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Abstract—This paper presents a mode matching method to analyze
axisymmetric coaxial discontinuity structures, commonly used in the
permeability and/or permittivity measurement. By performing the
mode matching procedures at all discontinuity interfaces, a set of
general simultaneous equations are derived, which can be easily
solved. The s parameters and field distribution in the structures
are readily obtained from the solution to the simultaneous equations.
As a preliminary preparation for the mode matching method, the
propagation constants of all the sections in the structure have to be
solved. A one-dimensional frequency domain finite difference method is
presented in this paper to efficiently solve the propagation constants for
the multi-layered axisymmetric structures. Numerical examples show
that the results obtained from the method in this paper are in good
agreement with those from other methods in the published literature
papers, and the method presented here has much higher efficiency.

1. INTRODUCTION

COAXIAL discontinuity structures are widely used as an element of
microwave devices, and commonly used in the permeability and/or
permittivity measurement for materials [1–6]. This kind of structures
are usually analyzed in the frequency domain by using mode matching
method [3, 4, 7, 8], full-wave spectral-domain method [9], finite element
method [5, 10], or frequency domain transmission line matrix method
[6], or in the time domain by using FDTD method [11–14]. Although
the numerical methods such as finite element method and FDTD can
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deal with complex irregular structures with more flexibility, for the
structures considered in this paper, it can be expected that the mode
matching method has more advantages since it conforms closely to
physical reality [7] and apparently has much less unknown variables.
For some specific axisymmetrical coaxial discontinuity structures,
mode matching method has been successfully applied [3, 4, 8]. It is
the purpose of this paper to present a general approach based on the
mode matching method to deal with this kind of coaxial discontinuity
structures. As we will see in Section 4, the electromagnetic waves in
this kind of discontinuity structures can be described by a set of rather
simple simultaneous equations which can be easily solved.

Since the mode matching method is based on the modal expansion
of the total field, the propagation constants of the modal fields in
the structure have to be solved first. Usually, propagation constants
of waveguides or transmission lines are solved by analytical/semi-
analytical method for simple structures or by numerical methods such
as finite difference method [15–19] and finite element method [20, 21]
for complex structures. It is worthwhile to mention that in [15] a
compact two-dimensional frequency domain finite difference method is
presented to solve the propagation constants of a general waveguide. In
that method the longitudinal field components are eliminated and only
four transverse field components are involved in the final resulting eigen
equation. In [16] and [17], the compact two-dimensional frequency
domain finite difference method is further improved with the resultant
eigenvalue problem involving only two field components.

In this paper, for the uniformly filled coaxial and circular
waveguides, the propagation constants are solved by existent semi-
analytical methods. For the multi-layer filled axisymmetric coaxial
and circular waveguides, a one-dimensional frequency domain finite
difference method is presented to efficiently solve the propagation
constants. In the one-dimensional frequency domain finite difference
method, with the axisymmetric geometry of the considered structures
taken into account, the resultant eigenvalue problem involves only
one field component. Thus it considerably reduces the required CPU
time. For the multi-layered axisymmetric coaxial waveguides, a semi-
analytical approach, the field matching technique, is presented in [22]
to solve the propagation constants. Since such a method has to
search the propagation constants in the complex plane by numerical
routines at small step widths, as is described in detail in Section 5,
by comparison the one-dimensional frequency domain finite difference
method in this paper has much higher efficiency.

The organization of the paper is as follows. The propagation
constants of the axisymmetric structures under consideration are
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solved in Section 2. Based on the solutions of the propagation
constants, in Section 3, the corresponding modal field patterns are
determined. In Section 4, a set of general formulae which describe the
matching conditions of the waves at the interfaces in the structures are
derived. Several numerical examples are given in Section 5 to verify the
methods in this paper. Finally, a brief conclusion is drawn in Section 6.

2. SOLVING PROPAGATION CONSTANTS IN
AXISYMMETRICAL STRUCTURES

In this paper, among the high order modes, we are only interested
in the dispersion characteristics of symmetrical TM modes, i.e., those
with axial symmetry, which are the only high order modes excited in
axisymmetrical discontinuity structures under TEM wave excitation.

For the uniformly filled coaxial waveguides, the propagation
constant γ of the TEM mode can be expressed as [23]:

γ = jω
√
µε, (1)

where µ and ε are the permeability and the permittivity of the filling
material respectively. The propagation constants γ of the symmetrical
TM modes satisfy the following equation [23]:

J0(a)N0(ak) −N0(a)J0(ak) = 0, (2)

where

a = kcR1 (3)
k = R2/R1 (4)

kc =
√
ω2µε+ γ2. (5)

Since the roots of (2), i.e., a, are all real numbers, they can be easily
searched by numerical methods. Thus γ can be solved without much
difficulty.

For the uniformly filled circular waveguide, the propagation
constants γ of the symmetrical TM modes are solved from the roots of
the following equation [23]:

J0(b) = 0, (6)

where
b = kcR2, (7)

and kc is defined in (5). Again, since the roots of (6), i.e., b, are all
real numbers, γ can be easily solved.
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For the multi-layered coaxial or circular waveguides, solving
the propagation constants is not as easy as for the uniformly filled
counterparts. A one-dimensional frequency domain finite difference
method is presented below to efficiently solve the propagation constants
of this kind of structures. Without loss of generality, an axisymmetrical
structure shown in Fig. 1 is considered. The inner and the outer
conductors are assumed to be perfect electric ones. Without the inner
conductor, the structure becomes a circular waveguide.

 

R1

R2

Figure 1. Cross section of a multi-layer filled axisymmetric structure.

Based on Maxwell’s curl equations in the cylindrical coordinates,
the following equations governing the field components of TM modes
can be obtained [24]:

∂Er

∂z
− ∂Ez

∂r
= −jωµHφ, (8)

−∂Hφ

∂z
= jωεEr, (9)

1
r

∂

∂r
(rHφ) = jωεEz (10)

Since in the problem of dispersion characteristics analysis, the structure
is considered to be uniform along the z axis, (8) and (9) can be
rewritten as follows:

−γEr −
∂Ez

∂r
= −jωµHφ, (11)

Er =
γ

jωε
Hφ, (12)

where γ is the propagation constant to be solved.
Eliminating the Er components in the two equations above by

substituting (12) into (11) results in the following equation:(
ω2µε+ γ2

)
Hφ + jωε

∂Ez

∂r
= 0. (13)
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Figure 2. Finite difference cells in different dimensions in cylindrical
coordinates. (a) three-dimensional finite difference cell. (b) two-
dimensional TM mode finite difference cell. (c) one-dimensional TM
mode finite difference cell.

In the finite difference method, finite difference cells are used
to discretize the differential equations. The conventional three-
dimensional finite difference cell in cylindrical coordinate is shown in
Fig. 2(a). Since the field components are independent of the azimuthal
angle φ, the two-dimensional finite difference cell for TM modes in
Fig. 2(b) can be obtained by projecting the three-dimensional finite
difference cell onto r-z plane and neglecting the field components of
TE modes. For the differential Equation (13), since the Er components
are eliminated, one-dimensional finite difference cell in Fig. 2(c), which
originates from neglecting the Er components in the two-dimensional
finite difference cell, can be simply used to discretize the equation as
below: (

ω2µiεi + γ2
)
H i

φ + jωεi
E

i+1/2
z − E

i−1/2
z

∆r
= 0, (14)

where µi and εi are the complex permeability and permittivity of cell
(i) respectively. For simplicity, we assume that all the cells have the
same width of ∆r.

Discretizing (10) by using the one-dimensional finite difference cell
we then get

jωεi
E

i+1/2
z

∆r
=

εi

(
ri+1H

i+1
φ − riH

i
φ

)
εi+1/2ri+1/2∆r2

, (15)

−jωεi
E

i−1/2
z

∆r
=

εi

(
ri−1H

i−1
φ − riH

i
φ

)
εi−1/2ri−1/2∆r2

, (16)
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where ri+1/2 is the distance between the center of cell (i) and the axis
of the structure, and εi+1/2 the complex permittivity at the interface
between cell (i) and cell (i + 1), which can be calculated as below by
employing spatial average [12–16].

εi+1/2 =
εi + εi+1

2
(17)

Equation (16) is derived from (15) if we set i = i − 1. The Ez

components at the surface of perfect electric conductor are set to zero
in (14) as the boundary conditions.

For the circular waveguides without the inner conductor in Fig. 1,
Equation (16) cannot be used to evaluate Ez at r = 0, since there is
no cell to the left of the axis in the computation area. To evaluate
this component, the integral form of Maxwell’s Equation [24] as shown
below is used: ∮

HdI = jω

∫
s
εEdS. (18)

From (18), Ez at r = 0 can be expressed as:

−jωεi
E

i−1/2
z

∆r
=

−4H i
φ

∆r2
, i = 1. (19)

Eliminating the Ez components by substituting (15), (16) and (19) into
(14) and implementing the boundary conditions results in the standard
eigenvalue problem:

[A][Hφ] = γ2[Hφ], (20)

where [A] is a sparse and banded matrix.
Solving the eigenvalue problem we can obtain the propagation

constants and the corresponding magnetic field distribution in the r
direction, i.e., the eigenvectors, which can be used to determine the
modal field patterns in the following section. Since the eigenvalue
problem (20) is only related to Hφ, it can be seen that the propagation
constant of the quasi-TEM mode is also included in the solution.

3. DETERMINATION THE MODAL FIELD PATTERNS

For the TEM mode in the uniformly filled coaxial waveguides, the field
components Er and Hφ can be expressed as below [3, 4]:

Er =
C1

r
e−γz, (21)

Hφ =
√
ε

µ

C1

r
e−γz, (22)
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where C1 denotes a constant.
For the TM or the quasi-TEM modes, from Maxwell’s equations in

the cylindrical coordinates, the equation governing Ez can be written
as [24]: [

1
r

∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂φ2
+ k2

c

]
Ez = 0, (23)

where
k2

c = ω2µε+ γ2. (24)

Based on the assumption that the field components are independent
of the azimuthal angle Φ, the solution of (23) can be expressed as [25]:

Ez =
kx

c

γ
[CxJ0 (kx

c r) +DxN0 (kx
c r)] e

−γz, (25)

where the superscript x is the layer number (x = 1, 2, · · ·).
The transverse field components Er and Hφ can be expressed in

terms of the field components Ez and Hz as follows [24]:

Er = − 1
k2

c

[
γ
∂Ez

∂r
+
jωµ

r

∂Hz

∂φ

]
, (26)

Hφ = − 1
k2

c

[
γ

r

∂Hz

∂φ
+ jωε

∂Ez

∂r

]
. (27)

Substituting (25) into (26) and (27), and ignoring magnetic field
component Hz of the TE modes, we can obtain:

Er = [CxJ1 (kx
c r) +DxN1 (kx

c r)] e
−γz, (28)

Hφ =
jωεx

γ
[CxJ1 (kx

c r) +DxN1 (kx
c r)] e

−γz. (29)

For the uniformly filled coaxial waveguides, since Ez|r=R1 = 0 and
Ez|r=R2 = 0, from (25), the coefficient D1 in (25), (28) and (29) can
be expressed as:

D1 = − J0 (kcR1)
N0 (kcR1)

C1 = − J0 (kcR2)
N0 (kcR2)

C1. (30)

For the uniformly filled circular waveguides, since Ez|r=0 �= ∞, from
(25), the coefficient D1 in (25), (28) and (29) is zero.

For the multi-layered coaxial and circular waveguides, as
mentioned in the last section, the magnetic field distribution along the
r direction corresponding to the propagation constants can be solved
as the eigenvectors of (20). Thus from (29), Cx and Dx can be solved
by using the least square method.
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Figure 3. Axisymmetrical discontinuity under consideration.

4. MODE MATCHING METHOD FOR
AXISYMMETRICAL COAXIAL DISCONTINUITY
STRUCTURES

For the general axisymmetrical structure discontinuity shown in Fig. 3,
both sections may have multiple layers of filling materials. Also both
sections may not necessarily have the inner conductors. A coaxial
discontinuity structure may have many such discontinuities. Naturally,
the first section of the structure, to which the source is connected, must
have the inner conductor to support TEM wave excitation.

From (21), (22), (28) and (29), the transverse electromagnetic field
components of the two sections can be written as follows:

EAr = 0, 0 < r < R1a, (31)

EAr =
A0

r

[
eγA0(z−z0) + ΓA0e

−γA0(z−z0)
]
+

∞∑
i=1

AiZA1 (kx
cir)[

eγi(z−z0) + ΓAie
−γi(z−z0)

]
, R1a < r < R2a, (32)

HAφ = 0, 0 < r < R1a, (33)

HAφ = −
√
εA

µA

A0

r

[
eγA0(z−z0) − ΓA0e

−γA0(z−z0)
]

+
∞∑
i=1

−jωεx

γi
AiZA1 (kx

cir)
[
eγi(z−z0) − ΓAie

−γi(z−z0)
]
,

R1a < r < R2a, (34)
EBr = 0, 0 < r < R1b, (35)
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EBr =
B0

r

[
eγB0(z−z0+d) + ΓB0e

−γB0(z−z0+d)
]
+

∞∑
m=1

BmZB1 (ky
cmr)[

eγm(z−z0+d) + ΓBme
−γm(z−z0+d)

]
, R1b < r < R2b, (36)

HBφ = 0, 0 < r < R1b, (37)

HBφ = −
√
εB

µB

B0

r

[
eγB0(z−z0+d) − ΓB0e

−γB0(z−z0+d)
]

+
∞∑

m=1

−jωεy

γm
BmZB1 (ky

cmr)
[
eγm(z−z0+d)−ΓBme

−γm(z−z0+d)
]

R1b < r < R2b, (38)

where d is the length of Section B, γA0 is the propagation constant
of the TEM mode in Section A when Section A is a uniformly filled
coaxial waveguide with the permeability and the permittivity of the
filling material being µA and εA respectively, A0 is zero except the
case that Section A is a uniformly filled coaxial waveguide, γB0, B0,
µB and εB in Section B are the counterparts of γA0, A0, µ0 and εA

respectively, and

ZAn (kx
cir) = [Cx

i Jn (kx
cir) +Dx

i Nn (kx
cir)] , (39)

ZBn (ky
cmr) = [Cy

mJn (ky
cmr) +Dy

m (kx
cmr)] . (40)

The continuity of the transverse electromagnetic field components at
the discontinuity interface provides the following equations:

EAr|z=z0 = EBr|z=z0 , (min(R1a, R1b) < r < max(R2a, R2b)), (41)
HAφ|z=z0 = HBφ|z=z0 , (max(R1a, R1b) < r < min(R2a, R2b)). (42)

The following orthogonality relation between different modes in
Section A or B holds [7]:

∫ R2

R1

(Ep × Hq) · uz2πrdr = 0, (43)

where R2 is the inner radius of the outer conductor, R1 is the outer
radius of the inner conductor, and p �= q. In the case there is no inner
conductor, R1 is zero.

The first step of the mode matching procedure is to perform the
following integral at both sides of (41):

∫ R2a

R1a

EArHAφi2πrdr. (44)
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By making use of the orthogonality relation (43), together with the
Lommel integrals, the following equations can be obtained:

A0(1+ΓA0)
∫ R2a

R1a

1
r
dr = A0(1 + ΓA0) ln

R2a

R1a

= B0

(
eγB0d + ΓB0e

−γB0d
) ∫ min(R2a,R2b)

max(R1a,R1b)

1
r
dr

+
∞∑

m=1

Bm

(
eγmd + ΓBme

−γmd
)∫ min(R2a,R2b)

max(R1a,R1b)
ZB1(ky

cmr)dr

= B0

(
eγB0d + ΓB0e

−γB0d
)

ln
min(R2a, R2b)
max(R1a, R1b)

+
∞∑

m=1

Bm

(
eγmd + ΓBme

−γmd
) yt∑

y=y1

∫ R2y

R1y

ZB1(ky
cmr)dr

= B0

(
eγB0d + ΓB0e

−γB0d
)

ln
min(R2a, R2b)
max(R1a, R1b)

+
∞∑

m=1

Bm

(
eγmd + ΓBme

−γmd
)

×
yt∑

y=y1

[−ZB0(ky
cmR2y) + ZB0(ky

cmR1y)] /ky
cm, (45)

Ai(1+ΓAi)
∫ R2a

R1a

εxZ2
A1(k

x
cir)rdr

= Ai(1 + ΓAi)
tA∑

x=1

εx [fx
Ai(R2x) − fx

Ai(R1x)]

= B0

[
eγB0d + ΓB0e

−γB0d
] ∫ min(R2a,R2b)

max(R1a,R1b)
εxZA1(kx

cir)dr

+
∞∑

m=1

Bm

[
eγmd + ΓBme

−γmd
]

×
∫ min(R2a,R2b)

max(R1a,R1b)
εxZA1(kx

cir)ZB1(ky
cmr)rdr

= B0

[
eγB0d + ΓB0e

−γB0d
] xt∑

x=x1

εx
∫ R2x

R1x

ZA1(kx
cir)dr
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+
∞∑

m=1

Bm

[
eγmd + ΓBme

−γmd
]

×
xt∑

x=x1

εx
∫ R2x

R1x

ZA1(kx
cir)ZB1(ky

cmr)rdr

= B0

[
eγB0d + ΓB0e

−γB0d
]

×
xt∑

x=x1

εx [−ZA0(kx
ciR2x) + ZA0(kx

ciR1x)] /kx
ci

+
∞∑

m=1

Bm

[
eγmd + ΓBme

−γmd
]

×
xyt∑

xy=xy1

εxy
A [fxy

AiBm(R2xy) − fxy
AiBm(R1xy)] , (46)

where tA is the total layer number of filling material in Section A, x1

and xt are respectively the first layer number and the last layer number
in the range max(R1a, R1b) to min(R2a, R2b) in Section A, y1 and yt

are respectively the first layer number and the last layer number in
the range max(R1a, R1b) to min(R2a, R2b) in Section B, xy1 and xyt

are respectively the first and the last layer number in the range from
max(R1A, R1B) to min(R2A, R2B) on the interface between Section A
and Section B, R2x and R1x are respectively the outer and the inner
radius of the xth layer in Section A, R2y and R1y are respectively the
outer and the inner radius of the yth layer in Section B, R2xy and R1xy

are respectively the outer and the inner radius of the xyth layer on
the interface between Section A and Section B, εxy

A is the Section A’s
permittivity of the xyth discontinuity layer on the interface, and

fx
Ai(r) =

r2

2

[
Z2

A1(k
x
cir) − ZA0(kx

cir)ZA2(kx
cir)

]
, (47)

fxy
AiBm(r) =

∫
ZA1(kx

cir)ZB1(ky
cmr)rdr =

r

(kx
ci)2 − (ky

cm)2

× [ky
cmZB0(ky

cmr)ZA1(kx
cir) − kx

ciZA0(kx
cir)ZB1(ky

cmr)] .
(48)

The second step is to perform the following integral at both sides of
(42): ∫ R2b

R1b

EBrmHBφ2πrdr. (49)
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From the integral above, the following equations can be obtained:

−
√
εB

µB
B0

[
eγB0d − ΓB0e

−γB0d
] ∫ R2a

R1a

1
r
dr

= −
√
εB

µB
B0

[
eγB0d − ΓB0e

−γB0d
]
ln
R2b

R1b

= −
√
εA

µA
A0 (1 − ΓA0)

∫ min(R2a,R2b)

max(R1a,R1b)

1
r
dr

+
∞∑
i=1

Ai(1 − ΓAi)
−jω
γi

∫ min(R2a,R2b)

max(R1a,R1b)
εxZA1(kx

cir)dr

= −
√
εA

µA
A0 (1 − ΓA0) ln

min(R2a, R2b)
max(R1a, R1b)

+
∞∑
i=1

Ai(1 − ΓAi)
−jω
γi

×
xt∑

x=x1

εx [−ZA0(kx
ciR2x) + ZA0(kx

ciR1x)] /kx
ci, (50)

Bm

[
eγmd + ΓBme

−γmd
] ∫ R2b

R1b

−jωεy

γm
Z2

B1(k
y
cmr)rdr

= Bm

[
eγmd + ΓBme

−γmd
] −jω
γm

tB∑
y=1

εy [fy
Bm(R2y) − fy

Bm(R1y)]

= −
√
εA

µA
A0 (1 − ΓA0)

∫ min(R2a,R2b)

max(R1a,R1b)
ZB1(ky

cmr)dr

+
∞∑
i=1

Ai(1 − ΓAi)
∫ min(R2a,R2b)

max(R1a,R1b)

−jωεx

γi
ZA1(kx

cir)ZB1(ky
cmr)rdr

= −
√
εA

µA
A0 (1 − ΓA0)

yt∑
y=y1

∫ R1y

R2y

ZB1(ky
cmr)dr

+
∞∑
i=1

Ai(1 − ΓAi)
−jω
γi

xt∑
x=x1

εx
∫ R2x

R1x

ZA1(kx
cir)ZB1(ky

cmr)rdr

= −
√
εA

µA
A0 (1 − ΓA0)

yt∑
y=y1

[−ZB0(ky
cmR2y) + ZB0(ky

cmR1y)] /ky
cm

+
∞∑
i=1

Ai(1−ΓAi)
−jω
γi

xyt∑
xy=xy1

εxy
A [fxy

AiBm(R2xy)−fAiBmxy(R1xy)] ,

(51)

where tB is the total layer number of the filling material in Section B,
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Figure 4. Illustration of mode matching at certain filling material
layers.

and

fy
Bm(r) =

r2

2

[
Z2

B1(k
y
cmr) − ZB0(ky

cmr)ZB2(ky
cmr)

]
. (52)

The two-step mode matching procedure in (44) and (49) is valid as
long as the cross section of Section A is not larger than that of Section
B. In the case where the cross section of Section B is larger than that
of Section A, as is showed in Fig. 4, the mode matching procedure
as follows should be used instead of (44) and (49) to ensure correctly
enforcing the traverse electric field continuity on the interface between
Section A and Section B [29]:∫ R2b

R1b

EBrHBφm2πrdr, (53)
∫ R2a

R1a

EAriHAφ2πrdr. (54)

Based on (53) and (54), the following equations can be obtained:

B0

[
eγB0d + ΓB0e

−γB0d
]
ln
R2b

R1b
= A0(1 + ΓA0) ln

min(R2a, R2b)
max(R1a, R1b)

+
∞∑
i=1

Ai(1 + ΓAi)
xt∑

x=x1

[−ZA0(kx
ciR2x) + ZA0(kx

ciR1x)] /kx
ci, (55)

Bm

[
eγmd + ΓBme

−γmd
] tB∑

y=1

εy [fy
Bm(R2y) − fy

Bm(R1y)]

= A0(1 + ΓA0)
yt∑

y=y1

εy [−ZB0(ky
cmR2y) + ZB0(kcmyR1y)] /ky

cm
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+
∞∑
i=1

Ai(1 + ΓAi)
xyt∑

xy=xy1

εxy
B [fxy

AiBm(R2xy)−fxy
AiBm(R1xy)] , (56)

−
√
εA

µA
A0(1 − ΓA0) ln

R2a

R1a

= −
√
εB

µB
B0

(
eγB0d − ΓB0e

−γB0d
)

ln
min(R2a, R2b)
max(R1a, R1b)

+
∞∑

m=1

−jω
γm

Bm

(
eγmd − ΓBme

−γmd
)

×
yt∑

y=y1

εy [−ZB0(ky
cmR2y) + ZB0(ky

cmR1y)] /ky
cm, (57)

−jω
γi

Ai(1 − ΓAi)
tA∑

x=1

εx [fx
Ai(R2x) − fx

Ai(R1x)]

= −
√
εB

µB
B0

[
eγB0d − ΓB0e

−γB0d
]

×
xt∑

x=x1

[−ZA0(kx
ciR2x) + ZA0(kx

ciR1x)] /kx
ci

∞∑
m=1

−jω
γm

Bm

[
eγmd − ΓBme

−γmd
]

×
xyt∑

xy=xy1

εxy
B [fxy

AiBm(R2xy)−fxy
AiBm(R1xy)] , (58)

Where εxy
B is the Section B’s permittivity of the xyth discontinuity

layer on the interface.
Suppose that the total number of sections in the structure is

sn, and the number of modes retained for the Section i is mi.
Then the total number of discontinuities is sn-1. After the two
steps of mode matching procedure above are performed at each
discontinuity interface, a set of simultaneous equations which contain
the unknown variables, . . . , Ai, AiΓAi, . . . , Bm, BmΓBm, . . ., can be
obtained. Apparently, the number of unknown variables is 2 × (m1 +
m2 + . . .+msn), and the number of equations is m1 + 2× (m2 + . . .+
msn−1) +msn. The equations can not be solved until the termination
conditions for the first and the last sections are taken into account.

For the termination condition of the first section shown in
Fig. 5(a), it is reasonable to assume that all the modes of wave will only
traveling in the z direction in the first section, except for the incident



Progress In Electromagnetics Research, PIER 67, 2007 219

First
Section

RS+jXSsource Z

Z=0

Electric or 
magnetic wall

First
Section

Last
Section

(a)                                         (b) 
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(c) 

Figure 5. Termination conditions of the axisymmetrical structure.
(a) First section is connected to source with the source impedance
RS + jXS . (b) Last section is terminated by electric or magnetic wall.
(c) Last section is terminated by lumped impedance RL + jXL.

TEM wave. Actually, it is often the case that a coaxial waveguide
used as sample holders is designed only for the propagation of the
TEM wave, and all the high order modes will attenuate to zero very
fast far before they reach the source impedance. Furthermore, in the
general cases, the characteristic impedance of the first section of the
coaxial structure is designed to be equal to the source impedance. The
reflected TEM wave from the first discontinuity will not be reflected
again when they reach the source impedance. Thus, from (32) and (34),
the transverse electromagnetic field components in the first section can
be written as follows:

EAr =
A0

r

[
eγA0(z−z0) + ΓA0e

−γA0(z−z0)
]

+
∞∑
i=1

AiZA1(kx
cir)ΓAie

−γi(z−z0), R1a < r < R2a, (59)

HAφ = −
√
εA

µA

A0

r

[
eγA0(z−z0) − ΓA0e

−γA0(z−z0)
]

+
∞∑
i=1

jωεx

γi
AiZA1(kx

cir)ΓAie
−γi(z−z0), R1a<r<R2a. (60)
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It can be seen from the two equations above that the number of
unknown variables is reduced by m1 − 1. The number of unknown
variables can be further reduced by 1 since the amplitude of the
incident wave is assumed known.

When the last section is terminated by an electric wall as in
Fig. 5(b), due to the electric field boundary condition at this plane,
ΓBm is −1. When a magnetic wall is used to terminate the last section,
ΓBm is 1. For the termination condition in Fig. 5(c), the last section
is terminated by lumped impedance. Again, in the usual case, the
termination impedance is equal to the characteristic impedance of the
last section of the coaxial waveguide. And the high order modes will
go to zero quickly. Under these assumptions, all the waves will travel
only toward the −z direction, and the reflection coefficients ΓBm are
all zeros.

Apparently, the termination conditions of the last section reduce
the number of unknown variables by msn.

Up to now, with the termination conditions taken into account,
the number of unknown variables is equal to the number of equations.
The simultaneous equations can be solved. The distribution of the
electromagnetic field in the structure and the s parameters can be
readily obtained.

5. NUMERICAL RESULTS

In this section, we apply the method above to calculate the s
parameters of three kinds of coaxial discontinuity structures in
Fig. 6 which are used in the complex permittivity and permeability
measurement [1, 2, 4, 6]. The diameter d of the inner conductor of
the coaxial structures is 3.04 mm. The inner diameter D of the outer
conductor is 7 mm. For the structures in Fig. 6(a)–(b), the material
under test is assumed to be Mn-Zn ferrite. The height of the material
under test in Fig. 6(a) and Fig. 6(b) are 1 mm and 2 mm respectively.
The permeability and the permittivity of the Mn-Zn ferrite are given
below [26], both of which are frequency dependent:

ε = ε′ − jε′′, (61)

ε′ =
ε0εrg

2

ω2(ε0εr)2 + g2
, (62)

ε′′ =
ω(ε0εr)2g

ω2(ε0εr)2 + g2
, (63)

µ = µ′ − jµ′′, (64)
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µ′ =
µ0µrλ

2

ω2(µ0µr)2 + λ2
, (65)

µ′′ =
ω(µ0µr)2λ2

ω2(µ0µr)2 + λ2
, (66)

λ =
λhλf

λh + λf
, (67)

λh = λh0
ω

ω0
, (68)

where g = 10 s/m, εr = 105, µr = 3080, λf = 57 × 103 Ω/m,
λh0 = 615 Ω/m, and ω0 = 2π × 1000 rad/s.
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Figure 6. Coaxial discontinuity structures used for material
characterization.

The structure in Fig. 6(c) is presented in [6] for material
characterization of liquid and powder. It is assumed here the Teflon
container (ε′ = 2.31ε0, tan δ = 1 × 10−4) is used to hold a liquid
sample which is nonmagnetic and has unvaried complex permittivity
as ε = (30.89 − 7.13i)ε0 in the considered frequency range 500 kHz–
1 GHz. The other dimension parameters of the structure are a = 2 mm,
b = 10 mm, and c = 1 mm.

Before the mode matching method is used to solve the s
parameters, the propagation constants of all the sections have to be
solved first.
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A numerical routine is used to find the roots of (2). At the
same time, the propagation constants are solved by using the one-
dimensional finite difference method in Section 2. The results of these
two methods are shown in Table 1. It can be seen that the two sets of
results are in excellent agreement.

Table 1. Comparison of propagation constants of symmetrical TM
modes in air filled coaxial waveguide (f = 1 MHz, ∆r = 1 × 10−5 m).

Mode Roots of (2) 
One-dimension finite 

difference method 

TM01 1573.26 1573.25       

TM02 3166.14 3166.01       

TM03 4755.12 4754.68       

TM04 6342.98 6341.92       

TM05 7930.37 7928.30 

TM06 9517.52 9513.93 

The roots of (6) found by a numerical routine and the propagation
constants solved by the one-dimensional finite difference method are
shown in Table 2. Again, good agreement between the two sets of
results is observed.

Table 2. Comparison of propagation constants of symmetrical TM
modes in material under test filling circular waveguide (f = 1 MHz,
∆r = 1 × 10−5 m).

Mode Roots of (6) 
One-dimension finite 

difference method 

TM01 661.96 + 118.51i 661.96 + 118.51i 

TM02 1562.70+50.20i 1562.68+50.20i 

TM03 2462.98+31.85i 2462.92+31.85i 

TM04 3361.97+23.33i 3361.81+23.34i 

TM05 4260.39+18.41i 4260.07+18.41i 

TM06 5158.54+15.21i 5157.96+15.21i 
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For the section filled by the material under test in Fig. 6(b), we
assume that the coaxial waveguide is not fully filled by the material
under test. The widths of both the inner air gap and the outer air
gap are 0.1 mm. The propagation constants of the quasi-TEM mode
and the symmetrical TM modes can be solved by the field matching
technique given in [22]. Based on the continuity conditions of the
transverse field components at the discontinuity interface, a matrix
[A(γ)] is formed in [22]. The elements of the matrix contain the
propagation constants γ. The method of solving the propagation
constants is to try values of γ and test for the determinant of the matrix
to be zero. But the actual implementation of searching is a difficult
task because of the fact that det([A(γ)]) is a rapidly changing function
with γ, containing not only poles and zeros in close neighborhood but
also extremely steep gradients. A method to circumvent this problem is
presented in [27] where the singular-value decomposition of the matrix
[A(γ)] is used instead of det([A(γ)]).

The propagation constants solved by the one-dimensional finite
difference method and the field matching technique with the singular-
value decomposition searching technique are shown in Table 3. The
two sets of results are in excellent agreement. Since the propagation
constants are not real or pure imaginary, it takes time to search
for the propagation constants in the complex plane using the field
matching technique. It is found that even with the singular-value
decomposition searching technique, it is hard to find some high order
modes by using the field matching technique due to the fact that the
sharpness of a minimum in the smallest singular value increases as
its location approaches a pole of the determinant [28]. Therefore, the
numerical search algorithm has to operate at very small step widths.
The minimum singular values around some propagation constants are
shown in Fig. 7. Given that the searching step widths in the real and
the imaginary axes are 0.25 when the field matching technique is used
to roughly search the propagation constants, the required number of
searching for all the propagation constants in Table 3 will be at least
7066×44×16 = 4974464. The average time needed for each searching
operation, i.e., construction and singular-value decomposition of the
matrix [A(γ)], is approximately 0.0025 seconds when a P4 3.4 GHz
PC is used. Thus the time needed to roughly search the propagation
constants can be estimated to be more than 3 hours. After the
approximate values of the propagation constants are obtained, the
simplex method can be used to refine the results. For the one-
dimensional finite difference method, the time needed to solve all the
propagation constants is less than 1 second when the same PC is used.
Apparently, the one-dimensional finite difference method is much more
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(a) 

 

(b) 

Figure 7. Minimum singular values of the matrix used to find γ in
Table 3. (a) around γ of TM01. (b) around γ of TM05.

efficient.
For the multi-layered structures, after the propagation constants

are solved, the modal field patterns can be readily obtained by using
the least square method as mentioned in Section 3. As one example,
for the mode TM03 in Table 3, the eigenvectors of (20) and the least
square fitting results of (29) are shown in Fig. 8(a). The Er field
distribution by (28) is shown in Fig. 8(b). The Ez field distribution by
(25) is shown in Fig. 8(c).

For the structure in Fig. 6(a), the s parameters are respectively
calculated by using the method in the paper, the method in [4], and
a two-dimensional frequency domain finite difference method which is
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Figure 8. Modal field patterns determined by least square method for
TM03 in Table 3. (a) Hφ field distribution. (b) Er field distribution.
(c) Ez field distribution.

Table 3. Comparison of propagation constants of Quasi-TEM mode
and symmetrical TM modes in material under test partly filled coaxial
waveguide (f = 1 MHz, ∆r = 1 × 10−5 m).

Mode  Field matching technique 
One-dimension finite 

difference method 

Quasi-TEM 0.7460+3.0601i 0.7460+3.0601i 

TM01 8.2338+3.8909i 8.2338+3.8909i 

TM02 1787.27+43.92i 1787.25+43.92i 

TM03 3541.98+22.16i 3541.80+22.17i 

TM04 5303.03+14.80i 5302.42+14.81i 

TM05 7065.96+11.11i 7064.50+11.11i 
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Figure 9. Result comparison of the method in this paper, the method
in [4] and the two-dimension frequency domain finite difference method
for the structure in Fig. 6(a).
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Figure 10. Result of the analytical method for the first case of
structure in Fig. 6(b).

based on the two-dimensional FDTD method [9, 10]. The results are
shown in Fig. 9.

For the structure in Fig. 6(b), in the first case, we assume that
the material under test perfectly fills up the cross section of the coaxial
sample holder. In this case, it can be predicted that only TEM mode
exists in the whole structure. The s parameters can be easily calculated
by the analytical method [1, 2]. Results of the analytical method are
shown in Fig. 10. In the second case, we assume that there is a 0.1 mm
air gap between the material under test and the inner conductor of
the coaxial holder. Results of the method in this paper and the two-
dimensional frequency domain finite difference method are shown in
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Figure 11. Result comparison of the method in this paper and
the two-dimension frequency domain finite difference method for the
second case of structure in Fig. 6(b).
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Figure 12. Result comparison of the method in this paper and
the two-dimension frequency domain finite difference method for the
structure in Fig. 6(c).

Fig. 11. It is interesting to note that only a small air gap between the
material under test and the conductor of the coaxial holder makes the
s parameters totally different.

For the structure in Fig. 6(c), results of the method in this paper
and the two-dimensional frequency domain finite difference method are
shown in Fig. 12.

In these numerical examples, good agreement between the results
of the method in this paper and those of other methods in the references
is observed.
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6. CONCLUSION

In this paper, the mode matching method has been applied to the
analysis of coaxial discontinuity structures commonly used in the
permeability and/or permittivity measurement. The propagation
constants of the coaxial waveguides and the circular waveguides filled
with multi-layered materials are efficiently solved by a one-dimensional
frequency domain finite difference method. The numerical results
of the approach in this paper are in good agreement with those of
other methods in references. The general solution provided by the
approach in this paper makes the analysis of this kind of structures
very convenient.
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