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Abstract—A closed-form formula, the discrepancy parameter,
which has been defined as the ratio of the modal expansion
coefficients between the electromagnetic field obtained from the
image approximation and the incident electromagnetic field, has been
proposed for the evaluation of the validity of the image approximation
in the electromagnetic wave propagation, i.e., Love’s equivalence
principle, and the electromagnetic wave scattering, i.e., the induction
equivalent and the physical equivalent, in the cylindrical geometry. The
discrepancy parameter is derived through two equivalent methods, i.e.,
the vector potential method through the cylindrical addition theorem
and the dyadic Green’s function method, for both the TE and TM
cylindrical harmonics. The discrepancy parameter justifies the fact
that the image approximation approaches the exact solution for the
cylindrical surface of infinite radius. For the narrow-band field with
limited spectral component in k space, the cylindrical modal expansion
of the electromagnetic wave into the TE and TM cylindrical harmonics
can be separated into the forward-propagating wave that propagates
forward and the back-scattered wave that is back-scattered by the PEC
surface, within the image approximation. The discrepancy parameter
shows that the validity of the image approximation depends on the
property of the incident field and the radius of the cylindrical surface,
i.e., the narrow-band field and the surface of a large radius are in favor
of the image approximation, which has also been confirmed by the
numerical result.
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1. INTRODUCTION

The image approximation has been frequently used as the approximate
solution of Love’s equivalence principle for the electromagnetic wave
propagation [1–3] and in the induction equivalent and the physical
equivalent in the electromagnetic wave scattering phenomenon, which
includes microwave imaging [4, 5], reflector antenna design [6, 7],
evaluation of Radar Cross Section (RCS) [8, 9] and other applications
[10–12]. Recently, the image approximation also finds the application
in the mirror system design for quasi-optical mode converters in
high-power gyrotrons [13–16]. It is well-known that the image
approximation only works well for the smooth surface with a large
radius (small curvature), where the equivalent surface currents (Ms,
Js) can be approximated by twice the magnetic surface current
(Mapp

s = 2Ms) or twice the electrical surface current (Japp
s = 2Js)

[1, 3, 17, 18]. However, although the exact solution of the plane
wave scattering problem in the cylindrical geometry has been found
[17, 19, 20], no general closed-form formula has been reported so far
about how large the radius of a cylindrical surface should be in order
to achieve an accurate enough image approximation, for the arbitrary
incident electromagnetic field. It is helpful to derive such formula in
its closed-form expression in order to use the image approximation
efficiently.

In this article, the discrepancy parameter due to the image
approximation of the electromagnetic wave propagation and scattering
has been investigated for the open cylindrical surface and for arbitrary
narrow-band field. Non-cylindrical surface can be approximately
regarded as the local cylindrical surface with radius defined by the
local curvature. The derivation of the discrepancy parameter of the
image approximation in the cylindrical geometry can be done through
the following steps: 1) specify some arbitrary incident electromagnetic
wave in the form of TE and TM cylindrical harmonics on the
initial cylindrical surface [20, 21]; 2) apply the image approximation
Mapp

s (Japp
s ) on Love’s equivalence principle in the electromagnetic

wave propagation scenario and on the induction equivalent (the
physical equivalent) in the electromagnetic wave scattering scenario; 3)
calculate the forward-propagating wave (back-scattered wave) on the
initial cylindrical surface through either the vector potential method
or the dyadic Green’s function method; and 4) obtain the ratio
of the modal expansion coefficients between the calculated forward-
propagating wave (back-scattered wave) calculated from step 3) and
those of the initial incident electromagnetic wave given in step 1), which
leads to the discrepancy parameter due to the image approximation in
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the cylindrical geometry.
The rest of this article is organized as follows: Section 2

presents the derivation of the discrepancy parameter due to the
image approximation through two equivalent methods, i.e., the vector
potential method and the dyadic Green’s function method, for both the
TE and TM cylindrical harmonics. The numerical result is shown and
discussed in Section 3, followed by Section 4, the concluding remarks.
The time dependence eiωt (i ≡

√
−1) is used in this article.

2. TWO EQUIVALENT METHODS

The scheme used to illustrate the image approximation for the
cylindrical geometry is shown in Fig. 1, where the incident field Ei

propagates onto cylindrical surface S, after which Ei may continue to
propagate to E>+ or it could be back-scattered to E +

< or E>
− = E<−,

depending on whether it is a forward propagation problem where the
Love’s equivalence principle can be applied on surface S or a scattering
problem where surface S serves as a PEC scatter. Two equivalent
methods will be used to obtain the discrepancy parameter due to the
image approximation.

The incident field Ei propagates onto cylindrical surface S with a
radius of ρ0, then it may forward-propagate to E>+ if it is a forward
propagation problem; or it could be back-scattered to E>

− = E<− if
surface S serves as a PEC scatter. n̂+ and n̂− are the outward and
inward unit surface normals to S respectively. Mapp+

s and Japp+
s are

the image approximations of the equivalent surface currents for Love’s
equivalence principle; Mapp−

s and Japp−
s are the image approximations

of the induction equivalent and the physical equivalent respectively.
S> and S< are surfaces that are infinitesimally close to surface S,
from outside (ρ > ρ0) and from inside (ρ < ρ0) respectively. The
superscript “+” and the subscript “−” denote the front-wave (y > 0)
and the back-wave (y < 0); the superscript “>” and the subscript “<”
denote the ρ > ρ0 and ρ < ρ0 regions, e.g., E>+ denotes the front-
wave (y > 0), for ρ > ρ0 region, evaluated on surface S>. Note that
the front-wave and back-wave concepts (delimited by plane y = 0) are
only for notation convenience and they are different from the “physical”
forward-propagating wave and the back-scattered wave (delimited by
surface S), i.e., the forward-propagating wave is the front-wave E>+

and the back-scattered wave includes the front-wave E +
< and the back-

wave E>
− = E<−, which will be explained in details in Section 2.1.2.
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Figure 1. Electromagnetic wave propagation and scattering in the
cylindrical geometry: (a) the side view; and (b) the top view.



Progress In Electromagnetics Research, PIER 66, 2006 69

2.1. The Vector Potential Method

In this section, the forward-propagating wave E>+ (back-scattered
wave E +

< and E>
− = E<−) in Fig. 1 is evaluated through the vector

potential F and A for the given incident field Ei. The comparison of
the calculated forward-propagating wave E>+ (back-scattered wave
E +

< and E>
− = E<−) with the incident field Ei leads to the

discrepancy parameter due to the image approximation.

2.1.1. The Cylindrical Harmonics

The cylindrical modal expansion of the vector potential F(r) for the
magnetic current Ms(r′) on an arbitrary surface in the cylindrical
coordinate is given as

F(r) = ε

∫ ∫
S

[
g(r − r′)Ms(r′)

]
dS′

=
ε

i8π

∫ ∫
S

[
Ms(r′)

∫ ∞

−∞
H

(2)
0

(
Λ

∣∣ρ− ρ′
∣∣) e−ih(z−z′)dh

]
dS′ (1)

where ε is the permittivity of the homogeneous medium. H
(2)
0 ( · )

is Hankel function of the second kind of order 0. The scalar Green’s
function g( · ) and the transverse wave vector Λ are defined as

g( · ) =
e−ik| · |

4π| · | , Λ =
√
k2 − h2. (2)

According to the cylindrical addition theorem [17, 21],

H
(2)
0

(
Λ

∣∣ρ− ρ′
∣∣) = H

(2)
0

(
Λ

√
ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′)

)

=
∞∑

m=−∞




H
(2)
m (Λρ)Jm(Λρ′)eim(φ′−φ)

∣∣∣
ρ>ρ′

Jm(Λρ)H(2)
m (Λρ′)eim(φ′−φ)

∣∣∣
ρ<ρ′

(3)

where ρ ≡ |ρ| is the observation coordinate and ρ′ ≡ |ρ′| is the source
coordinate. Jm( · ) is Bessel function of the first kind of integer order
m and H

(2)
m ( · ) is Hankel function of the second kind of integer order

m. Substituting (3) into (1), the cylindrical modal expansion of F(r)
on an arbitrary surface is obtained,

F>
<(r) = IFT

(
f>
< (m,h) H

(2)
m (Λρ)
Jm(Λρ)

)
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f>
< (m,h) =

ε

i4

∫ ∫
S

[
Jm(Λρ′)
H

(2)
m (Λρ′)

Ms(r′)ei(mφ′+hz′)

]
dS′ (4)

where, the the superscript “>” denotes ρ > ρ′ and the subscript “<”
denotes ρ < ρ′, similar to the definitions in Fig. 1. The Inverse Fourier
Transform (IFT) is defined as

IFT ( · ) =
1
2π

∞∑
m=−∞




∫ ∞

−∞

[
( · ) e−i(mφ+hz)

]
dh


 . (5)

The validity of (4) can be further confirmed by the Near-Field
Far-Field (NF-FF) transform. The far-field F(r)|

FF
can be obtained

from (4) by letting ρ → ∞,

F>(r)
∣∣
FF

= IFT
(

f>(m,h)H(2)
m (Λρ)

)∣∣∣∣
ρ→∞

(6)

Also, for ρ → ∞, the following relation holds [17],

1
2π

∫ ∞

−∞

[
f>(m,h)H(2)

m (Λρ)e−ihz
]∣∣∣∣

ρ→∞
dh=

1
π

e−ikr

r
im+1 f>(m,h) (7)

Substituting (7) into (6),

F>(r)
∣∣
FF

=
1
π

e−ikr

r

∞∑
m=−∞

{
im+1 f>(m,h)e−imφ

}
. (8)

F(r)|
FF

in (8) is the NF-FF transform in the cylindrical coordinate
[22, 23], which can also be obtained from (1) by letting ρ → ∞,

F>(r)
∣∣
FF

= ε
e−ikr

4πr

∫ ∫
S

[
Ms(r′)eiΛρ′ cos(φ−φ′)eihz′

]
dS′ (9)

Now, express eiΛρ′ cos(φ−φ′) in a Fourier series [24],

eiΛρ′ cos(φ−φ′) =
∞∑

m=−∞

{
imJm(Λρ′)e−im(φ−φ′)

}
. (10)

The substitution of (10) into (9) also gives (8).
Finally, the vector potential A(r) for the electric current Js(r′)

can be obtained through the duality relations,

E → H, Ms → −Js, F → −A, ε → µ. (11)
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The result is given as

A>
<(r) = IFT

(
g>

<(m, h) H
(2)
m (Λρ)
Jm(Λρ)

)

g>
<(m, h) =

µ

i4

∫ ∫
S

[
Jm(Λρ′)
H

(2)
m (Λρ′)

Js(r′)ei(mφ′+hz′)

]
dS′. (12)

2.1.2. The Forward-propagating Wave and Back-scattered Wave

In Fig. 1, Mapp+
s (Japp+

s ) is the image approximation of the
Love’s equivalence principle for the electromagnetic wave propagation
scenario and Mapp−

s (Japp−
s ) is the image approximation of the induction

equivalent (the physical equivalent) for the electromagnetic wave
scattering scenario. It is not difficult to show that the following
relations hold,

Mapp
s = Mapp+

s = 2(−n̂+) × Ei = 2n̂− × Ei = Mapp−
s . (13)

Japp
s = Japp+

s = 2n̂+ × Hi = −2n̂− × Hi = −Japp−
s . (14)

where n̂+ (n̂−) are the outward (inward) unit surface normals to S
(see Fig. 1). The electromagnetic wave calculated from the equivalent
current Mapp

s is thus the combination of the forward-propagating wave
(front-wave E>+ in Fig. 1) and the back-scattered wave (the front-wave
E +

< and the back-wave E>
− = E<− in Fig. 1). Physically, E>

− = E<−
because they are both evaluated on the back side of surface S (note
that surface S> and surface S< are infinitesimally close to surface
S). However, E>+ 	= E +

< due to the existence of the surface current
Mapp

s on the front side of surface S. Similar argument holds for Japp
s if

the minus sign “−” between Japp+
s and Japp−

s is safely ignored without
introducing any significant physical meaning.

Mathematically, for the narrow-band field, the separation of the
forward-propagating wave and back-scattered wave is clear by noting
that Jm( · ) in (4) can be expressed as

Jm( · ) =
H

(1)
m ( · ) + H

(2)
m ( · )

2
(15)

where H
(1)
m is the Hankel function of the first kind of integer order m.

From (4), the front-wave and back-wave are given as
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F>+
< (r) = IFT

(
f>+
< (m, h) H

(2)
m (Λρ)

H
(1)
m (Λρ)

)

F>
<−(r) = IFT

(
f>
<−(m, h)H(2)

m (Λρ)
)

f>+
< (m, h) =

ε

i8

∫ ∫
S

[
H

(1)
m (Λρ′)

H
(2)
m (Λρ′)

Mapp
s (r′)ei(mφ′+hz′)

]
dS′.

f>
<−(m, h) =

ε

i8

∫ ∫
S

[
H(2)

m (Λρ′)Mapp
s (r′)ei(mφ′+hz′)

]
dS′. (16)

Now, suppose the incident field Ei(ρ0) on the initial cylindrical
surface S with a radius of ρ0 is given as the combination of the TE
and TM cylindrical harmonics [17, 19, 20],

Ei(ρ0) =
∑
m

{∫ ∞

−∞

[
ah

m Mh>
m (ρ0) + bh

m Nh>
m (ρ0)

]
dh

}
(17)

ψh>
m<(r) = H

(2)
m (Λr)
Jm(Λr)

e−i(mφ+hz), Lh>
m<(r) = ∇

[
ψh>

m<(r)
]
, (18)

Mh>
m<(r) = ∇×

[
ẑψh>

m<(r)
]
, Nh>

m<(r) =
1
k
∇×

[
Mh>

m<(r)
]
. (19)

Due to the similarity, let’s consider the Mapp
s image approximation.

From (13) and (18)–(19), the equivalent magnetic current Mapp
s (ρ0) on

the cylindrical surface S (n̂+ = ρ̂0) is given as

Mapp
s (ρ0) = 2

∑
m′




∫ ∞

−∞


e−i(m′φ′+h′z′)


ah′

m′
∂H

(2)
m′ (Λ′ρ)
∂ρ

∣∣∣∣∣
ρ0

ẑ′

+ bh′
m′H

(2)
m′ (Λ′ρ0)

(
Λ′2

k
φ̂′ +

m′h′

kρ0
ẑ′

))]
dh′

}
(20)

The approximate field Ẽ>
<(r) can be obtained from (4),

Ẽ>
<(r) = −1

ε

[
∇× F>

<(r)
]

(21)

Ẽ>
<(r) =

−1
2πε

∑
m

{∫ ∞

−∞

(
Lh>

m<(r) × f>
< (m, h)

)
d

}
(22)

The evaluation of (22) reduces to the calculation of f>
< (m,h). Take

Mh>
m (TE mode) as an example, on cylindrical surface S, from (4) and
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(20),

fTE>
Ms<(m,h) = ẑ

∑
m

{
ε

i2

∫ ∫
S

[
ei(mφ′+hz′) Jm(Λρ0)

H
(2)
m (Λρ0)

×


ah

m

∂H
(2)
m′ (Λ′ρ)
∂ρ

∣∣∣∣∣
ρ0

e−i(m′φ′+h′z′)





 dS′




= ẑah
m

(
2επ2ρ0

i

)
Jm(Λρ0)
H

(2)
m (Λρ0)

∂H
(2)
m (Λρ)
∂ρ

∣∣∣∣∣
ρ0

(23)

where the following relations have been used to derive (23),
∫ 2π

0
ei(m−m′) φ′

dφ′ = 2πδm′
m =

{
2π m′ = m
0 m′ 	= m∫ ∞

−∞
ei(h−h′) z′dz′ = 2πδh′

h =
{

2π h′ = h
0 h′ 	= h

(24)

From (22), the approximate field ẼTE >
Ms< (ρ0) for TE mode is

obtained as

ẼTE >
Ms< (ρ0) =

−1
2πε

∑
m




∫ ∞

−∞


 L h>

φm<(ρ0)f TE>
zMs<(m,h)ρ̂0

− L h>
ρm<(ρ0)f TE>

zMs<(m,h)φ̂
]
dh

}
(25)

where f TE>
zMs< = fTE>

Ms< · ẑ. Substitute (18) and (23) into (25),

ẼTE>
Ms<(ρ0) =

∑
m

{∫ ∞

−∞
ah

m

[
ξTE >
ρMs< Mh>

ρm(ρ0)ρ̂0 + ξTE >
φMs< Mh>

φm(ρ0)φ̂
]
dh

}

(26)
ξ TE >
τMs

= ξ TE
ρMs< = ξ+ + ξ−, ξ TE

φMs< = −
(
ξ+)∗ + ξ−, (27)

where, τ = ρ, φ (TE mode) and ξ+
− is defined as

ξ+
− =

iπρ0

2

H
(1)
m (Λρ0)

∂H
(2)
m (Λρ)
∂ρ

∣∣∣∣
ρ=ρ0

H
(2)
m (Λρ0)

∂H
(2)
m (Λρ)
∂ρ

∣∣∣∣
ρ=ρ0 .

(28)
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The derivation for Nh>
m (TM mode) is a little lengthy, which is

shown in Appendix A. The result is,

ẼTM >
Ms < (ρ0) =

∑
m




∫ ∞

−∞
bh
m


 ξ TM >

ρMs< N h>
ρm (ρ0)ρ̂0

+ ξ TM >
φMs < N h>

φm (ρ0)φ̂ + ξ TM >
zMs < N h>

zm (ρ0)ẑ


dh


 (29)

ξ TM >
τMs

= ξ TM
ρMs< =

(
ξ+)∗ − ξ−, ξ TM

φMs < = ξ TM
zMs < = −ξ+ − ξ−. (30)

where, τ=ρ, φ, z (TM mode). Comparing the calculated approximate
field Ẽ>

< = ẼTE >
Ms< + ẼTM >

Ms < from (26) and (29) with the incident field Ei

in (17), it is not dicult to see that the discrepancy parameters ξ TE >
τMs<

and ξ TM >
τMs< (τ = ρ, φ for TE mode and τ = ρ, φ, z for TM mode) in (27)

and (30) is due to the approximation of the image theorem. Similar to
(16), it is not difficult to see from (27) and (30) that ξ TE >

τMs< and ξ TM >
τMs<

can also be separated into the front-wave and back-wave parts as

ξTE >+
τMs

= ξTE+
ρMs< = −

[
ξTE+
φMs<

]∗
=

[
ξTM>+
τMs

]∗
=

[
ξTM+
ρMs<

]∗
= −ξTM +

φMs< = −ξTM +
zMs< = ξ+. (31)

ξTE>
τMs− = ξTE

τMs<− = −ξTM >
τMs− = −ξTM

τMs<− = ξ−. (32)

Finally, the discrepancy parameters for Japp
s image approximation

(comparison of the magnetic field H) can be obtained from the duality
relations given in (11). With the help of (14), it can be shown that the
following relations hold for Japp

s image approximation,

[
ξ TE >+
τJs

]∗
= −

[
ξ TE +
ρJs<

]∗
= ξ TE +

φJs< = ξ TE +
zJs<

= ξ TM >+
τJs

= −ξ TM +
ρJs< =

[
ξ TM +
φJs<

]∗
= ξ+. (33)

ξ TE >
τJs − = ξ TE

τJs<− = −ξ TM >
τJs − = −ξ TM

τJs<− = ξ−. (34)

2.2. The Dyadic Green’s Function Method

The dyadic Green’s function for the magnetic field in the cylindrical
coordinate [19, 20, 25] is given as
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Ḡ >
HMs< (r, r′) = − ρ̂ρ̂′

k2
δ(ρ− ρ′)

+
∑
m



∫ ∞

−∞


 1
i8πΛ2




Mh>
m (r)

[
Mh

m<(r′)
]∗
+Nh>

m (r)
[
Nh

m<(r′)
]∗

Mh
m<(r)

[
Mh>

m (r′)
]∗
+Nh

m<(r)
[
Nh>

m (r′)
]∗





dh


 (35)

The approximate field Ẽ>
<(r) is thus obtained from (21),

Ẽ>
<(r) = −∇×




∫ ∫
S

[
Ḡ >

HMs< (r, r′) · Mapp
s (r′)

]
dS′


 (36)

Also, from (18)–(19), the following relations hold,

∇×
[

Mh>
m<(r)

[
Mh>

m<(r′)
]∗

· Mapp
s (r′)

]

= k

[
Nh>

m<(r)
[
Mh>

m<(r′)
]∗

· Mapp
s (r′)

]
(37)

∇×
[

Nh>
m<(r)

[
Nh>

m<(r′)
]∗

· Mapp
s (r′)

]

= k

[
Mh>

m<(r)
[
Nh>

m<(r′)
]∗

· Mapp
s (r′)

]
(38)

With the help of (37)–(38), substituting (35) into (36) and using the
orthogonal property of the cylindrical modal functions on cylindrical
surface S, Equation (36) reduces to,

Ẽ>
<(ρ0) =

ik

4πΛ2

∑
m



∫ ∞

−∞


ah

m
Mh>

m (ρ0)
Mh

m<(ρ0)

(∫∫
S

[Nh
m<(ρ0)]∗×Mh>

m (ρ0)
[Nh>

m (ρ0)]∗×Mh>
m (ρ0)

·̂ρ0dS
′
)

+ bhm
Nh>

m (ρ0)
Nh

m<(ρ0)

(∫ ∫
S

[Mh
m<(ρ0)]∗×Nh>

m (ρ0)
[Mh>

m (ρ0)]∗×Nh>
m (ρ0)

·ρ̂0dS
′
)
dh


 (39)

The evaluation of (39) is straightforward. Take ẼTE >
Ms< (ρ0) as an

example and note that,

[Nh
m<(ρ0)]∗ × Mh>

m (ρ0)
[Nh>

m (ρ0)]∗ × Mh>
m (ρ0)

· ρ̂0 =
Λ2

k

∂H
(2)
m (Λρ)
∂ρ

∣∣∣∣∣
ρ0

Jm(Λρ0)
H

(2)
m (Λρ0)

(40)

Substitute (40) into (39), ẼTE >
Ms< (ρ0) in (26) is also obtained. Following

the similar procedure, equations (29)–(34) can be derived.



76 Liao and Vernon

2.3. The Discrepancy Parameter due to the Image
Approximation

When ρ0 → ∞, from (27)–(34), it is not difficult to see that ξ TE >
τMs <,

ξ TM >
τMs < , ξ TE >

τJs < and ξ TM >
τJs < can be expressed in two quantities ξ+ and ξ−

defined in (28). For ρ0 → ∞, ξ+ approaches unit 1, which is expected.
However, ξ− shows oscillations, as can be seen from the property of
Bessel function,

H(2)
m (Λρ0) =

[
H(1)

m (Λρ0)
]∗

∼
√

2i
πΛρ0

ime−iΛρ0 , ρ0 → ∞, (41)

From (41), ξ+ and ξ− for ρ0 → ∞ reduce to

ξ+

∣∣∣∣
(ρ0→∞)

→ 1, ξ−

∣∣∣∣
(ρ0→∞)

≡ ξ∞− → i(−1)me−i2Λρ0 . (42)

It is important to note that, although ξ− (in the modal expansion
coefficient) shows oscillation when ρ0 → ∞, the approximate field
ẼTE >

Ms< (ρ0) in (26) and ẼTM >
Ms < (ρ0) in (29) have no such oscillation.

Physically, the oscillation is due to the back-scattered wave E>
− = E<−

(see Fig. 1) evaluated on the back side of cylindrical surface S, which
approaches 0 for ρ0 → ∞. Mathematically, the oscillation only
appears in the modal expansion coefficients and disappears after the
implementation of the sum and integration in (26) and (29). To look
at this more carefully, let’s consider the approximate field ẼTE >

Ms −(ρ0)
for TE mode in (26),

ẼTE >
Ms −(ρ0, φ)

=
∑
m



∫ ∞

−∞


ah

m

(
ξ TE >
ρMs − M h>

ρm (ρ0)ρ̂0+ ξ TE >
φMs − M h>

φm (ρ0)φ̂
)
dh


 (43)

Changing the variable φ′ = φ− π (φ̂′ = −φ̂) and letting ρ0 → ∞,

ẼTE >
Ms −(ρ0, φ

′)
∣∣∣∣
(ρ0→∞)

=
∑
m




∫ ∞

−∞

[
iah

m Mh>
m (ρ0)e−i2Λρ0

]
dh


 (44)

Now, the back-scattered field ẼTE >
Ms −(ρ0 → ∞, φ′) → 0 due to

the fast variation of the phase term e−i2Λρ0 , which means that the
oscillation of ξ− (in the modal expansion coefficient) doesn’t appear in
the actual field evaluation for ρ0 → ∞.
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Due to the above reasons, ξ+ is the discrepancy parameter of
interest for the narrow-band beam scattering and diffraction in the
open cylindrical surface, which is rewritten as follows,

ξ+ =
iπρ0

2
H(1)

m (Λρ0)
∂H

(2)
m (Λρ)
∂ρ

∣∣∣∣∣
ρ=ρ0

(45)

2.4. The Correction to the Image Approximation

For the open PEC cylindrical surface, the exact equivalent magnetic
and electric surface currents (M±

s ,J
±
s ) can be found through the

Electric Field Integral Equation (EFIE) or Magnetic Field Integral
Equation (MFIE) [26, 27], with the help of (26) and (29). For
EFIE, only the front-wave on the cylindrical surface, i.e., Ẽ>+

< (ρ0),
is considered, which should satisfy the boundary condition on the
inner/outer (-/+) cylindrical surface, i.e., n̂± × Ẽ>+

< (ρ0) = ±n̂± ×
Ei(ρ0). From (17), (26) and (29), it is not difficult to obtain the exact
equivalent magnetic and electric surface currents (M±

s ,J
±
s ) as follows,

M±
s (ρ0) = −2ρ̂0 ×

∑
m

{∫ ∞

−∞

[
ah

m

ξ+
Mh>

m (ρ0) +
bh
m

(ξ+)∗
Nh>

m (ρ0)

]
dh

}
.

(46)

J±
s (ρ0) = ± i2

η
ρ̂0 ×

∑
m

{∫ ∞

−∞

[
ah

m

(ξ+)∗
Nh>

m (ρ0) +
bh
m

ξ+
Mh>

m (ρ0)

]
dh

}
.

(47)
It can be seen from (13), (14) and (46), (47) that the image

approximation (Mapp
s ,Japp

s ) deviate from the exact equivalent surface
currents (M±

s ,J
±
s ) by a factor of 1

ξ+ or 1
(ξ+)∗ , in the cylindrical

harmonics context. According to the property of the Fourier transform,
(46) and (47) can also be expressed as the convolution of the spatial
functions IFT

(
1

ξ+

)
or IFT

(
1

(ξ+)∗

)
with the corresponding (image)

approximate equivalent surface currents (Mapp
s ,Japp

s ). For a large
radius ρ0, IFT

(
1

ξ+

)
and IFT

(
1

(ξ+)∗

)
are δ-like functions and the

coupling effect from the neighbored region is small. In particular,
IFT

(
1

ξ+

)
→ IFT

(
1

(ξ+)∗

)
→ δ(φ, z) for ρ0 → ∞, which means that

the exact equivalent surface currents (M±
s ,J

±
s ) approach (Mapp

s ,Japp
s ),

which can be determined completely from the local electromagnetic
field.
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Table 1. The image approximation of Love’s equivalence principle for
ρ > ρ′.

ρ>ρ′ TE & Mapp
s TM & Japp

s

front-wave ξTE>+
τMs

= ξ+→ [1] ξTM>+
τJs

= ξ+ → [1]

back-wave ξTE>
τMs− = ξ− →

[
ξ∞−

]
ξTM>
τJs− = −ξ−→

[
−ξ∞−

]
ρ>ρ′ TE & Japp

s TM & Mapp
s

front-wave ξTE>+
τJs

= (ξ+)∗ → [1] ξTM>+
τMs

= (ξ+)∗ → [1]

back-wave ξTE>
τJs− = ξ− →

[
ξ∞−

]
ξTM>
τMs− = −ξ− →

[
−ξ∞−

]
Note: ξ+

− is defined in (28) and ξ∞− is defined in (42); Quantities in [ · ] are for

ρ0 → ∞.

τ = ρ, φ for (TE & Mapp
s ) and (TM & Japp

s ); τ = ρ, φ, z for (TE & Japp
s ) and (TM

& Mapp
s ).

Table 2. The image approximation of Love’s equivalence principle for
ρ > ρ′.

ρ<ρ′ TE & Mapp
s TM & Japp

s

front-wave

ρ-part ξTE+
ρMs< = ξ+ → [1] ξTM+

ρJs< = −ξ+→ [−1]

φ-part ξTE+
φMs< = −(ξ+)∗ → [−1] ξTM+

φJs< = (ξ+)∗ → [1]

z-part . . . . . . . . . . . .

back-wave ξTE
τMs<− = ξ− → [ξ∞− ] ξTM

τJs<−=−ξ−→[−ξ∞− ]

ρ<ρ′ TE & Japp
s TM & Mapp

s

front-wave

ρ-part ξTE+
ρJs< = −(ξ+)∗ → [−1] ξTM+

ρMs<=(ξ+)∗ → [1]

φ-part ξTE+
φJs< = ξ+ → [1] ξTM+

φMs<=−ξ+→ [−1]

z-part ξTE+
zJs< = ξ+ → [1] ξTM+

zMs<=−ξ+→ [−1]

back-wave ξTE
τJs<− = ξ− → [ξ∞− ] ξTM

τMs<−=−ξ−→ [−ξ∞− ]



Progress In Electromagnetics Research, PIER 66, 2006 79

0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(Λρ
0
)/(2π)

ξ+  a
nd

 ξ
−

ℑ(ξ+)

ℜ(ξ+)

ℜ(ξ
−
) ℑ(ξ

−
)

0 10 20 30

-300

-250

-200

-150

-100

-50

ρ
0
 (λ)

20
lo

g 10
(|ℜ

[ξ
+
]-

1|
) 

an
d 

20
lo

g
10

(|ℑ
[ξ

+ ]|)

Λ=k

Λ=0.3k

Λ=k

Λ=0.3k

(a) (b)

Figure 2. Typical behavior of ξ+ and ξ− at m = 40: a) shows
the asymptotic behavior of ξ+ and ξ− Vs. Λρ0; and b) shows the
dependence the real part 20 log10 (|1 − [ξ+]|) and the imaginary part
20 log10 (|� [ξ+]|) on ρ0, for Λ = 0.3k, 0.4k, . . . , k. In both plots, solid
lines are for the real parts and dotted lines are for the imaginary parts.

Table 3. Threshold radii ρth(λ) Vs. (m,h,Λ) for both the real and
imaginary parts of ξ+ (−30 dB accuracy).

�[ξ+]

(h, Λ)/k m = 0 m = 20 m = 40 m = 60 m = 80

(0, 1) 2.51 5.15 8.52 11.87 15.21

(0.2, 0.98) 2.56 5.26 8.69 12.12 15.52

(0.4, 0.92) 2.74 5.62 9.29 12.95 16.59

(0.6, 0.8) 3.14 6.44 10.64 14.84 19.01

(0.8, 0.6) 4.19 8.58 14.19 19.79 25.35

�[ξ+]

(h, Λ)/k m = 20 m = 40 m = 60 m = 80

(0, 1) 1.03 3.29 5.85 8.55

(0.2, 0.98) 1.05 3.35 5.97 8.73

(0.4, 0.92) 1.13 3.59 6.38 9.33

(0.6, 0.8) 1.29 4.11 7.31 10.69

(0.8, 0.6) 1.72 5.48 9.75 14.25
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3. RESULT AND DISCUSSION

Table 1 and Table 2 summarize the properties and relations of
ξ TE >
τMs <, ξ TM >

τMs < , ξ TE >
τJs < and ξ TM >

τJs < , all of which can be expressed in
two quantities, i.e., ξ+ and ξ−. When ρ0 → ∞, ξ+ approaches
±1 (−1 is due to the requirement of the PEC boundary condition
for the electromagnetic wave scattering scenario, i.e., ρ < ρ′ on
surface S< in Fig. 1) and ξ− approaches 0 due to the fast phase
variation e−i2Λρ0 in the approximate field evaluation (see Section 2.3
for explanation), which is expected for the image approximation, i.e.,
the image approximation approaches the exact solution for ρ0 → ∞.

Also, Fig. 2(a) shows the asymptotic behavior of ξ+ and ξ− Vs.
Λρ0, at m = 40, which confirms the analytical expressions given in
(42). In Fig. 2(b), both the real part 20 log10 (|1 − [ξ+]|) and the
imaginary part 20 log10 (|� [ξ+]|) (also at m = 40) have been shown
for different Λ, with respect to ρ0 - it is clear that the imaginary part
� [ξ+] dominates the accuracy of the image approximation. For the

ξ+ and ξ− at m = 40: a)
the real part 20 log10 (|1 −

. ·k. In both plots, solid
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Figure 3. The normalized threshold radius ρth Vs. (k − Λ)/k = 0 to
0.9 (Λ = 0.1k to k), for the −30 dB accuracy. Solid lines are for the
magnitudes 20 log10(|1 − |ξ+||) and dashed lines are for the imaginary
parts 20 log10 (|� [ξ+]|). The narrow-band field region is enlarged in
the inset plot for (k − Λ)/k = 0 to 0.2 (Λ = 0.8k to k).
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Figure 4. The dB contour plot of discrepancy parameter ξ+: a)
for different m and Λρ0; and b) for different m and h at ρ0 = 7.5λ.
Solid lines are for the real parts and dashed lines are for the imaginary
parts. Plot a) and plot b) are connected through the dotted lines
(h = 0,Λ = k), with selected boundary points denoted as (a,b), (c,d),
(e,f) and (g,h) for (−39,−36,−33,−30) dB accuracies respectively.

given accuracy, it is possible to find the threshold radius ρth for different
m and Λ, e.g., Fig. 3 shows such plot for the accuracy of −30 dB, from
which it can be seen that the image approximation works well for mall
m and h (large Λ), or equivalently, the narrow-band field.

Another way to look at the behavior of ξ+ is to express it as a
function of two parameters, i.e., m and Λρ0, which can be seen from
(45),

ξ+ = i
π

2
(Λρ0)H(1)

m (Λρ0)
∂H

(2)
m (Λρ)

∂ (Λρ)

∣∣∣∣∣
ρ=ρ0

= i
π

4
(Λρ0)H(1)

m (Λρ0)
[
H

(1)
m−1(Λρ0) −H

(1)
m+1(Λρ0)

]
(48)

In Fig. 4(a), the dB contour plot of the real part (solid lines)
and imaginary part (dashed lines) are shown for different accuracies,
with respect to m and Λρ0; also, Fig. 4(b) shows the dB contour plot
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of ξ+ for ρ0 = 7.5λ, with respect to m and h =
√
k2 − Λ2. Again,

from both Fig. 4(a) and Fig. 4(b), it is clear that the imaginary part
� [ξ+] dominates the accuracy and the image approximation works
well for the narrow-band field (small m and h). Note that Fig. 4(a)
and Fig. 4(b) are related to each other for h = 0 (Λ = k), which has
been shown by the two dotted lines and the corresponding boundary
points denoting different accuracies: (a, b) denotes −39 dB imaginary
part boundary (|m| ∼ 9); (c, d) denotes −36 dB imaginary part
boundary (|m| ∼ 23); (e, f) denotes −33 dB imaginary part boundary
(|m| ∼ 30); and (g, h) denotes −39 dB imaginary part boundary
(m ∼ 34). The real part boundary values are (|m| ∼ 69, 71, 72)
for (−90 dB, −60 dB, −30 dB) accuracies respectively. Also, Table 3
summarizes the corresponding threshold radii for −30 dB accuracy for
different (m,h,Λ).

4. CONCLUSION

The discrepancy parameter due to the image approximation (Mapp
s and

Japp
s approximation) in the electromagnetic wave propagation scenario

(Love’s equivalence principle) and the electromagnetic wave scattering
scenario (the induction equivalent and the physical equivalent) has
been derived through two equivalent methods, i.e., the vector potential
method and the dyadic Green’s function method, in the cylindrical
geometry, for both the TE and TM cylindrical harmonics. The
accuracy of the image approximation depends on the property of
the incident field (m,h,Λ), and the radius of the cylindrical surface
(ρ0): the narrow-band field and the cylindrical surface with a large
radius give the high accuracy, e.g., to achieve −30 dB accuracy, the
imaginary part of the discrepancy parameter requires a threshold
radius ρth = 5.15λ for (m,h,Λ) = (20, 0, k); however ρth = 25.35λ
is required for (m,h,Λ) = (80, 0.8k, 0.6k). For the real part of
the discrepancy parameter, the threshold radii are ρth = 1.03λ for
(m,h,Λ) = (20, 0, k) and ρth = 14.25λ for (m,h,Λ) = (80, 0.8k, 0.6k).
The closed-form formula of the discrepancy parameter is valuable for
the evaluation of the validity of the image approximation for many
applications including microwave imaging, RCS calculation, mirror
system design and scattering phenomena in the cylindrical geometry.
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APPENDIX A. THE DISCREPANCY PARAMETER FOR
TM MODE IN EQ. (29)

From (20), the equivalent magnetic surface current components
M+

sφ′(ρ0) and M+
sz′(ρ0) for Nh>

m (ρ0) (TM mode) are given as

M+
sφ′(ρ0) = 2

∑
m′




∫ ∞

−∞

[
bh′
m′

Λ′2

k
H

(2)
m′ (Λ′ρ0)e−i(m′φ′+h′z′)

]
dh′


(A1)

M+
sz′(ρ0) = 2

∑
m′



∫ ∞

−∞

[
bh′
m′

m′h′

kρ0
H

(2)
m′ (Λ′ρ0)e−i(m′φ′+h′z′)

]
dh′


(A2)

Now covert the cylindrical coordinate into the rectangular
coordinate,

M+
sx′(ρ0) = −M+

sφ′(ρ0) sinφ′,

M+
sy′(ρ0) = M+

sφ′(ρ0) cosφ′,

M+
sz′(ρ0) = M+

sz′(ρ0) (A3)

The rectangular components of fMs

>
< (m,h) are thus evaluated as

fTM >
x <(m,h) =

ε

4

∑
m′




∫ ∫
S


 Jm(Λρ0)

H
(2)
m (Λρ0)

ei(mφ′+hz′)

×
[
bh′
m′

Λ′2

k
H

(2)
m′ (Λ′ρ0)e−ih′z′

(
e−i(m′−1)φ′− e−i(m′+1)φ′)]

dS′


 (A4)

fTM >
y <(m,h) =

ε

i4

∑
m′




∫ ∫
S


 Jm(Λρ0)

H
(2)
m (Λρ0)

ei(mφ′+hz′)

×
[
bh′
m′

Λ′2

k
H

(2)
m′ (Λ′ρ0)e−ih′z′

(
e−i(m′−1)φ′

+ e−i(m′+1)φ′)]dS′


 (A5)

fTM >
z <(m,h) =

ε

i2

∑
m′

{∫ ∫
S

[
Jm(Λρ0)
H

(2)
m (Λρ0)

ei(mφ′+hz′)

(
bh′
m′

m′h′

kρ0
H

(2)
m′ (Λ′ρ0)e−i(m′φ′+h′z′)

) 
 dS′


 (A6)
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On cylindrical surface S, from (24), f TM>
<(m, h) is obtained as

f TM>
<(m,h)

∣∣
ρ0

= x̂

[
επ2ρ0Λ2

k

Jm(Λρ0)
H

(2)
m (Λρ0)(

b h
(m+1)H

(2)
m+1(Λρ0) − b h

(m−1)H
(2)
m−1(Λρ0)

) ]

+ŷ

[
επ2ρ0Λ2

ik

Jm(Λρ0)
H

(2)
m (Λρ0)(

b h
(m+1)H

(2)
m+1(Λρ0) + b h

(m−1)H
(2)
m−1(Λρ0)

) ]

+ẑ

[
2επ2mh

ik

Jm(Λρ0)
H

(2)
m (Λρ0)

bh
mH(2)

m (Λρ0)

]
(A7)

In the cylindrical coordinate,

fTM >
ρ <(m,h)

∣∣∣
ρ0

=
επ2ρ0Λ2

k

Jm(Λρ0)
H

(2)
m (Λρ0)

[
b h
(m+1)H

(2)
m+1(Λρ0)e−iφ

−b h
(m−1)H

(2)
m−1(Λρ0)eiφ

]
(A8)

fTM >
φ <(m,h)

∣∣∣
ρ0

=
επ2ρ0Λ2

ik

Jm(Λρ0)
H

(2)
m (Λρ0)

[
b h
(m+1)H

(2)
m+1(Λρ0)e−iφ

+b h
(m−1)H

(2)
m−1(Λρ0)eiφ

]
(A9)

fTM >
z <(m,h)

∣∣
ρ0

=
2επ2mh

ik

Jm(Λρ0)
H

(2)
m (Λρ0)

bh
mH(2)

m (Λρ0) (A10)

Now from (22), the approximate field ẼTM >
Ms < (ρ0) is given as

ẼTM >
Ms < (ρ0) =

∑
m

{∫ ∞

−∞

[
Ñρ(ρ0)ρ̂0 + Ñφ(ρ0)φ̂ + Ñz(ρ0)ẑ

]
dh

}

Ñ
>

ρ<(ρ0) =
−1
2πε

[
L h >

φm<(ρ0)fTM >
z <(m,h)−L h >

zm<(ρ0)fTM >
φ <(m,h)

]

Ñ
>

φ<(ρ0) =
−1
2πε

[
L h >

zm<(ρ0)fTM >
ρ <(m,h)−L h >

ρm<(ρ0)fTM >
z <(m,h)

]

Ñ
>

z<(ρ0) =
−1
2πε

[
L h >

ρm<(ρ0)fTM >
z <(m,h)−L h >

φm<(ρ0)fTM >
ρ <(m,h)

]
(A11)
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On cylindrical surface S, from (18)–(19) and (A9)–(A11),

Ñ
>

ρ<(ρ0) = χH(2)
m (Λρ0)Jm(Λρ0)


 bh

m

2m2h

ρ0
H(2)

m (Λρ0)

−ρ0Λ2h
(
b h
(m+1)H

(2)
m+1(Λρ0)e−iφ+b h

(m−1)H
(2)
m−1(Λρ0)eiφ

)]
(A12)

Ñ
>

φ<(ρ0) = χ
Jm(Λρ0)
H

(2)
m (Λρ0)


 iρ0Λ2h H

(2)
m (Λρ0)
Jm(Λρ0)

×
(
b h
(m+1)H

(2)
m+1(Λρ0)e−iφ−b h

(m−1)H
(2)
m−1(Λρ0)eiφ

)

− i2mh

∂H
(2)
m (Λρ)
∂ρ

∣∣∣∣
ρ0

∂Jm(Λρ)
∂ρ

∣∣∣
ρ0

bh
mH(2)

m (Λρ0)


 (A13)

Ñ
>

z<(ρ0) = χ
Jm(Λρ0)
H

(2)
m (Λρ0)


 iρ0Λ2

∂H
(2)
m (Λρ)
∂ρ

∣∣∣∣
ρ0

∂Jm(Λρ)
∂ρ

∣∣∣
ρ0

×
(
b h
(m+1)H

(2)
m+1(Λρ0)e−iφ+b h

(m−1)H
(2)
m−1(Λρ0)eiφ

)

− imΛ2H
(2)
m (Λρ0)
Jm(Λρ0)

(
b h
(m+1)H

(2)
m+1(Λρ0)e−iφ

− b h
(m−1)H

(2)
m−1(Λρ0)eiφ

)]
(A14)

where χ = π
2k = λ

4 . According to property of cylindrical Bessel
function,

m

Λρ0

Jm(Λρ0)

H
(2)
m (Λρ0)

=
1
2

Jm−1(Λρ0) + Jm+1(Λρ0)

H
(2)
m−1(Λρ0) + H

(2)
m+1(Λρ0)

(A15)

∂Jm(Λρ)
∂(Λρ)

∣∣∣
ρ0

∂H
(2)
m (Λρ)

∂(Λρ)

∣∣∣∣
ρ0

=
1
2

Jm−1(Λρ0) − Jm+1(Λρ0)

H
(2)
m−1(Λρ0) −H

(2)
m+1(Λρ0)

(A16)

Substituting (A14)–(A16) into (A11) and collecting terms
containing bh

m, equation (29) is obtained.
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