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PECULIARITIES IN THE DIELECTRIC RESPONSE OF
NEGATIVE-PERMITTIVITY SCATTERERS
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Abstract—This study analyzes polarizability properties of spherically
layered small inclusions that possess negative permittivity. Conditions
for invisibility to external electric fields are derived. The
complementary principle for two-dimensional scatterers is used to
derive special properties of self-complementary inclusions. A singular
behavior between the limits of invisibility and infinite response is
underlined for a hollow circular shell. A similar, although not as
drastic, phenomenon is shown to take place for the three-dimensional
hollow sphere.

1. INTRODUCTION

The essence of the electromagnetic response of a small scatterer
is contained in its field-induced dipole moment, determined by the
polarizability which is a function of the geometry and permittivity
of the particle. In applications like modeling of materials, the dipole
polarizability is the most important of the multipolar parameters. All
higher-order multipole fields decay more strongly with distance than
those of the dipole.

The normalized polarizability of a small, homogeneous dielectric
sphere is

α =
αabs

ε0V
= 3

ε − 1
ε + 2

(1)

where ε is the relative permittivity of the sphere (the absolute
polarizability is made dimensionless through division by the free-space
permittivity ε0 and the volume of the sphere V ). Obviously the
dielectric response of a small sphere behaves very strangely if the
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permittivity is allowed to be negative. The polarizability grows without
limit if the permittivity approaches the value −2. This is the so-called
Fröhlich mode [1, 2]. One could also call it the electrostatic resonance
[3].

Negative-valued permittivities are no anomalies. Several metals
display such values for optical or infrared frequencies. And indeed, the
present interest in so-called metamaterials which are being studied for
their possible potential in microwave and higher-frequency imaging
applications [4, 5] are often based on the simultaneously negative
permittivity and permeability parameters [6]. Such artificial materials
can be fabricated by embedding various resonating “molecules”
into a neutral matrix. And this area of research on negatively
refracting materials is presently getting very much attention in the
electromagnetics community [7].

This study points out some interesting observations about the
peculiarities of the dipole response of spherical scatterers of negative
permittivity. In particular, the focus is on how closely a very high
and very low observability of a small particle are connected when
its permittivity approaches certain negative values. The invisibility
or at least low observability of scatterers with negative material
parameter values has been studied also in the full-wave regime [8], and
recent studies have appeared dealing with even a complete cloaking of
arbitrary objects by tracing and dragging wave rays past it [9–12]. In
contrast, in this paper the focus is on small scatterers and on a very
singular behavior between the full transparency and infinite visibility.

2. COMPLEMENTARITY PRINCIPLE FOR
TWO-DIMENSIONAL SCATTERERS

A generalization of (1) into other spatial dimensions is obvious.
Depending on the dimension D of the problem, the “sphere”
polarizability is

α = D
ε − 1

ε + D − 1
(2)

and therefore, the polarizability of a circle (a two-dimensional sphere)
is

α = 2
ε − 1
ε + 1

(3)

which has a singularity when the relative permittivity attains the value
ε = −1.
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For a two-layer sphere, Figure 1, with core of ε2 and shell of ε1,
the polarizability, generalization of (1), reads [13]

α = 3
(ε1 − 1)(ε2 + 2ε1) + β(2ε1 + 1)(ε2 − ε1)
(ε1 + 2)(ε2 + 2ε1) + 2β(ε1 − 1)(ε2 − ε1)

(4)

where β = a3
2/a3

1 is the volume fraction of the core of the total volume.
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Figure 1. The core-and-shell sphere.

The corresponding polarizability value for the two-dimensional
case (concentric circles, i. e., cross-cuts of cylinders) obeys the formula

α = 2
(ε1 − 1)(ε2 + ε1) + β(ε1 + 1)(ε2 − ε1)
(ε1 + 1)(ε2 + ε1) + β(ε1 − 1)(ε2 − ε1)

(5)

where now β refers to the fractional area a2
2/a2

1.
A look at the relation (3) gives rise to an interesting observation

concerning two-dimensional scatterer responses. The polarizabilities of
“complementary circles,” meaning circles with inverse permittivities (ε
and 1/ε) are opposite numbers:

α1/ε = 2
1/ε − 1
1/ε + 1

= −2
ε − 1
ε + 1

= −αε (6)

The theorems by Keller and Mendelson [14, 15], even if derived
for effective conductivities of composites and not permittivities nor
single inclusions corroborate that this result is valid for any isotropic
two-dimensional scatterer.

For anisotropic scatterers, the corresponding relation is only little
more complicated. For example, the polarizabilities of an ellipse
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with relative permittivity ε and semiaxes a and b in the x and y
directions, respectively, are determined by the depolarization factors
Nx = b/(a + b) and Ny = a/(a + b) [13]:

αx
ε =

εr − 1
1 + Nx(εr − 1)

=
εr − 1

1 + b
a+b(εr − 1)

(7)

αy
ε =

εr − 1
1 + Ny(εr − 1)

=
εr − 1

1 + a
a+b(εr − 1)

(8)

From this we can derive the relations corresponding to Equa-
tion (6) and generalizing it, between the polarizability components
of complementary scatterers (inclusions of inverse permittivities):

αx
1/ε = −αy

ε , αy
1/ε = −αx

ε (9)

The two orthogonal polarizability components are pairwise
opposite numbers when the permittivity is inverted. Again, this
applies to any two-dimensional shape, not only to the ellipse, and
can be exploited effectively to speed up the accuracy of the numerical
evaluation of the polarizabilities of arbitrary scatterers [16].

And for a more general case of an inhomogeneous scatterer where
the permittivity is not uniform, the corresponding complementarity
relation reads

α(ε(r)) = −α(1/ε(r)) (10)

for isotropic scatterers. One can easily check the validity of this in the
special case of a two-layer circle (Equation (5)): there, replacing ε1 by
1/ε1 and ε2 by 1/ε2 changes the sign of α.

3. INVISIBILITY AND EMERGENCE OF INFINITY

Next, let us search for the conditions when the dipole response of a
scatterer vanishes, of course other than the trivial case of homogeneous
ε = 1. From the previos results we can solve the case of a invisible
hollow spherical shell. In other words the question is to find the
permittivity of the layer in the situation ε2 = 1 and α = 0.
Equation (4), for the 3D situation, tells that the shell permittivity
has then to be ε1 = −1/2.

In Figure 2 the field solution over a cut through the center of
the sphere is depicted for an invisible three-dimensional hollow shell.
As can be seen, the potential lines everywhere outside the sphere are
equidistant and hence no dipole field is created. But also, as expected,
the internal behavior is more turbulent.
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Figure 2. The equipotential lines (left) and the electric field (right) for
an invisible (ε1 = −1/2) spherical shell in a uniform external electric
field. Note that the solutions outside the scatterer are not affected by
the presence of the sphere. The potential and the field patterns have
been calculated from the exact solution of the Laplace equation for the
twolayer sphere [17].

Similarly in the two-dimensional case, Equation (5), the
invisibility condition requires that the shell permittivity has to be
ε1 = −1.

In fact, the complementarity principle can be used to understand
the invisibility of the two-dimensional case. Since the complementary
operation reverses the sign of the polarizability and in the case of a shell
with permittivity ε1 = −1 the complementarity operation keeps the
problem the same (because then the inverse of the permittivity remains
the same; 1/ε1 = −1), one has to conclude that the polarizability has
to vanish because α = −α. Therefore a 2D shell with permittivity of
−1 has to be transparent.

However, there is another possibility to reconcile a change of sign
with unchanged amplitude: infinite polarizability. And such a thing
happens in the case when the core shrinks to zero. Equation (3) tells
that a homogeneous self-complementary (ε = −1) homogeneous sphere
has infinite polarizability.

At first sight, this is counter-intuitive. At least such an inclusion
shows extremely singular behavior: a homogeneous particle displaying
a very strong Fröhlich resonance (a homogeneous circle of ε = −1)
suddenly not only loses the mode but even becomes totally invisible if
a hole develops in the center of this inclusion. This can be appreciated



196 Sihvola

on the formal level by studying the polarizability of a hollow circular
negative-permittivity layer, whence Equation (5) gives us

α = 2
(ε1 − 1)(ε1 + 1)(1 − β)
(ε1 + 1)2 − β(ε1 − 1)2

(11)

and this is obviously zero for ε1 = −1, except if also β equals zero, in
which case it goes to infinity. In other words, the case ε1 → −1 and
β → 0 is a singular limit.

Something similar if not as dramatic happens in the three-
dimensional case, too. Consider the case when the permittivity of
the sphere is ε = −1/2. Such a homogeneous sphere has polarizability
α = −3. Surprisingly, if this particle had a hollow core, no matter how
small, the polarizability would suddenly vanish (Equation (4)) and the
scatterer would become invisible.

4. CONCLUSIONS

With the advent of new metamaterials, the peculiar responses of small
scatterers discussed above may find use in high-frequency engineering
and optics. After all, the invisibility and Fröhlich responses require
negative permittivities. It is obvious that transparency or low
observability of dielectric objects is a very desired property in many
application domains. But the phenomenon discussed in this paper, the
very narrow boundary between invisibility and infinite reflectivity, is
perhaps even more extreme and interesting, and may certainly find
application potential in several other related fields. A great sensitivity
of the response on the internal structure of the inclusion could be
exploited in the design of efficient measuring and evaluation algorithms
of material characteristics.

It is worth emphasizing the spherical geometry which was essential
in the analysis since in that case we were able to concentrate of the
dipole level response. Vanishing of the dipolarizability is sufficient for
invisibility because for small spherically symmetric structures only the
dipole moment survives in the multipole series.

But the analysis also opens up possibilities to understand
unexpected phenomena for non-spherical scatterers, too. The
complementary relation (9), applied for scatterers of any shape with
permittivity ε = −1, tells that the orthogonal polarizabilities are
opposite numbers. Hence a random isotropic two-dimensional mixture
of such inclusions (at least in the dilute Maxwell Garnett limit) will be
transparent because the average polarization caused by the inclusions
adds up to zero.
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Finally, one may wonder whether the inevitable dielectric losses
will soften or even wash away the extreme properties discussed above.
In the frequency scale, the negative values of permittivity are band-
limited, and because of the dispersion, there has to be a non-vanishing
spectrum of the imaginary part of permittivity. However, due to
the global integral character of the Kramers–Kronig relations, it is in
principle not impossible to construct material response that combines
negative real part and very small imaginary part of the permittivity
at a certain frequency.
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