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Abstract—Smart Antenna system analysis presented with multipath
and null constraint for reducing interference and efficient use of
spectrum with the help of LMS algorithm for GPS (Global Positioning
System) System. A new simple DOA (Direction of Arrival) estimation
method by rotation of antenna plane proposed. Simulated Result
obtained using MATLABTM.

1. INTRODUCTION

The GPS jamming should turn out to be an issue for the defence was
foreseeable. In the precedent few years, the world’s corporate sectors
have become dependent on satellite-based navigation. The network
of GPS satellites provides precise location information everyplace in
the world. GPS is particularly vulnerable to jamming, because the
receivers are very sensitive, they have to receive the extremely weak
signal from orbiting satellites. A relatively low-powered jammer,
transmitting static on the GPS frequency band, can overpower
legitimate GPS signals over a wide area — as much as a 100 kilometer
circle at just 1 watt radiated power.

Smart antenna or Adaptive Array Antenna systems continually
monitor their coverage areas and the system adapts to the user’s
motion providing an antenna pattern that tracks the user, achieving
the maximum gain in the user’s direction, and provide theoretically
null and practically very low gain to any interference. For this purpose
smart antenna base station combines an antenna array with a control
unit that optimize reception and radiation patterns dynamically in
response to the signal environment, i.e., mobile vehicle moving about
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the coverage area. In this paper we will discuss Smart Antenna
Technology with the help of LMS as adaptation algorithm for creating
null towards the interference and maximize gain towards the desired
signal and also for detecting and collecting multipaths of desired
signals (instead of rejecting) to improve jamming rejection performance
with some simulation result carried out using MATLABTM for a
conventional GPS receiver on a moving platform like vehicle and or
airborne system.

2. ADAPTIVE ARRAY ANTENNA

In a mobile communication system, the mobile is generally moving;
therefore the DOAs (Direction of Arrival) of the received signals in the
base station are time-varying. Also, due to the time-varying wireless
channel between the mobile GPS receiver and the base station, and
the existence of the co channel interference, multi path, and noise, the
parameters of each impinging signal are varied with time. For a beam
former with constant weights, the resulting beam pattern cannot track
these time-varying factors. However, an adaptive array may change
its patterns automatically in response to the signal environment. An
adaptive array is an antenna system that can modify its beam pattern
or other parameters, by means of internal feedback control while
the antenna system is operating. Adaptive arrays are also known
as adaptive beam formers or adaptive antennas [1–4]. A simple
narrowband adaptive array is shown in Figure 1. In this paper we have
also proposed a simple DOA estimation technique for all signals with
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Figure 1. A simple narrowband adaptive array.

significant power level impinging on antenna array using the concept
of rotating array plane with small angle. This small angle of rotation
can be estimated for any airborne GPS receiver with the help of gyro.
For a GPS receiver on a moving vehicle on earth this angular deviation
can be calculated by the speed and distance covered by the vehicle.

In Figure 1, the complex weights W1,W2, . . .WM are adjusted
by the adaptive control processor. The method used by the
adaptive control processor to change the weights is called the adaptive
algorithm. Most adaptive algorithms are derived by first creating a
performance criterion, and then generating a set of iterative equations
to adjust the weights such that the performance criterion is met. Some
of the most frequently used performance criteria include minimum
mean squared error (MSE), maximum signal-to-interference and noise
ratio (SINR), maximum likelihood (ML), minimum noise variance,
minimum output power, maximum gain, etc. These criteria are often
expressed as cost functions which are typically inversely associated
with the quality of the signal at the array output. As the weights are
iteratively adjusted, the cost function becomes smaller and smaller.
When the cost function is minimized, the performance criterion is met
and the algorithm is said to have converged.
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For one adaptive array, there may bet several adaptive algorithms
that could be used to adjust the weight vector. The choice of one
algorithm over another is determined by various factors like Rate
of convergence, Tracking, Robustness and Computational
requirements.

Since there exists a mapping between the narrowband beam
former and the FIR filter, most of the adaptive algorithms used by the
adaptive filter may be applied to the adaptive beam former. However,
some of the adaptive beams forming algorithms also have their unique
aspects that an adaptive filter algorithm does not possess. Most of
these algorithms may be categorized into two classes according to
whether a training signal is used or not. One class of these algorithms
is the non-blind adaptive algorithm in which a training signal is used
to adjust the array weight vector. Another technique is to use a blind
adaptive algorithm which does not require a training signal. A brief
survey of LMS adaptive beam forming algorithms is given in next two
sections.

In a non-blind adaptive algorithm, a training signal, d(t), which
is known to both the transmitter and receiver, is sent from the
transmitter to the receiver during the training period. The beam
former in the receiver uses the information of the training signal to
compute the optimal weight vector, Wopt After the training period,
data is sent and the beam former uses the weight vector computed
previously to process the received signal. If the radio channel and the
interference characteristics remain constant from one training period
until the next, the weight vector wopt will contain the information of
the channel and the interference, and their effect on the received signal
will be compensated in the output of the array [5–7].

3. WIENER SOLUTION

Most of the non-blind algorithms try to minimize the mean-squared
error between the desired signal d(t) and the array output y(t). Let
y(k) and d(k) denote the sampled signal of y(t) and d(t) at time instant
tk, respectively. Then the error signal is given by

e(k) = d(k) − y(k) (1)

and the mean-squared error is defined by

J = E
[
|e(k)|2

]
, (2)

We also derived previously

y(k) = wHx(k) (3)
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Where E[.] denotes the ensemble expectation operator. Substituting
Equation (1) and (3) into Equation (2), we have

J = E
[
|d(k) − y(k)|2

]

= E [{d(k) − y(k)} {d(k) − y(k)}∗]

= E

[{
d(k) − wHx(k)

} {
d(k) − wHx(k)

}2
]

= E
[
|d(k)|2 − d(k)xH(k)w − wHx(k)d∗(k) + wHx(k)xH(k)w

]

= E
[
|d(k)|2

]
− pHw − wHp+ wHRw, (4)

Where
R = E

[
x(k)xH(k)

]

And
p = E [x(k)d∗(k)]

In the above equations, R is theM×M correlation matrix of the input
data vector x(k), and ρ is the M × 1 cross-correlation vector between
the input data vector and the desired signal d(k).

The gradient vector of J , ∇(J), is defined by

∇(J) = 2
∂J

∂w∗

Where δj/δw∗ denotes the conjugate derivative with respect to the
complex vector w∗. When the mean-squared error of J is minimized,
the gradient vector will be equal to an M × 1 null vector.

∇(J)|wopt = 0 (5)

Substituting Equation (4) into Equation (5), we have

−2p + 2Rwopt = 0 (6)

or equivalently
Rwopt = p (7)

Equation (7) is called the Wiener-Hopf equation. Multiplying both
sides of Equation (7) by R−1, the inverse of the correlation matrix, we
obtain -

wopt = R−1p (8)

The optimum weight vector Wopt in Equation (8) is called the
Wiener solution. From Equation (8), we see that the computation of
the optimum weight vector Wopt requires knowledge of two quantities:
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(1) The correlation matrix R of the input data vector x(k), and
(2) The cross-correlation vector p between the input data vector x(k)

and the desired signal d(k).

4. METHOD OF STEEPEST-DESCENT

Although the Wiener-Hopf equation may be solved directly by
calculating the product of the inverse of the correlation matrix R and
the cross-correlation vector p, nevertheless, this procedure presents
serious computational difficulties since calculating the inverse of the
correlation matrix results in a high computational complexity. An
alternative procedure is to use the method of steepest-descent. To find
the optimum weight vector Wopt by the steepest-descent method we
proceed as follows:

1. Begin with an initial value w(0) for the weight vector, which is
chosen arbitrarily. Typically, w(0) is set equal to a column vector
of an M ×M identity matrix.

2. Using this initial or present guess, compute the gradient vector
∇J(k) at time k (i.e., the k-th iteration).

3. Compute the next guess at the weight vector by making a change
in the initial or present guess in a direction opposite to that of the
gradient vector.

4. Go back to step 2 and repeat the process. It is intuitively
reasonable that successive corrections to the weight vector in the
direction of the negative of the gradient vector should eventually
lead to the minimum mean-squared error Jminn , at which the
weight vector assumes its optimum value Wopt.

Let w(k) denote the value of the weight vector at time k.
According to the method of Steepest-descent, the update value of the
weight vector at time k + 1 is computed by using the simple recursive
relation [9]

w(k + 1) = w(k) +
1
2
µ [−∇ (J(k))] , (9)

Where µ is a positive real-valued constant. The factor 1/2 is used
merely for convenience. From Equation (4) we have

∇ (J(k)) = −2p + 2Rw(k)

Hence, substituting it into the Equation (9) we obtain

w(k + 1) = w(k) + µ [p − Rw(k)] where k = 0, 1, 2, . . . . . . (10)
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Figure 2. Simulation 1A, 1B, 1C, 1D (tracking of single signal).

We can also write

∇ (J(k)) = −2E
[
x(k)d∗(k) − x(k)xH(k)w(k)

]

= −2E [x(k) {d(k) − y(k)}∗]
= −2E [x(k)e∗(k)] . (11)
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Figure 3. Simulation 2, 3 (Signals with Multipaths).

Eq. (10) also can be written as

w(k + 1) = w(k) + µE [x(k)e∗(k)] . (12)

We observe that the parameter µ controls the size of the incremental
correction applied to the weight vector as we proceed from one iteration
cycle to the next. We therefore refer to µ as the step-size parameter
or weighting constant. Equations (10) and (12) describe the
mathematical formulation of the steepest-descent method.

5. LEAST-MEAN-SQUARES (LMS) ALGORITHM

If it were possible to make exact measurements of the gradient vector
∇J(k) at each iteration, and if the step-size parameter µ is suitably
chosen, then the weight vector computed by using the steepest-descent
method would indeed converge to the optimum Wiener solution. In
reality, however, exact measurements of the gradient vector are not
possible since this would require prior knowledge of both the correlation
matrix R of the input data vector and the cross-correlation vector p
between the input data vector and the desired signal.

Consequently, the gradient vector must be estimated from the
available data. In other words, the weight vector is updated in
accordance with an algorithm that adapts to the incoming data.



Progress In Electromagnetics Research, PIER 67, 2007 239

Simulation 4

Figure 4. Simulation 4 (signals with multipaths).

One such algorithm is the least-mean-squares (LMS) algorithm. A
significant feature of the LMS algorithm is its simplicity; it does not
require measurements of the pertinent correlation functions, nor does
it require matrix inversion.

To develop an estimate of the gradient vector ∇J(k), the most
obvious strategy is to substitute the expected value in Equation (11)
with the instantaneous estimate-

∇̂ (J(k)) = −2x(k)e∗(k) (13)

Substituting this instantaneous estimate of the gradient vector into
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Simulation 5A

Simulation 5B

Simulation 5C

Figure 5. Simulation 5A, 5B & 5C (NULL towards single jammer).



Progress In Electromagnetics Research, PIER 67, 2007 241

-150 -100 -50 0 50 100 150
-150

-100

-50

0

Figure 6a. Creating NULLS towards the jammer directions of
25◦,−98◦, 32◦, 165◦,−156◦, 100◦ and 47◦, where desired signal coming
thorough mainlobe.

Equation (9), we have

w(k + 1) = w(k) + µx(k)e∗(k). (14)

Now, we can describe the LMS algorithm by the following three
equations

y(k) = wH(k)x(k)
e(k) = d(k) − y(k)

w(k + 1) = w(k) + µx(k)e∗(k). (15)

The LMS algorithm is a member of a family of stochastic gradient
algorithms since the instantaneous estimate of the gradient vector is
a random vector that depends on the input data vector x(k). The
LMS algorithm requires about 2M complex multiplications
per iteration, where M is the number of weights (elements)
used in the adaptive array [12]. The response of the LMS algorithm
is determined by three principal factors: (1) the step-size parameter,
(2) the number of weights, and (3) the eigen-value of the correlation
matrix of the input data vector [9–11].
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Figure 6b. Creating NULLS towards the jammer directions of
10◦, 30◦, 70◦,−45◦,−95◦, 128◦ and 160◦, where desired signal coming
thorough mainlobe.

Simulation 6A & 6B (NULL towards Multiple Jammer).

From the stability analysis of LMS algorithm we can prove that
if, 0 < µ < 2

k∑
i=k−n+1

d2(i)

then e(k) indeed converging. If we choose µ

too small then algorithm will adopt the change very slowly, and if we
chose µ too big, then error will not converge [13, 14].

6. DOA ESTIMATION BY ROTATING ARRAY PLANE

Adaptive Array Antenna or Space Time Adaptive Processing
techniques is the best suitable method for jamming resistance GPS
receiver to counter spatially separated but in band frequency jammer.
Suitably designed algorithm can collect the main signals’ multipaths
and add them constructively with main signal with very low side lobe
level in all other directions, hence eliminating the jamming signal
form other directions. A new technique for DOA estimation of signals
impinging on the array, using mechanical rotation of the array plane by
small angle also has been proposed for further analysis and discussions.
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simulation 7A

Actual DOAs vs. actual frequencies of all incoming sigmals Estimated DOAs vs. estimated frequencies 
Simulation 7B

Simulation 7C
Creating nulls towards three undesired signals

 
Data Results of Simulation 7A & 7B 

Figure 7. Simulation 7 (DOA estimation by array plane rotation).

For an adaptive antenna system, if p users transmit signals from
different locations, and each user’s signal arrives at the array through
multiple paths. Let LMi denote the number of multipath components

of i-th user. We have
p∑

i=1
LMi = p. Let’s further assume that all of

the multi path components for a particular user arrive within a time
window which is much less than the channel symbol period for that
user, then the input data vector could be expressed as

x(t) =
p∑

i=1

LMi∑
k=1

αi,ka(θi,k)si(t) + n(t) (16)

Or we can write

x(t) =
p∑

i=1

Gisi(t) + n(t) (17)
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simulation 8A

Actual DOAs vs. actual frequencies of all incoming sigmals

Simulation 8C
Creating nulls towards four undesired signals

 
Data Results of Simulation 8A & 8B 

Figure 8. Simulation 8 (DOA estimation by array plane rotation).

where θi;k is the DOA of the k-th multi path component for the i-
th user, a(θi;k) is the steering vector corresponding to θi;k, αi;k is the
complex amplitude of the k-th multipath component for the i-th user,
and Gi is the spatial signature for the i-th user and is given by

Gi =
LMi∑
k=1

αi,ka(θi,k) (18)

Direction of Arrival Estimation by Rotating Adaptive Array
Antenna Plane Mechanically:

The signal component arriving on nth antenna element at a
particular instance of time is given by [13]

Xn = A exp (j2πnd cosϕ/λ) (19)
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Where A = complex amplitude of the signal, ϕ = Direction of Arrival
(DOA) of the signal (unknown), d = spacing between antenna elements
and λ = wavelength.

Now one can view (19) as

Xn = A exp [j2πf(nd cosϕ/c)] (20)

Where f = frequency of the signal and c = velocity of wave.
Now if we mechanically steer the antenna plane by δϕ, then (20)

becomes
X ′

n = A exp (j2πf(nd cos(ϕ+ δϕ)/c)) (21)

Now taking the frequencies (which can be known by seeing the spectra
of the signal) of the signal form (20) and (21), and taking their ratio
one could get

Frequency of Xn/Frequency of X ′
n = cosϕ/ cos(ϕ + δϕ) = 1/K

(K is Known)
Hence,

ϕ = tan−1 [(cos(δϕ) − K)/sin(δϕ)] (22)

Now using the simple relation given in (22) one can determine the
unknown DOA (i.e., ϕ) of all incoming signal impinging on the array
with suitable algorithm based on (20), (21) and (22). (Refer simulation
7A, 7B, 8A and 8B).

7. PRINCIPLE JAMMING TECHNIQUES

A brief summary of the main categories of jamming applicable to GPS
receivers will be given prior to describing the AJ techniques that are
designed to counter these jammers.

There seems to be a broad consensus among the experts, that
wideband noise jamming represents the most affordable, tactically
feasible, effective jamming technique that is likely to be encountered by
GPS receivers in the near term. With numerous sources of information
available (many on the internet), a competent electronics technician
should be easily able to build a noise jammer with an effective range
of tens of kilometers for $1 K to $10 K. Wideband jamming was the
electronic countermeasure (ECM) used in the example calculations of
the previous section of this report.

The power in wideband jamming is diluted over a broad frequency
interval (usually matched to the spread spectrum bandwidth of the
targeted signal/receiver). However, even though wideband jamming is
characterized by low power spectral density, it is virtually impossible
to filter out with embedded receiver signal processing techniques. The
fraction of the jamming signal that makes it through a GPS receiver
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(and into base band processing functions) becomes additive to the noise
floor, degrading the output signal-to-interference power ratio (SIR) and
corresponding receiver operation.

Narrowband (or spot) noise and continuous wave (CW) tone
jammers can cause degradation to receiver SIR and degradation/denial
of GPS navigation similar to wideband noise. In fact, the effectiveness
of these jamming techniques is potentially greater than wideband noise
since they result in higher power spectral densities at receiver outputs,
being more concentrated signals in the frequency domain. However,
unlike wideband noise, spot noise and CW tone jamming signals can be
located in frequency and filtered out of the GPS signals with practical
(and low cost) embedded signal processing techniques that result in
only minor degradation in receiver signal-to-noise power ratio (SNR)
and navigation function.

Wideband pulse jammers deliver high peak power interference
signals at low duty cycles to damage or saturate receiver front ends.
Since GPS receivers typically employ PIN (microwave) diode-based
limiters in the RF front end, pulse jamming represents a minimal
threat. The limiter passes normal signal levels without distortion but
clips the amplitude of high peak power jamming signals or interference
(e.g., a radar transmitter). Even with the limiter in place, the receiver
is still inhibited while the pulse jamming signal is high; however, this
represents a small percentage of time in accordance with the low duty
cycles typical of pulse jammers. Meanwhile, the limiter protects the
RF front end from damage and prevents amplifiers from being driven
into saturation such that the receiver can recover and function between
pulses.

Accordingly, pulse jamming effectively represents degradation in
receiver SNR that is directly proportional to the complement of jammer
duty cycle (e.g., 10% duty cycle results in an effective SNR degradation
by a factor of 0.9 or 0.5 dB).

Finally, spoofing is a deception jamming technique wherein a
hostile entity transmits a replica of an actual GPS satellite signal,
complete with a valid pseudo-random noise (PRN) binary code
sequence modulated onto the L1 and/or L2 GPS carrier frequencies.
The goal of the spoofer is to cause a receiver channel to lock onto the
deception signal instead of the actual satellite signal. This denies the
receiver access to valid range measurements from that satellite and
substitutes false or meaningless range measurements in their place.
The false range measurements will, in turn, degrade, disrupt, or deny
the GPS receiver’s navigation function.

The use of actual GPS signals makes spoofing a potentially
devastating deception jamming technique; accordingly, an inherent
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anti-spoofing (AS) feature was designed into GPS at its inception. This
feature is the encryption of the P -code, which converts it to the P (Y )-
code. Without the keys to properly seed the P -code generator, an
adversary cannot transmit a valid encrypted P (Y )-code.

8. SIMULATION RESULTS AND DISCUSSION

Simulation 1A, 1B and 1C: Adaptive antenna algorithm (i.e., LMS
here with µ = 0.008) successfully scanning a single signal with a very
narrow mainloab beam width and very low side low level) from different
direction. Error signal converging satisfactorily after 46–47 samples of
time intervals. For the simulation 1C we have chosen µ = 0.01, and
for this we can observer same type of scanning as in 1B or 1A, but
mainloab power has been reduced somewhat, which shows the effect of
parameter µ on the rate and tracking efficiency of the LMS algorithm.

Simulation 1D: In this simulation we have arbitrarily chosen the
value of µ = 0.1 and solution is not converging at all as the chosen
value of µ falling outside of it’s stability range (0 to 0.075 approx).

Simulation 2: It shows that Adaptive processor can scan more
than one signal simultaneously if we use LMS algorithm in parallel
mode for both DOAs.

Simulation 3 and 4: These shows the perhaps most important
result among all simulations. They exhibit that LMS algorithm can
scan multipath component of single or more then one signal. We have
introduced those multipaths with 1 or 2 symbol delay which are the
practical cases, and the results obtained from those simulations clearly
encourage any one to implement a RAKE RECEIVER which can
compensate the multipath delay and add up the signal constructively
to obtain high SNR.

Simulation 5A, 5B, 5C and 6A, 6B: We are applying null constraint
in these simulations and obtained null for different interference
directions, although with increased side lobe level, we can encounter
single or multiple jammers by crating nulls towards their directions.

Simulation 4: Adaptive Antenna Scanning two signals from 60◦
(with two multipath form 40◦ and from 10◦) and −40◦ (with two
multipath form −60◦ and from −20◦). LMS algorithm converging
around 49–50 iteration for all signals.

After determining the frequencies and DOAs of all impinging
signals on the array by using Fourier transform and using (20),
(21), (22) as shown in simulation results. 7A, 7B and 8A, 8B and
if desired signal directions are known to adaptive array (which is
common for GPS receiver) as priori, then other signals’ direction
can be fed into a simple null creating algorithm [8] to produce nulls



248 Mukhopadhyay, Sarkar, and Chakraborty

towards the undesired signals’ directions [9] to reduce the jammer
power (see simulation result 7C & 8C). In the simulation data,
jammers are indicated as with superscript (J1), (J2) . . . etc., which
stands for First Jammer Signal, Second Jamming Signal and so
on. In these simulations δϕ = 1◦. Estimated Frequencies and
Estimated DOAs are not with the same order as signals are sensed
by the array, but after estimating the entire signal space, their plots
almost identical as exhibited between 7A & 7B and between 8A &
8B.Maximum estimation error observed in DOA of second jammer
signal of simulation 8, with an order of 1.5◦ only (see the estimated
DOAs data results for 8A & 8B).
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