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Abstract—Standard spectral-domain method (SDM) is one of the
popular approaches to analyze frequency selective surfaces (FSS).
However, it is inherently incapable of handling normal incidence
because of its dubious definition of excitation fields, reflection and
transmission coefficients using z-component of vector potentials.
Moreover, as far as the author knows, it has never been applied to
analyze FSS with gangbuster arrays. In this paper, an improved
SDM., the vector spectral-domain method, is presented. By proving the
equivalence of the spectra of unit cell current and element current, the
scattered field from FSS structures is formulated in terms of spectral-
domain element current instead of spectral-domain unit cell current.
Galerkin’s method is applied to obtain the unknown induced surface
current. Well-established definition of excitation fields, reflection and
transmission coefficients is adopted. Extensive experimental validation
has been conducted.

1. INTRODUCTION

1.1. Geometry of Frequency Selective Surfaces

Frequency selective surfaces (FSS) [1-4] have been widely applied in
various engineering areas. An FSS contains one or more periodic arrays
(red lines in Fig. 1) embedded in multilayered dielectric structure.
Without loss of generality, the array elements are assumed to be perfect
electric conductors (PEC). It is further assumed that array elements
are one-dimensional thin wires and/or two-dimensional patches unless
specified otherwise. Several typical array patterns are shown in Fig. 2.

An array is generated by repeating its reference element (element
00) along two non-trivial directions §, with periodicity 7, and §, with
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Figure 1. Cross section of an FSS structure.
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Figure 2. Typical array patterns.

periodicity Tp. €25, is the domain in which element (m, n) is embedded.

Alternatively, the array is generated by repeating its reference unit

cell (unit cell 00) in the same way as described above. A unit cell is

a parallelogram with side vectors S, = 3,1, and Sy = §1}. QF,, is

the domain unit cell (m,n) occupies. The reference element and the

reference unit cell for a type-2 gangbuster array is shown in Fig. 3.
Generally speaking, €2f,,, # Q¥ . In addition, we have

Q% NQ%, = SO O (1)

where 0,,,,, is the Kronecker symbol.
The relationship specified in (1) means that unit cells do not
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Figure 3. Reference element and reference unit cell of a Type-2
gangbuster array.

overlap with each other. However, there may be no similar relationship
for Q¢ . and €2, ..

Arrays in an FSS structure are not necessarily identical. In
addition, different arrays may have different periodicity. Usually,
periodicities of different arrays satisfy

mSy =nSZ  pS| =qSp, (2)

where m and n do not have common divisors. The same is true for p
and q. 1 <y, lo < L, L is the total number of arrays.
For simplicity, here, we assume

Sh=s2 S)=85p (3)

1.2. Incident Field

Throughout this paper, F'SS structures are assumed to be illuminated
by plane wave (time factor e/“? is assumed and suppressed)

Einc(r) — Egncefjkmc-r’ (4)

where Ei'¢ = gﬁc%—Eé”f is the amplitude of incident field, Ef{ﬁc (||6ne)
and EJ'¢ (||¢¢) are the parallel and perpendicular components with

respect to the plane of incidence as shown in Fig. 4. k¢ = k:ﬁ)”c — zkine
~inc

is the propagation vector. kf)"‘: = —k:)”c[) , k"¢ = ky, cos O,
; - i ~inc ine A . e~ .
k¢ = kpsin@™c, p = cos ¢""% + sin ¢"g. ky, is the wave number

in the host medium, k%b = w?upen, w is the angular frequency, py, and
ey, are the permeability and permittivity of the host medium, 6**¢ and
@' are the elevation and azimuthal incident angles, respectively.
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Figure 4. Plane of incidence and polarization of incident field (left:
parallel polarization, right: perpendicular polarization).

1.3. Analysis of Frequency Selective Surfaces

Analysis of FSS structures is of great interest to both design and
application engineers. Many approaches such as the periodic moment
method [4], the standard spectral-domain method (SDM) [5, 6], the
equivalent circuit model [7], the finite element method [8], the finite
difference time domain method [9, 10}, the recursive T-matrix method
[11,12], etc., have been proposed.

Among various methods for the analysis of FSS, the standard SDM
is usually the method of choice.

1.4. Applications of Frequency Selective Surfaces

As mentioned before, FSS have been widely applied in various
engineering areas [1-4]. Recently, FSS found its applications in
metamaterials [13-16].

1.5. Fourier Transform

For the convenience of the following description, let’s define the Fourier
transform first.

k:p,z / /f YelkrPdp
_Ool T e oo : (5)
fr) = (27r)2/ / f(kp, 2)e*rPdk,

where r = p + 22, p = x2Z + yy, kp:kpzza:i-i-ﬂ.@'
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2. STANDARD SPECTRAL-DOMAIN METHOD

2.1. Scattered Field from an Freestanding F'SS

The standard SDM first uses Fourier transform to formulate the
tangential components of spatial-domain scattered field from scatterers
in the reference unit cell Qfy, E;*(r) and E;“(r), as the Fourier

integral of the tangential spectral-domain scattered field, E’j“(kzp,z)

and E;’”(k;p, 2),
Exr) | 1 00 o0 E (K, 2) ik,
[ Est(r) 1 - (Qﬂ)z_zo _[O [ Ej“(k:p,z) 1 e IkeP ks, (6)

Ej;“(kp,z) ] _ {ép k. o 5 [ J::?(kp’zl) 1}
[E;“(kp,a S TN R

where

ju(k:p,z) = #J%(k,,2) + ngj(kzp,z) is the induced spectral-domain
surface unit cell current whose spatial-domain counterpart is J*(r) =
LTy (r) + 9Jy(r),

=pr 1 k?—a? —ap ~
G (ky,2,7) = h Gr(ky, 2,2
n(kp, 2, 2) ngh[ —af  k2-p? n(kp, 2, 2)
~TTr =TY
Gy Gy
= | =y =yy |- (8)
Gy Gy
~ ’ eijkz‘zle‘
Gh(kp,z,z) = W (9)
is the scalar spectral-domain Greens’ functions, k, = k:% — k:g =

K., — jk” with k7 > 0.
By wusing Floquet’s theorem, the tangential components of
scattered field from the FSS, E3%(r) and E;%(r), is obtained by

converting the Fourier integral in (6) into summation of Floquet modes,
Exmr ] 1 i i By (Kb, 2)
Ej(r) | T 4 Bz (Kb, 2)
y \Mpo
where kP9 = k25, = pSa + qSp + k' = apgi + By, Sa and Sy

are the spectral-domain base vectors of a spectral-domain unit cell
(reciprocal unit cell) [17].

eI (10)
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2.2. Galerkin’s Implementation

Expand the surface unit cell current as
—xZI“B“ +yZI;‘]B;jJ reQ,  (11)

where Bj;(r) and By;(r) are the spatial-domain unit cell current
basis functions, I;; and I;; are the corresponding unknown expansion
coefficient.

Implementing Galerkin’s method over (10) with the boundary
condition that the tangential electric field on the surface of conducting
scatterers vanishes, we obtain the following matrix equation

Vel-lo o] ] 0

Vai = —Ee / Biy(r)e ¥ dp = — B Bl (ki< 0)

where

S s gab D ; Pq
2l =77 /B MY 3 G (100) B (k0)e P ap

p=—00g=—00
~ab

i i Bi; (—k21,0) Gy, (K2?,0,0) By; (K52, 0)

p=—00¢=—00

aTb

2.3. Excitation Field

The excitation (incident) electric field is formulated as
VxVxA™(r) =

inc _
T (r) = Jwen jwen
PE(r) = =V x F"(r) = =V x (2e7K"7), (14)

VxVx (2e7%T) (13)

Eénc — on + 1 Emc can be obtained accordingly.

2.4. Reflection and Transmission Coefficients

The reflection and transmission coefficients are defined as

o0

Al(r) =2 3 3 RpMed, (15)

p=—00g=—00
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o0

o0
£ > Rpfeh, (16)

p=—00g=—00

5 Y TV, (17)

P=—00 qg=—00

= Z Z TIEeikpe™ (18)

P=—00 q=—00

F'(r)

where the superscrlpts r and t stand for reflection and transmission
respectively, k,, = kj? + zk‘gpq, k:t = kD7 — kY, the superscripts
h and g¢ stancfs for host medium and ground medium respectively,

[k2 — (kBY) /1.2 pa)
qu ki — (kp qu kg — kp , kg is the wave number

in the ground medlum, k2 = w2 HgEg, Hg and €4 are the permeability
and permittivity of the ground medium.

After tedious manipulations, the reflection and transmission
coeflicients are obtained as

0

( By [ Bz (29,2 + 5y00,0 B, (K2, 2)] )
RTE _ \ O B (K5 2) t,qépo%()ﬁgy (".2)] L (19)
j (kp?) 7

( o [ B3 (1. 2) + ddso B, (K. 2) )

quM _ +qu [ (ffi: 222+ 5p0/i‘j(;f()y (k:OO’Z)} . (20)

ZP(I
(s 2
—pg | B (kP9 2) + Sp0040 8, (KL, 2

Ty = Ll y)(k’;q)p; ol (812) sy’ D)
( g [ B30 (K9, 2) + G000, (K20, 2)] )

TTM _ +Bpq [E?ja (kpq Z) +5p§5quS (koo’zﬂ . (22)

—jkpq (kp')” Jweg o

where Egét(kgo, z) and E‘Sét(kgo, z) are the tangential components of
the spectral-domain reflected or transmitted field from the multilayered
dielectric structure without arrays embedded.
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2.5. Disadvantages

Although standard SDM is usually the method of choice for the analysis
of FSS structures, it is found to have the following disadvantages

(a) The standard SDM is unable to handle normal incidence although
performance of FSS structures at normal incidence is often the
first priority. To the best knowledge of this author, the usage of
z-directed vector potentials is the prime culprit,

(1) The tangential incident electric field (excitation field)
expressed in (13) and (14) vanishes at normal incidence.

(2) The reflection and transmission coefficients of the FSS
structure at normal incidence expressed in (19)—(22) are indefinite.
People applying standard SDM usually replace normal incidence
by a very small incident elevation angle and/or a very small
azimuthal angle [1,5,18-21]. Although engineering acceptable
approximate results can be obtained by this practice, it is not
a serious and scientific way to solve problems.

(b) The transmission and reflection coefficients are confusing. Their
amplitude can even be larger than 1. Worst of all, they are not
experimentally observable quantities.

(¢) The scattered field is formulated in terms of spectral-domain unit
cell current as shown in (7). Researchers may take it for granted
that an element must be confined by a unit cell. However, in FSS
structures with gangbuster arrays, an array element cannot be
confined by a unit cell. As far as this author knows, there is no
public literature about analyzing F'SS structures with gangbuster
arrays using standard SDM.

2.6. Solutions

On account of the aforementioned disadvantages of standard SDM,
in this paper, an improved SDM, the vector spectral-domain method
(VSM), is developed. It follows the basic idea of standard SDM.
The spectral-domain element current and the spectral-domain unit
cell current have been proven equal. Therefore, scattered field from
FSS structures is formulated in terms of spectral-domain element
current. Well-established definitions of excitation fields, reflection and
transmission coeflicients are applied.



Progress In Electromagnetics Research, PIER 65, 2006 209
3. VECTOR SPECTRAL-DOMAIN METHOD

3.1. Scattered Field from FSS Structures

3.1.1. Scattered Field from Scatterers in the Reference Unit Cell of a
Freestanding FSS

The scattered electric field from scatterers in the reference unit cell is

Esu —_ AY 23
(r) ]wgthVx (1), (23)
where
/ Gp(r,?\J"(r")dr'
e—Jknlr—r'|
Gt - dnlr =]
(23) is rewritten as
E*“(r) = nghv XV X —= / / Gh (kp, 2,2') (kp’z)}z/:o
xe_jp'kpdk;p, (24)

Substituting (9) into (24), we have

E*(r) = wathVx / / {6 i Z‘ (kpaz>} /

— 00 —00 =0
xe IPke gk,

A s L .
_ - —jk%-r /
—(%)2/ /{wgh T VxVx|e kg (k,,,z)}} dk,

— 00 —00 2'=0
(25)
where k° = k, £ k.Z is the propagation vector of the plane wave

spectrum of the scattered field , the plus and minus signs apply to
cases z > 2’ and z < 2/ respectively.

Completing the curl operations in (25), we have

Est 1 emI“Ik K x T (k,. 2
(r) = (2m)2 // Wep, Xk T (K, )

—00 —00

z'=0
xe IPFe ks, (26)
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Therefore,
0o
E*(r) = 2//13 (kp, 2)e Pkedk,, (27)
—o0 —o0
where

~su 1 e Jkalz=7 s s . U ,
FE (kp,Z) = w—gth x k®xJ (kp,Z)
z z'=0

- {éh(km 2,7) - ju(k”’ z,)}

2/=0
3.1.2. Spectrum of Unit Cell Current
In order to find the spectrum of the unit cell current, define
J'(r) = J*(r)el*s P, (28)

Accordingly,
~/ ~u .
T (kp,2) = J" (ko + ki, 2) (29)

According to the Floquet’s theorem, we have
JU(,,, + mSa + TLSb) — JU(,’,,)B—jkan,(mSa-i—nSb)’ (30)
It is very easy to prove that

J'(r+mS, +nSy) = J*(r + mS, + nSb)ejkﬁnc'(P+mSa+nsb) — J'(r)

(31)
Therefore,
J(r) = - DA <p§a+q»§b,2) e~ipWSataSy) (39)
a p=—00 g=—00
T (vSu-+aSi.z) = [[ merteSiSige (@)

u
Q00

The integration domain in (33) is specified as €, the domain of unit
cell (0,0). However, we have

Si-S; = 2méij, (34)

Therefore, the integration domain can be the domain of arbitrary unit
cell.
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Using (28) into (32), we have
JUr) = J'(r)e kP

1
B TaTb

”’<p§a+q§b7 z) efjp-(pgﬁng)efjkim-p’ (35)

p=—00g=—00

Using (28), (29) and (33), we have

g (kzpiqu) -7 (pS _|_q5b, / J'(r Jp(pS +q5b)dp
260

= / J“(r)e_jkf:Lc'pejp‘(pga'Fqg")dp

= //J“ e PR dp, (36)

Therefore,

J(r) =

Z Z J* (Kot 2) ek, (37)

p=—00 q=—0

oy

3.1.8. Scattered Field from an Freestanding FSS in Terms of
Spectral-domain Unit Cell Current

Apparently, the scattered field from the freestanding FSS is

B (r) = % i Z e (kpq z)e jp: k;Pq (38)
P=—00g=—00
where
B bpre) =[G (=) 3 ()] o

The formulation by far is based on the concept of unit cell current.
Researchers may take it for granted that an element must be confined
by a unit cell. However, in FSS structures with gangbuster arrays,
an array element cannot be confined by a unit cell. To the best
knowledge of this author, there is no public literature about analyzing
FSS structures with gangbuster arrays using standard SDM.
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3.1.4. Spectrum of Element Current

Element current J¢,, (r € Qf,, ) and unit cell current J3 (r € Q% )
satisfy the following relations

= Z Z an/n/ ('f’) rc Qumn, (40)
m' n’
Substituting (40) into (36), we have

(k5"2) //ZZJW )eP* dp
—ZZ / / T (1P dp,  (41)

m’ n' Y, ﬂQ
Letting

p (€ Qo N Q) = P (€ Qo N, y) +m/Sa+n'Sy,  (42)
(€ Qe NQ,) =1 (€ Q5 NQ%, ) +m'Se+ 1Sy, (43)

—m/—n/

and applying the Floquet’s theorem
i (1) = Ty 4 (' Setn'S) (44)

we have

(kpq Z) ZZ / / Yo kEC (' Sartn' )
mon e e

« eI (p'+m'Sa+n’ Sb)'kqup

=X [ T ek oSSy

m/ n’Qe nQv

(m Sa+n’ Sb)-kpqdpl
_ ZZ / / TEo (1) e3P K oI Satn' S1)-(pSa+aSy) g of

m’ n' Qe,NOY iy

x eJ

(45)
Substitute (34) into (45), we have

(k:pq z) ZZ // J6o( r')el? kqup

m’ n' Qe nQu o
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— [[ T gt
= [[ e ap = 3 (kpz) . (40)

Although the spatial-domain element current and unit cell current are
quite different, their spectrums are identical, as described in (46).

3.1.5. Scattered Field from an Freestanding FSS in Terms of
Spectral-domain Element Current

From the relationship between the spectral-domain unit cell current
and the spectral-domain element current as specified in (46), we have

Esa(z) = [ﬁh (kzgq, Z, z') . jle (k;’p’q, z')} , (47)
2'=0

Obviously, it is more convenient to use (47) because it is more natural
to define spatial-domain current over an actual array element.

3.1.6. Scattered Field from Multiple F'SS Screens Embedded in
Multilayered Dielectric Structure

As shown in Fig. 1, a practical FSS structure may contain more than
one array. In addition, the arrays are usually supported by substrates
and/or covered by superstrates. In this case, (38) still holds. However,

(k’;q, 2, Z]l) . j? (k’;q, le>

M=
Qll

E™ (kzgq, z) =

=1

I
M=
Qll

(kﬁq,z,zh) jle (kzﬁq,zh) , (48)

=1

where I; is the index of the interface on which the Ith array lies.

3.2. Galerkin’s Implementation

Expand the element current as

M
Ji(r) = ZIﬁBlei(T) r € Qo (49)
i=1
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where €15y, is the domain of the reference element domain of array
[, Bj;(r) is the spatial-domain element current basis function which is
non-zero over support €, I is the corresponding unknown expansion
coefficient.

Implementing Galerkin’s method over (38) with the boundary
condition that the tangential electric field on the surface of conducting
scatterers vanishes, we obtain the following matrix equation

V=21, (50)
where
Vi = = [ Bi) i< BE(r)dp
Qu;
- B (—kf,”c,zll> : [n x By (i, 2, )|

1
Zlyilyj = .7, / (T Z Z G( o ,zzll zn)

p=—00 q=—0

P
Bl2j (kp ' 21, )e Jerker ]dp

- T,y Z Z Bll]( P’lel) n

P=—00 g=—00
G (ko) By ()| o

where E7*(r) and E'lex(k:znc, z,) are the spatial- and spectral-domain
excitation fields at interface Ij, E{*(r) = E;x(kfom,z)e_jk:’nc'p, EZ
(ki,”c, z) is the spectral-domain current basis function.

Ej*(r) is the total electric field from the multilayered dielectric
structure without any FSS screens embedded when the multilayered
dielectric structure is illuminated by plane wave specified in (4). It
can also be decomposed into components parallel and perpendicular
to the plane of incidence. Its expression can be found in textbooks on
stratified media such as [22].

Noting that neither Bl”(kp ,Z1,) nor Bl Li(kb, zr,) has 2-

component for the concerned array elements, (51) can be rewritten
as
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Z Z
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Figure 5. Plane of reflection and transmission and polarization
of reflected and transmitted fields (left: parallel polarization, right:
perpendicular polarization).

T Ty
00 ©  ~p e
x|ax S 3 G (KB 2, ) - By (K5 2n,) | (52)
pP=—00 g=—00
where [5, 23]
ép(k ) ZMi sin? ¢+ Z cos? ¢ (Zevij—Zh@j) cos ¢ sin ¢
V20 2j)=— . g . o g ,
proes (29 — 7MY cos psing 2%V sin? ¢+ ZM cos? ¢
(53)

the superscript e corresponds to the TM case, and the superscript A
corresponds to the TE case,

cosp = afy/a? + 32
sing = 3/4/a? + 32

In particular, for normal incidence and mode 00, « = 3 =0, ¢ = ¢'"°.
The formulation of Z¢/"% = Z¢/"(z;, z;) in (53) has been given in
[5,18].
Please note the sign error in [5,6] and [23] with respect to

G (k,,zi,zj). Please also note that we are using symbol ¢ instead
of 6 as used in [1,5,6] and [23]. In fact, 6 there is confusing.
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3.3. Reflection and Transmission Coefficients
3.3.1. Plane of Reflection and Transmission of Mode (p,q)

The reflection and transmission coefficients are defined with respect to
the plane of reflection and transmission of mode (p,q). The plane of
reflection of mode (p, q) is defined by the reflection propagation vector
k,, and the interface normal 7 = £, as shown in Fig. 5. The plane
of transmission of mode (p, q) is similarly defined. In fact, the plane
of reflection of mode (p,q) is also the plane of transmission of mode

(p,q).

3.8.2. Reflection and Transmission Coefficients of Mode (p,q)

The total spectral-domain reflected and transmitted fields of mode
(p,q) from the FSS structure are

B (K51, 2) =0p0000 B (Ki<,2) + B™ (i1, )

=E (szz;q’ ZO) ¢ Ihipg(z=20) (54)
E' (k’;", z) =6,0040E, (kj)nc’ z) LB (kgq, z)
- E (kgq, zN) Male—2). 55
where
E Sﬁt (k,igm, Z) parallel incidence

~ T/t .
EO (k’;TLC7 Z) = NT/t inc . . .
Ey, (k: s ,z) perpendicular incidence

Egﬂt (k;zp"‘:, z) and ng (k:;”c, z) are the reflected/transmitted field of
parallel or perpendicular polarization when the multilayered dielectric
structure without planar periodic screens embedded is illuminated by
incident plane wave of parallel or perpendicular polarization.

ET(kgq, 20) isA decomposed into parallel (0, = ng) and
perpendicular (—¢p,) components with respect to the plane of
reflection of mode (p, q)

E' (k. 2) = () + (B |- (56)

where

~

(E;q)” - é;qu‘li (E;q)J_ = _¢qu;zJJ_i



Progress In Electromagnetics Research, PIER 65, 2006 217

the subscript pi stands for the polarization of incident plane wave.
~t
Similarly, E (k}?,zy) is decomposed into components parallel

(9};1 = égq) and perpendicular (—ggpq) to the plane of transmission
of mode (p, q) which is also the plane of reflection of mode (p, q)
~t ~t ~t
B (kzq’ZN) - (qu)” + (qu)ﬂ (57)
where . | .
= _pt 7 _ a2 ol
(EPQ)” - gqupi (qu)J_ - _¢Pqui7 (58)
Therefore, the reflection and transmission coefficients are defined as
— A o
Ry = (B,) il Bl (59)
t ~t N . i
Ty = (Byy) , - Phal Bl 0y (60)

where the superscripts/subscripts pr and pt are the polarization
(parallel, ||, or perpendicular, L) of reflected and transmitted fields
respectively, pbr, Apf] and p,;“ are the corresponding unit polarization
vectors of reflected, transmitted and incident fields.

Although the definition in (59) and (60) is very clear, it is

computationally inefficient since (E;q)pr and (E;q)pt may have z-
component. Alternatively, the reflection and transmission coefficients
can be computed using the azimuthal components of the reflected and
transmitted fields only.

It is straightforward to compute Rﬁi and Tﬁ since quq is orthogonal

to 67

o R
gy Opg and Z,

RPLZ' - -E (kgq’ZO) "ngtp (61)
T;g - -F (kﬁquN) - Ppgs (62)

l ll
We are then able to compute sz- and T, as

(E;q) I ‘qu (E;q)ﬁ ’ qu

H
Rl = . , 63
N W (©)
~t =~ ~t \P =<
T (Ein)y 2o (Bon), - (64)
pe kgPQ/kg a kgPQ/kg ’

where (E, )¢ and (Et are the azimuthal components of (E

~t || mn)
and (qu)”

p
I
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4. NUMERICAL RESULTS

4.1. Introduction

In this section, we will validate the VSM by applying it to analyze
some typical F'SS structures and comparing the simulation results with
published and experimental results.

Experimental data come from two sources. Most of the
measurement is carried out by Dr. K. M. Hock. Incident elevation
angles vary between 0° and 60° while incident azimuthal angles may
take 0°, v, 90°, and 1 + 90°. The transmission coefficients of the FSS
structure with double-square array is provided by Prof. C. K. Lee and
manually reproduced from his Ph.D. dissertation [24] by this author.

Thin array elements are studied. Although the VSM imposes no
restriction on array elements, simulation of FSS structures with thin
array elements is computationally much cheaper.

Piecewise sinusoidal basis and testing functions are used.
Monopole is shorter than 0.1 wavelength of the residing material. Thin
wire approximation is applied to reduce the computational complexity.

4.2. FSS Structures with Single Array
4.2.1.  FSS Structure with y-directed Thin Dipole Array

The first F'SS structure is shown in Fig. 6. It is an F'SS structure with y-
directed thin dipole array. The reflection and transmission coefficients
at normal incidence (6'"¢ = 0°,¢""¢ = 90°) are shown in Fig. 6 where
the experimental results are also given. Agreement is very good.

4.2.2. FSS Structure with 45°-directed Thin Dipole Array

Next, consider a 45°-directed thin dipole array as shown in Fig. 7(a).
Here, we consider two sets of incident angles, (6'¢ = 0°,¢"¢ =
45°) and (6""¢ = 0° ¢ = 0°). The corresponding reflection and
transmission coefficients are shown in Figs. 7(b) and 7(c). Apparently,
simulation results agree very well with experimental results.

4.2.8. FSS Structure with Staggered y-directed Thin Dipole Array

The third FSS structure considered is one with staggered y-directed
thin dipole array as shown in Fig. 8. Again, normal incidence (ginc =
0°,¢"™¢ = 90°) is simulated. The simulation results and experimental
results are shown in Figs. 8(b) and 8(c). The agreement is fairly good.
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€=3.65-j.1 t=850um
€,=3.65-j.1 t=850um

Cross section

Array Pattern

Figure 6. An FSS structure with y-directed thin dipole array (7, =
9mm, Ty = 9mm, L = 8mm, W = 80 um, metal thickness: 17.5 um,
einc — OO, ¢inc — 900).

4.2.4. FSS Structure with Type-2 Gangbuster Array

Here, we study two examples. The first example studied is shown
in Fig. 9(a). Three cases of normal incidence, (0"*¢ = 0°,¢"¢ =
tan—1! 2), (eznc — Oo’qsinc — 00)7 and (emc — Oo’gbinc — 900),
are simulated. In general, the simulation results agree well with
experimental results.

We have also simulated the FSS structure shown in Fig. 10.
Oblique incidence is considered. The simulation results agree perfectly
with those given in [4].

4.2.5. FSS Structure with Double-Square Array

The last structure in this category studied is an FSS structure with
double-square array as shown in Fig. 11(a). Both normal and oblique
incidences are considered. In general, good agreement is observed.
However, it must be pointed out here that the agreement at higher
frequencies is worse since the thin wire approximation becomes less
and less valid as frequency goes higher and higher.

4.3. FSS Structures with Multiple Arrays

The previous FSS structures contain one array only. Sometimes, more
than one array are applied in one FSS structure. Here, VSM is applied
to analyze FSS structures with multiple arrays. Two structures are
studied.
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Figure 7. An FSS structure with 45°-directed thin dipole array (a)
Configuration (7T, = 9mm, T, = 9mm, L = 8mm, W = 80 um,
¢ = 45°, metal thickness: 17.5um) (b) Reflection coefficients and
transmission coefficients (6""¢ = 0°,¢""¢ = 45°) (c) Reflection and
transmission coefficients (0"¢ = 0°, "¢ = 0°).

4.83.1. FSS Structure with Two Thin Dipole Arrays

The first structure contains two thin dipole arrays. The structure
consists of the FSS structures shown in Figs. 6 and 8. The two
structures are separated by a spacer. The side view of this structure
is shown in Fig. 12(a).

Two cases are considered. For the first case, the y-directed thin
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dipole array acts as array #1 while the staggered y-directed thin
dipole array acts as array #2. Incidences (6" = 0°,¢"¢ = 90°) and
(0 = 10°,¢"° = 90°) are studied. The reflection and transmission
coefficients are given in Figs. 12(b) and 12(c). Agreement is good.

For the second case, the two arrays are reversed, i.e., the y-directed
thin dipole array serves as array #2 while the staggered y-directed
thin dipole array serves as array #1. The reflection and transmission
coefficients for (6""¢ = 0°,¢"° = 90°) is given in Fig. 12(d). Similar
agreement is observed.
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Figure 8. An FSS structure with staggered y-directed thin dipole
array (T, = 9mm, 7, = 4.5mm, L = 8mm, W = 80um, metal
thickness: 17.5 um, "¢ = 0°, ¢'"¢ = 90°).
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Figure 9. An FSS structure with Type-2 gangbuster array (a)
Configuration (7, = 5mm, T, = bmm, L = /17 + (2T3)?> — A,
A =2mm, W = 80 ym, ¢ = tan~'?) (b) Reflection and transmission
coefficient (#¢ = 0°,¢"¢ = tan~'2) (c) Reflection coefficients and
transmission coefficients (0"¢ = 0°,¢"° = 0°) (d) Reflection and
transmission coefficient (6°¢ = (0°, ¢ = 90°).
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It is noticed that the periodicity of the two arrays in this structure
is different. Therefore, this example also serves to demonstrate that
VSM is able to deal with F'SS structures with multiple arrays whose
periodicity satisfies (2).
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Figure 10. An FSS Sstructure with Type-2 gangbuster array studied

in [4].
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4.8.2. FSS Structure with Four Thin Dipole Arrays

The final structure investigated contains four thin dipole arrays. The
structure is formed by assemble the structures studied in Subsections
4.2.1 and 4.2.2 in the way shown in Fig. 13(a). For symmetry, the
thickness of spacers 1 and 3 are identical. Three cases of spacer
thickness are studied. The corresponding reflection and transmission
coefficients are given in Figs. 13(b)-13(g). The agreement between
simulation results and experimental results is satisfactory.
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Figure 13. An FSS structure with four thin dipole arrays (a)
Configuration (b) Reflection and transmission coefficient (6°"¢
0°,¢™¢ = 90°, hy = hz = 5mm, hy = 10mm) (c) Reflection
coefficient and transmission coefficient (0"¢ = 0°,¢"™° = 0°, h; =
h3 = 5mm, hy = 10mm) (d) Reflection and transmission coeflicient
0" = 0°¢™ = 90°, hy = hy = hz = 0) (e) Reflection and
transmission coefficient (6"*¢ = 0°,¢"* = 0°, hy = hy = hg = 0) (f)
Reflection and transmission coefficient (6°"¢ = 20°,¢""¢ = 90°, h; =
h3 = 1.0mm hy = 1.5mm) (g) Reflection and transmission coefficient
(67 = 20°, "¢ = 0°, hy = hy = 1.0mm hy = 1.5 mm).

5. CONCLUSIONS

Analysis of FSS structures is considered in this paper. VSM is
developed following the basic idea of the standard SDM. It is shown
that VSM is valid for spectral-domain surface current over both
element domain and unit cell domain. The reflection and transmission
coefficients based on vector electric and magnetic potentials are
abandoned. Instead, electric field-based reflection and transmission
coefficients are derived.

Extensive validation has been conducted by applying VSM to
analyze various FSS structures. Excellent agreement is observed
between simulation results and experimental results and published
results.
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