerical solution
by the PBTG method is described. Numerical simulation results are
then discussed. Finally, a summary is drawn.

2. FORMULATION OF THE PROBLEM

Consider a plane wave, �Ei(�r ) and �Hi(�r ), with a time dependence
of e−iωt, impinging upon a two-dimensional dielectric rough surface
[Fig. 1] with a random height of z = f(x, y). The incident fields can
be expressed in terms of spectrum of the incident wave [15]

�Ei(�r ) =
+∞∫

−∞

dkx

+∞∫
−∞

dky exp(ikxx + ikyy − ikzz)Ẽ(kx, ky)ê(−kz) (1)

�Hi(�r ) = −1
η

+∞∫
−∞

dkx

+∞∫
−∞

dky exp(ikxx + ikyy − ikzz)Ẽ(kx, ky)ĥ(−kz) (2)
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For TE wave incidence

ê(−kz) =
1
kρ

(x̂ky − ŷkx) (3)

ĥ(−kz) =
kz

kkρ
(x̂kx − ŷky) +

kρ

k
ẑ (4)

and for TM wave incidence

ĥ(−kz) = − 1
kρ

(x̂ky − ŷkx) (5)

ê(−kz) =
kz

kkρ
(x̂kx + ŷky) +

kρ

k
ẑ (6)

with kz =
√

k2 − k2
ρ and kρ =

√
k2

x + k2
y. The incident wave vector

is k̂i = sin θi cosφix̂ + sin θi sinφiŷ − cos θiẑ, and ê, ĥ denote the
polarization vectors. In the above k and η are the wavenumber and
wave impedance of free space, respectively. In practical cases, the
incident field is tapered so that the illuminated rough surface can be
confined to the surface area Lx×Ly [15]. The spectrum of the incident
wave, Ẽ(kx, ky), is given as

Ẽ(kx, ky) =
1

4π2

+∞∫
−∞

dx

+∞∫
−∞

dy exp(−ikxx− ikyy)

× exp[i(kixx + kiyy)(1 + w)] exp(−Θ) (7)

where Θ = Θx + Θy = (x2 + y2)/g2 and

Θx =
(cos θi cosφix + cos θi sinφiy)2

g2 cos2 θi
(8)

Θy =
(− sinφix + cosφiy)2

g2
(9)

w =
1
k2

1

(
2Θx − 1
g2 cos2 θi

+
2Θy − 1

g2

)
(10)

The parameter g controls the tapering of the incident wave.
With the incident waves defined above, now the surface fields

satisfy equations [15, 18]:
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�Ei +
∫ [

i�µ0G0 · n̂′ × �H(�r ′) + ∇′ ×G0 · n̂′ × �E(�r ′)
]
dS′

=
{

�E(�r ), z < f
0, z > f

(11)

∫ [
−i�µ1G1 · n̂′ × �H1(�r ′) −∇′ ×G1 · n̂′ × �E1(�r ′)

]
dS′

=
{

0, z < f
�E1(�r ), z < f

(12)

�Hi +
∫ [

−ik/ηG0 · n̂′ × �E(�r ′) + ∇′ ×G0 · n̂′ × �H(�r ′)
]
dS′

=
{

�H(�r ), z > f
0, z < f

(13)

∫ [
−ik/ηG1 · n̂′ × �E1(�r ′) + ∇′ ×G1 · n̂′ × �H1(�r ′)

]
dS′

=
{

0, z > f
�H1(�r ), z < f

(14)

where S′ denotes the rough surface, �r ′ a source point and a field point
on the rough surface. The unit normal vector n̂′ refers to primed
coordinate and points away from the second medium.

The dyadic Green’s functions of free space, G0, is

G0(�r, �r ′) =

[
I + ∇∇/k2

]
eik|	r−	r ′|

4π|�r − �r ′| (15)

where I is unit dyadic. The dyadic Green’s function of the lower
medium, an inhomogeneous layer, G1, consists of two parts: a direct
part and a reflected part:

G1(�r, �r ′) = G
d

1(�r, �r
′) + G

r

1(�r, �r
′) (16)

The direct part G
d

1(�r, �r
′) is the same as the one for homogeneous

medium

G
d

1(�r, �r
′) =

[
I + ∇∇/k2

1

]
eik1|	r−	r ′|

4π|�r − �r ′| , (17)
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which can be put into a vector form and the reflected part G
r

1(�r, �r
′)

that accounts for the layered effects is given as [1, 2]

G
r

1(�r, �r
′) =

−ι

8π2

∫
dkxdkye

ikx(x−x′)+iky(y−y′)eik1z(z+z′)

×
[
RTE ê(k1z)ê(−k1z) + RTM ĥ(k1z)ĥ(−k1z)

]
(18)

where

ê(k1z) = ê(−k1z) =
1
kρ

(x̂ky − ŷkx) (19)

ĥ(k1z) =
−k1z

k1kρ
(x̂kx + ŷky) +

kρ

k1
ẑ (20)

ĥ(−k1z) =
k1z

k1kρ
(x̂kx + ŷky) +

kρ

k1
ẑ (21)

The reflection coefficients for TE (horizontal) and TM (vertical)
polarizations, RTE and RTM , respectively, are readily obtained
through the recurrence relation [1, 2] assuming that the general
inhomogeneous layer is represented by N layers of piecewise constant
regions (see Fig. 1). This formulation is applicable if the first layered
medium interface is below the lowest point of the rough surface f(x, y),
i.e., f(x, y) ≥ −d1. To evaluate (18), a double infinite integral is
required to compute. The numerical approach proposed in [20] is
applied in this paper. As a result, a total of nine elements of G

r

1

and a total of eight elements of ∇ × G
r

1 are numerically evaluated.
These elements represent the contributions from the inhomogeneous
layers to the total scattering. The reformulation is given in next
section, while the complete components for numerical computation
are given in Appendix. When the lower medium is homogeneous,
G

r

1(�r, �r
′) vanishes, and the problem reduces to those homogeneous

rough surface scattering as treated in [18, 19] by the physics-based
two-grid method (PBTG). In the next section, we will briefly give
some background about PBTG, followed by the application of PBTG
including the layered medium.

Once the surface fields are solved, the scattered fields at far zone
can be computed according to the Stratton and Chu formula

�Es =
ikeikR

4πR

(
I − k̂sk̂s

) ∫ {
k̂s × [n̂× �E + ηn̂× �H]

}
e−iksk̂s·	r ′

dS′

(22)
The scattering vector is k̂s = sin θs cosφsx̂ + sin θs sinφsŷ + cos θsẑ.
The α polarized scattered field is Es

α = α̂ · �Es.
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For an incident wave with a polarization b, the scattering
coefficient is

σαβ(θs, φs; θi, ϕi) =
|Es

α|2

2η1P inc
β

(23)

where the incident power is

P inc
β =

2π2

η

∫
kρ<k

dkxdky

∣∣∣Ẽ(kx, ky)
∣∣∣2 kz

k
(24)

For scattering by a dielectric surface, the reflectivity and emissivity
of the rough surface at incident angle (θi, φi) (observation angle in
emission because of reciprocity) are, respectively,

Γα(θi, φi) =
1
4π

∫∫
[σαα(θs, φs; θi, ϕi) + σαβ(θs, φs; θi, ϕi)] sin θsdθsdφ

(25)
eα(θi, φi) = 1 − Γα(θi, φi) (26)

Because of reciprocity, emissivity is the same as absorptivity, the
amount of power absorbed by the dielectric in a scattering problem. In
passive remote sensing, the brightness temperature TB of the medium
is measured at observation angle (θi, φi). The brightness temperature
is

TB(θi, φi) = eα(θi, φi)Tp (27)

(27) where Tp is physical temperature of the medium in degrees Kelvin.
It is important that the scattering calculation obey energy conservation
to less than 1% [18], so that the error in brightness temperature is
limited to less than 3 K for room temperature.

3. A PBTG-BASED SOLUTION OF INTEGRAL
EQUATIONS FOR A ROUGH SURFACE WITH
LAYERED MEDIUM

3.1. The Physics-Based Two-Grid Method

In this section, we briefly give an introduction of PBTG method for
the case of homogeneous surfaces. In the next section, we then show
that how the reflected part of the dyadic Green’s function is cast into
formulation such that the modification of the numerical coding can be
minimized within the framework of the PBTG. In the development of
PBTG for the homogeneous rough surfaces [18], equations (1)–(4) are
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written in the matrix equations using moment of method with pulse
function as basis function and point matching method

N∑
n=1

[
Zp1

mnI
(1)
n + Zp2

mnI
(2)
n + Zp3

mnI
(3)
n + Zp4

mnI
(4)
n + Zp5

mnI
(5)
n + Zp6

mnI
(6)
n

]

= I(p)inc
m (28)

where I
(q)
n are unknown surface fields needed to be solved, and I

(p)inc
m

are given by the incident fields, and the parameter N is the number
of points we use to sample the rough surface. For p = 1, 2, 3 which
correspond the surface integral equation when approaching the surface
from free space and for p = 4, 5, 6 when approaching the surface from
the lower medium. The quantities of I

(p)inc
m are zero for p = 4, 5, 6.

Where

I(1)
n = Fx(�r ) = Sxy(�rn)[n̂× �H(�rn)] · x̂ (29)

I(2)
n = Fy(�r ) = Sxy(�rn)[n̂× �H(�rn)] · ŷ (30)

I(3)
n = In(�r ) = Sxy(�rn)n̂ · �E(�rn) (31)

I(4)
n = Ix(�r ) = Sxy(�rn)[n̂× �E(�rn)] · x̂ (32)

I(5)
n = Iy(�r ) = Sxy(�rn)[n̂× �E(�rn)] · ŷ (33)

I(6)
n = Fn(�r ) = Sxy(�rn)n̂ · �H(�rn) (34)

are surface unknowns and Sxy =
√

1 + f2
x + f2

y , fx = ∂f
∂x , fy = ∂f

∂y .
The Zpq

mn in (28) are the impedance elements and are determined
by the free space Green’s function and the lower medium Green’s
function. The parameter N is the number of points we use to digitize
the rough surface.

To solve equation (28), the surface fields can be obtained.
Traditionally, the matrix equation is solved by matrix inversion or
Gaussian elimination methods, which require O(N3) operations and
O(N2) memory. In the physics-based two-grid method, two grids with
sampling points per wavelength of nscg (coarse grid) and nsdg (dense
grid), respectively, are used. The PBTG is used in conjunction with
the SMCG that was previously used in computing scattering from 2-
dimensional rough surfaces. By ignoring the pre-multiplication, post-
multiplication, and interpolation calculations and retaining only the
dominant terms, the total number of operations (multiplications) is



Progress In Electromagnetics Research, PIER 67, 2007 189

approximately [15, 18]

NCGM

[
256r2

l nsdgNsdg

]
+NCGM

[
256

(
r2
d − r2

l

)
nscgNscg + 2Nscg log(Nscg)mFFT

]
+NSMCG [72Nscg log(Nscg)mFFT ] (35)

where NCGM and NSMCG are the number of iterations in the conjugate
gradient method (CGM) matrix solver and the number of right-hand-
side updates, respectively, nsdg and nscg are the number of sample
points per λ2 on the dense and coarse grids, respectively, and mFFT is
the total number of FFT’s and inverse FFT’s.

3.2. Inclusion of Reflected Part of the Dyadic Green’s
Function

To keep the structure of the PBTG algorithm as much as possible, the
surface fields associated with the reflected part of the dyadic Green’s
function is decomposed into tangential and normal components for
�E and �H fields. For inhomogeneous surfaces, there are additional
tangential fields, n̂ × �E, �n × �H associated with the G

r

1, ∇ × G
r

1 and
normal fields, n̂ · �E, �n · �H associated with ∇G

r

1 need to be solved. In
the following, we illustrate our derivation for the reflected part of the
Green’s function. The final results can be put into the structure of
PBTG and thus the fast method can be applied.

Consider the integral equation of the form

�E = �Ei +
∫ {

∇×G
r

1 · (n̂′ × �E) + jωµG
r

1 · (n̂′ × �H)
}
dS′ (36)

�H = �H i +
∫ {

−jωεG
r

1 · (n̂′ × �E) + ∇×G
r

1 · (n̂′ × �H)
}
dS′ (37)

Taking the tangential projection, we reach the following form

n̂× �E = n̂′× �Ei+n̂×
∫ {

∇×G
r

1 · (n̂′× �E)+jωµG
r

1 · (n̂′× �H)
}
dS′

(38)

n̂× �H = n̂× �H i+n̂×
∫ {

−jωεG
r

1 · (n̂′× �E)+∇×G
r

1 · (n̂′× �H)
}
dS′

(39)

Following the notations of PBTG, (38) and (39) can be rewritten as

�Ir = (�s× �Ei) + �s×
∫∫ (

∇×G
r

1 · �Ir′ + jωµG
r

1 · �F r′
)
dx′dy′ (40)
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�F r = (�s× �H i) + �s×
∫∫ (

−jωεG
r

1 · �Ir′ + ∇×G
r

1 · �F r′
)
dx′dy′ (41)

What we need is to write up explicit forms of �Ir and �F r. This
is given in Appendix A. Now that the Ir

x, I
r
y , I

r
n, F

r
x , F

r
y , F

r
n are new

terms resulting from G
r

1 and are readily added on the original six
scalar integral equations for the homogeneous medium. The rewritten
Ir
x, I

r
y , I

r
n, F

r
x , F

r
y , F

r
n makes the inclusion of the inhomogeneous effects

without difficulties by simply casting them into the PBTG framework.
The inclusions of these terms in generation of impedance matrix
slightly increase the computation time. Numerically calculations
involving G

r

1 and ∇×G
r

1 are illustrated below.

3.3. Computations of the G
r

1 and ∇×G
r

1

As the formulations made in the above section, the inclusion of the
reflected part of the dyadic Green’s function that accounts for the
inhomogeneity of the lower medium under the framework PBTG
method is straightforward. In forming the impedance matrix and thus
in the calculation of the matrix elements, additional efforts must be
exercised to compute the matrix elements with double infinite integral
involving G

r

1 and ∇ × G
r

1. In this aspect, we adopted the method
proposed by Tsang et al. [20]. The method evaluates the matrix
elements by numerically integrating the Sommerfeld integrals along
the Sommerfeld with higher order asymptotic extraction.

Written in spectral form,

G
r

1(�r, �r
′) =

i

8π2

∫∫
dkxdky

1
k1z

[
RTE ê(k1z)ê(−k1z)

+ RTM ĥ(k1z)ĥ(−k1z)
]

×eikx(x−x′)+iky(y−y′)+ik1z(z+z′)

=
i

8π2

∫∫
dkxdky

1
k1z

[
RTEe−2ik1zd1 ê(k1z)ê(−k1z)

+ RTMe−2ik1zd1 ĥ(k1z)ĥ(−k1z)
]

×eikx(x−x′)+iky(y−y′)+ik1z(z+z′+2d1) (42)

The curl of (42) is

∇×G
r

1(�r, �r
′) =

i

8π2

∫∫
dkxdky

1
k1z

[
RTEĥ(k1z)ê(−k1z)

+ RTM ê(k1z)ĥ(−k1z)
]



Progress In Electromagnetics Research, PIER 67, 2007 191

×eikx(x−x′)+iky(y−y′)+ik1z(z+z′)

=
i

8π2

∫∫
dkxdky

1
k1z

[
RTEe−2ik1zd1 ĥ(k1z)ê(−k1z)

+ RTMe−2ik1zd1 ê(k1z)ĥ(−k1z)
]

×eikx(x−x′)+iky(y−y′)+ik1z(z+z′+2d1) (43)

More explicit forms of (42) and (43) are given in Appendix B. Following
the numerical procedures proposed in [20], they are calculated in high
numerical stability and accuracy. Finally, the reflection coefficients
RTM , RTE are given for completeness [1, 2].

Rp =
ei2kzd0

Rp
01

+
[
1 − (1/Rp

01)
2
]
ei2(k1z+kz)d0

(1/Rp
01)ei2k1zd0

+
ei2k1zd1

Rp
12

+
[
1 − (1/Rp

12)
2
]
ei2(k2z+k1z)d1

(1/Rp
12)ei2k2zd1

+ · · · + ei2k(l−1)zdl−1

Rp
(l−1)l

+

[
1 − (1/Rp

(l−1)l)
2
]
ei2(klz+k(l−1)z)dl−1

(1/Rp
(l−1)l)e

i2klzdl−1
+ Rlte

i2klzdl (44)

where p = TE or TM, l = 1, 2, . . . , N and dl represents region depth
in region l.

Fig. 2 and Fig. 3 present two cases of emissivity of a three-
layered medium. The top boundary was assumed to be plane. When
the permittivity of the first layer is lower, the angular curve of the
emissivity tends to be more flat.

4. NUMERICAL RESULTS AND DISCUSSIONS

Simulations were conducted on Gaussian rough surfaces with
correlation length of 1 wavelength, rms height of 0.1 wavelength, and
the relative dielectric constant of 7.35+i0.8725. For the lower dielectric
medium, an inhomogeneous layered medium with three layers was
chosen. The depths of the layer 1 and layer 2 were, respectively, 0.25
and 1 wavelength, with relative dielectric constants of 7.35 + i0.8725
and 8.3 + i1.0, respectively. Half-space background was assumed with
dielectric constant of 9.3+ i1.335. The total scattering power was then
simulated averaged over 5 realizations. It is noted that unlike in the
active sensing, fewer realizations are required in the passive sensing
simulation because of a large number of angular observations available
for ensemble average. In [18], it has been shown that 5 realizations can
give sufficiently accurate results. Table 1 gives the total scattering
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Figure 2. Emissivity of a three-layered medium (ε1 = 4 + i0.5, ε2 =
15 + i2.5, d1 = 0.25λ and d2 = 1.0λ, εb = 21 + i5) with top plane
boundary. Both H- and V -polarized cases are shown.

power for H-polarized and V -polarized cases with the look angles
from 10 to 50 degrees. For comparison, results for the homogeneous
surface (non-layered) are also tabulated. The table indicates that for
H-polarized case, all the scattering power from the layered medium
is larger than those from the non-layered surfaces for all the observed
angles considered here. For V -polarized case, some angular oscillations
were observed. This is possible because the reflective energy from the
layered medium could be less than those from the non-layered medium
[1]. Since the dielectric gradient of the three-layer medium was chosen
to be intently small, it was expected that the contributions from the
stratified medium were also correspondingly small. At this point, it can
be argued that as the dielectric gradient becomes large, the difference
of emissivities between the layered medium and non-layered medium
should be large as well, as will be shown below for such cases.

To see the effects of the inhomogeneity, we increased the dielectric
gradient. The rough boundary was again assumed to be Gaussian with
correlation length of 1 wavelength, rms height of 0.1λ. The dielectric
constants of the two layers were ε1 = 4+i0.5, ε2 = 15+i2.5, with each
depth of d1 = 0.25λ and d2 = 1.0λ and the half-space permittivity was



Progress In Electromagnetics Research, PIER 67, 2007 193

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40              50 60

Emission of a plane boundary with layered medium

E
m

is
si

vi
ty

Look Angle (deg)

V-pol.

H-pol.

�ε
1
=2.88+i0.05, d

1
=0.25 �λ

�ε
2
=15+i2.5, d

2
=1.0 �λ

�ε
b
=21+i5.0

Figure 3. Emissivity of a three-layered medium (ε1 = 2.88 +
i0.05, d1 = 0.25λ, ε2 = 15 + i2.5, d2 = 1.0λ, εb = 21 + i5) with
top plane boundary. Both H- and V -polarized cases are shown.

Table 1. Reflectivities of non-layered (NL) and layered (L) media for
H and V polarizations.

Look Angle(deg) NL-H L-H NL-V L-V

10 0.22147 0.22165 0.20768 0.20720

20 0.23395 0.23455 0.18981 0.18909

30 0.25708 0.25815 0.16304 0.16236

40 0.29520 0.29555 0.12840 0.12790

50 0.36133 0.36215 0.087704 0.087983

set to εb = 21 + i5. Fig. 4a shows the reflectivity, while Fig. 4b is
the emissivity. For comparison, those of without layered medium were
also plotted. At the angles smaller than around 40 degrees, the layered
medium has more contributions. Overall, the layered medium has a
larger reflectivity than those non-layered medium for all the look angles
considered. Correspondingly, the emissivity is generally smaller for the
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Figure 4. (a) Reflectivity and (b) emissivity of a rough surface with
and without a layered medium. Three layers (ε1 = 4.0 + i0.5, d1 =
0.25λ, ε2 = 15 + i2.5, d2 = 1.0λ, εb = 21 + i5) were shown with look
angle from 10 to 50 degrees.
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Figure 5. (a) Reflectivity and (b) emissivity of a rough surface with
and without a layered medium. Three layers (ε1 = 2.88 + i0.05, d1 =
0.25λ, ε2 = 15 + i2.5, d2 = 1.0λ, εb = 21 + i5) are shown with look
angle from 20 to 50 degrees.
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layered medium. Compared to the case in Table 1, now, the difference
between the layered and non-layered medium becomes larger with the
increase of the dielectric gradients among the layers. This can be
expected because in such case, the reflected part of the dyadic Green’s
function G

r

1 becomes more important and thus contributes more to the
total part. Recall that when there is no gradient exists in the layered
medium (i.e., non-layered medium), G

r

1 simply vanishes.
It must be remembered that a small change of emissivity results

in large difference when converting to brightness temperature. Fig. 5
displays another set of the simulation results. The layer parameters
were the same as in Fig. 4, except the dielectric constant in the first
layer was 2.88 + j0.05. The gradient between the first and the second
layers was larger. Generally, the reflectivity is smaller because of
smaller dielectric constant at the top layer. The difference between the
layered and non-layered medium, however, is now more appreciable.
The emissivity also follows the similar trends. Smaller look angle
clearly generated larger difference. This was also expected since for
larger look angles, the propagation paths were also longer and thus
more attenuations resulted, leading to less contributions of G

r

1.

5. CONCLUSIONS

Numerical simulations of scattering of rough surfaces with an
inhomogeneous layered medium by using the physics-based two-grid
method combined with sparse matrix canonical grid method (PBTG-
SMCG) were presented. By separating the Dyadic Green’s function
into a direct part and a reflected part, and reformulating the reflected
part, we can apply the numerical framework of PBTG. The extension
is easy and straightforward. The surface fields associated with the
reflected part of the dyadic Green’s function was decomposed into
tangential and normal components for electric and magnetic fields.
Then we can combine them with those associated with the direct
part such that the structure of PBTG is applicable. Contributions
from the reflected part, namely, the inhomogeneity effects of the lower
medium, can be observed numerically. Explicit expressions of all the
components of the reflected part were given for readily computation.
Numerical scheme for implementation was also thoroughly described.
In summary, a numerical simulation of the full three-dimensional rough
surfaces with layered medium was proposed. The fast computation
and super accuracy permits us to perform the simulations of surface
reflectivity and emissivity which require strict energy conservation
check. It provides an efficient tool to investigate the microwave
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emission of layered medium with rough boundary such as snow and soil
surfaces. The simulations show that the effect of the inhomogeneous
layered medium is non-negligible and is polarization dependent.

APPENDIX A. EXPLICIT FORM OF �Ir AND �F r

For simple notation, let

G
d

1 ≡




x̂x̂Gxx x̂ŷGxy x̂x̂Gxz

ŷx̂Gyx ŷŷGyy ŷẑGyz

ẑx̂Gzx ẑŷGzy ẑẑGzz


 (A1)

∇×G
d

1 =




x̂x̂Dxx x̂ŷDxy x̂x̂Dxz

ŷx̂Dyx ŷŷDyy ŷẑDyz

ẑx̂Dzx ẑŷDzy ẑẑDzz


 (A2)

After a series of vector manipulations, we can obtain

Ir
x = x̂ · �Ir

= x̂ · (�s× �Ei) + x̂ · �s×
∫∫ (

∇×G · �Ir′ + iωµG · �F r′
)
dx′dy′

= −Eiy +
∫∫ {[

(−fyDzx −Dyx) + f ′
x(−fyDzz −Dyz)

]
Ir′
x

+
[
(−fyDzy −Dyy) + f ′

y(−fyDzz −Dyz)
]
Ir′
y

+iωµ
[
(−fyGzx −Gyx) + f ′

x(−fyGzz −Gyz)
]
F r′

x

+ iωµ
[
(−fyGzy −Gyy) + f ′

y(−fyGzz −Gyz)
]
F r′

y

}
dx′dy′ (A3)

Ir
y = ŷ · �Ir

= ŷ · (�s× �Ei) + ŷ · �s×
∫∫ (

∇×G · �Ir′ + iωµG · �F r′
)
dx′dy′

= Eix + fxEiy +
∫∫ {[

(Dxx + fxDzx) + f ′
x(Dxz + fxDzz)

]
Ir′
x

+
[
(Dxy + fxDzy) + f ′

y(Dxz + fxDzz)
]
Ir′
y

+iωµ
[
(Gxx + fxGzx) + f ′

x(Gxz + fxGzz)
]
F r′

x

+ iωµ
[
(Gxy + fxGzy) + f ′

y(Gxz + fxGzz)
]
F r′

y

}
dx′dy′ (A4)
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F r
x = x̂ · �F r

= x̂ · (�s× �H i) + x̂ · �s×
∫∫ {

−iωε(G · �Ir′) + (∇×G · �F r′)
}
dx′dy′

= −Hiz−βHiy+
∫∫ {

−iωε
[
(−fyGzx−Gyx)+f ′

x(−fyGzz−Gyz)
]
Ir′
x

+iωε
[
(−fyGzy −Gyy) + f ′

y(−fyGzz −Gyz)
]
Ir′
y

+
[
(−fyDzx −Dyx) + f ′

x(−fyDzz −Dyz)
]
F r′

x

+
[
(−fyDzy −Dyy) + f ′

y(−fyDzz −Dyz)
]
F r′

y dx′dy′ (A5)

F r
y = ŷ · �F r

= ŷ · (�s× �H i) + ŷ · �s×
∫∫ {

−iωε(G · �Ir′) + (∇×G · �F r′)
}
dx′dy′

= −Hiy−fyHiy+
∫∫ {

−iωε
[
(Gxx+fxGzx)+f ′

x(Gxy+fxGzy)
]}

Ir′
x

−iωε
[
(Gxy + fxGzy) + f ′

y(Gxz + fxGzz)
]
Ir′
y

+
[
(Dxx + fxDzx) + f ′

x(Dxy + fxDzy)
]
F r′

x

+
[
(Dxy + fxDzy) + f ′

y(Dxz + fxDzz)
]
F r′

y dx′dy (A6)

Note that

n̂ · �Ir = 0 → Ir
z = fxI

r
x + fyI

r
y (A7)

n̂ · �F r = 0 → F r
z = fxF

r
x + fyF

r
y (A8)

It follows that the normal components of �Ir and �F r are written as,
respectively

Ir
n = (−fxEix − fyEiy + Eiz)

+
∫ {[

−(fxDxx+fyDyx−Dzx+fxf
′
xDxz+fyf

′
xDyz−f ′

xDzz
]
Ir′
x

+
[
fxDxy + fyDyy −Dzy + fxf

′
xDxz + fyf

′
xDyz − f ′

xDzz
]
Ir′
y

−iωε
[
fxGxx + fyGyx −Gzx + fxf

′
xGxz + fyf

′
xGyz − f ′

xGzz
]
F r′

x

+ iωε
[
fxGxy+fyGyy−Gzy+fxf

′
yGxz+fyf

′
yGyz−f ′

yGzz

]
F r′

y

}
dx′dy′

(A9)
F r

n = (−fxHix − fyHiy + Hiz)

+
∫∫ {

(−iωε)
[
fxGxx+fyGyx−Gzx+fxf

′
xGxz+fyf

′
yGyz−f ′

xGzz

]
Ir′
x
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+(−iωε)
[
fxGxy+fyGyy−Gzy+fxf

′
yGxz+fyf

′
yGyz−f ′

yGzz

]
Ir′
y

−
[
fxDxx + fyDyx −Dzx + fxf

′
xDxz + fyf

′
xDyz − f ′

xDzz
]
F r′

x

+
[
fxDxy+fyDyy−Dzy+fxf

′
yDxz+fyf

′
yDyz−f ′

yGzz

]
F r′

y

}
dx′dy′

(A10)

APPENDIX B. EXPLICIT FORMS OF G
r

1 AND ∇×G
r

1

To write explicit form of (42) and (43), let X = x−x′, Y = y−y′, Z =
z+z′+2d1, with ∆ = e−i2k1zd1 , and ρ =

√
X2 + Y2, φ = tan−1(Y/X).

After some mathematical manipulations, we have

G
r

1(X,Y, Z) =
i

4π
x̂x̂

∞∫
0

dkρkρ
1
k1z

eik1zz

×
[
RTE∆

(
J ′

1(kρρ) sin2 φ +
J1(kρρ)

kρρ
cos2 φ

)

− RTM∆
k2

1z

k2
1

(
J ′

1(kρρ) cos2 φ +
J1(kρρ)

kρρ
sin2 φ

)]

+
i

4π
x̂ŷ

∞∫
0

dkρkρ
1
k1z

eik1zz

[
−RTE∆ −RTM∆

k2
1z

k2
1

]

[
J ′

1(kρρ) −
J1(kρρ)

kρρ

]
cosφ sinφ

+
i

4π
ŷx̂

∞∫
0

dkρkρ
1
k1z

eik1zz

[
−RTE∆ −RTM∆

k2
1z

k2
1

]

[
J ′

1(kρρ)−
J1(kρρ)

kρρ

]
cosφ sinφ+

i

4π
ŷŷ

∞∫
0

dkρkρ
1
k1z

eik1zz

×
[
RTE∆

(
J ′

1(kρρ) cos2 φ +
J1(kρρ)

kρρ
sin2 φ

)

− RTM∆
k2

1z

k2
1

(
J1(kρρ) cos2 φ +

J ′
1(kρρ)k2

1z

k2
1

sin2 φ

)]

− i

4π
x̂ẑ

∞∫
0

dkρkρ
1
k1z

eik1zz
[
RTM∆J1(kρρ)

(−k1z

k2
1

)
kρ cosφ

]
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− i

4π
ẑx̂

∞∫
0

dkρkρ
1
k1z

eik1zz
[
RTM∆J1(kρρ)

(
k1z

k2
1

)
kρ cosφ

]

− i

4π
ŷẑ

∞∫
0

dkρkρ
1
k1z

eik1zz
[
RTM∆J1(kρρ)

(−k1z

k2
1

)
kρ sinφ

]

− i

4π
ẑŷ

∞∫
0

dkρkρ
1
k1z

eik1zz
[
RTM∆J1(kρρ)

(
k1z

k2
1

)
kρ sinφ

]

+
i

4π
ẑẑ

∞∫
0

dkρkρ
1
k1z

eik1zz

[
RTM∆J0(kρρ)

(
k2

ρ

k2
1
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(B1)

∆ ×G
r

1(X,Y, Z) =
i

4π
x̂x̂

∞∫
0

dkρkρ
1
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)

+ RTM∆
k1z

k1

(
J1(kρρ)

J1(kρρ)
kρρ

cos2 φ− J ′
1(kρρ)φ sin2 φ

)]

− i

4π
x̂ẑ
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−RTM∆

(
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1(kρρ) cos2 φ− J1(kρρ)
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sin2 φ
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ŷŷ
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(
J ′
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In (B1) and (B2), Jn is Bessel function of order n and J ′
n is derivative

of Bessel function of order n. It is noted that the ẑẑ component is
vanishing.

REFERENCES

1. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave
Remote Sensing, John Wiley & Sons, 1985.

2. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE
Press, 1995.

3. Fung, A. K. and M. F. Chen, “Emission from an inhomogeneous
layer from a rough surface,” Radio Science, Vol. 16, 289–298, 1981.

4. Wang, J. R. and B. J. Choudhury, “Remote sensing of soil
moisture content over bare fields at 1.4 GHz frequency,” J.
Geophys. Res., Vol. 86, 5277–5282, 1981.

5. Tsang, L. and R. W. Newton, “Microwave emissions from soils
with rough surfaces,” J. Geophy. Res., Vol. 87, No. 11, 9017–9024,
Oct. 1982.

6. Wang, J. R., P. E. O’Neill, T. J. Jackson, and E. T. Engman,
“Multi-frequency measurements of the effects of soil moisture, soil
texture and surface roughness,” IEEE Trans. Geosci. Rem. Sens.,
Vol. GE-21, 44–51, 1983.

7. Mo, T., T. J. Schmugge, and J. R. Wang, “Calculations of the



202 Chen et al.

microwave brightness temperature of rough soil surfaces: bare
field,” IEEE Trans. Geosci. Remote Sensing, Vol. GE-25, No. 1,
47–54, Jan. 1987.

8. Shi, J., J. Dozier, and H. Rott, “Snow mapping in alpine regions
with synthetic aperture radar,” IEEE Transactions on Geoscience
and Remote Sensing, Vol. 32, No. 1, 152–158, 1994.

9. Shi, J., J. Wang, A. Hsu, P. O’Neill, and E. T. Engman,
“Estimation of bare surface soil moisture and surface roughness
parameters using L-band SAR image data,” IEEE Transactions
on Geoscience and Remote Sensing, Vol. 35, No. 5, 1254–1266,
1997.

10. Fuks, I. M. and A. G. Voronovich, “Wave diffraction by rough
interfaces in an arbitrary plane layered medium,” Waves in
Random Medium, Vol. 10, 253–272, 2000.

11. Johoson, J. T., “Thermal emission from a layered medium
bounded by a slightly rough interface,” IEEE Trans. Geosci.
Remote Sensing, Vol. 39, No. 2, 368–378, 2001.

12. Chen, K. S., T. D. Wu, L. Tsang, Qin Li, and J. C. Shi, “The
emission of rough surfaces calculated by the Integral equation
method with a comparison to a three-dimensional moment method
simulations,” IEEE Trans. Geoscience and Remote Sensing,
Vol. 41, No. 1, 90–101, 2002.

13. Pelosi, G. and R. Coccioli, “A finite element approach for
scattering from inhomogeneous media with a rough interface,”
Waves in Random Media, Vol. 7, 119–127, 1997.

14. Giovannini, H., M. Saillard, and A. Sentenac, “Numerical study
of scattering from rough inhomogeneous films,” J. Opt. Soc. Am,
A, Vol. 15, No. 5, 1182–1191, 1998.

15. Tsang, L., C. H. Chan, and K. Pak, “Backscattering enhancement
of a two-dimensional random rough surface (three-dimensional
scattering) based on Monte Carlo simulations,” J. of Optical
Society of America A, Vol. 11, No. 2, 711–715, 1994.

16. Johnson, J., L. Tsang, R. Shin, K. Pak, C. H. Chan, A. Ishimaru,
and Y. Kuga, “Backscattering enhancement of electromagnetic
waves from two-dimensional perfectly conducting random rough
surfaces: A Comparison of Monte Carlo simulations with
experimental data,” IEEE Trans. Antennas Propagat., Vol. 44,
748–756, 1996.

17. Tsang, L. and Q. Li, “Numerical solution of scattering of waves by
lossy dielectric surfaces using a physics-based two-grid method,”
Microwave Opt. Technol. Lett., Vol. 16, No. 6, 356–364, December
20, 1997.



Progress In Electromagnetics Research, PIER 67, 2007 203

18. Li, Q., C. H. Chan, and L. Tsang, “Monte-Carlo simulations of
wave scattering from lossy dielectric random rough surfaces using
the physics-based two-gird method and canonical grid method,”
IEEE Trans. Antennas Propagat., Vol. 47, No. 4, 752–763, April
1999.

19. Tsang, L., J.-H. Cha, and J. R. Thomas, “Electric fields of spatial
Green’s functions of microstrip structures and applications to
the calculations of impedance matrix elements,” Microwave and
Optical Technology Letters, Vol. 20, No. 2, 90–97, 1999.

20. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of
Electromagnetic Waves, Volume II: Numerical Simulations, John
Wiley & Sons, 2001.


