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Abstract—In this paper, an efficient algorithm is presented to analyze
the electromagnetic scattering by electrically large-scale dielectric
objects. The algorithm is based on the multi-region and quasi-
edge buffer (MR-QEB) iterative scheme and the conjugate gradient
(CG) method combined with the fast Fourier transform (FFT). This
algorithm is done by dividing the computational domain into small
sub-regions and then solving the problem in each sub-region with buffer
area using the CG-FFT method. Considering the spurious edge effects,
local quasi-edge buffer regions are used to suppress these unwanted
effects and ensure the stability. With the aid of the CG-FFT method,
the proposed algorithm is very efficient, and can solve very large-
scale problems which cannot be solved using the conventional CG-FFT
method in a personal computer. The accuracy and efficiency of the
proposed algorithm are verified by comparing numerical results with
analytical Mie-series solutions for dielectric spheres.

1. INTRODUCTION

It is of great importance to seek efficient numerical analysis of
large-scale electromagnetic problems which usually require much
computational time and large computer memory. The method of
moments (MoM) [1] has become one of the most popular methods
to compute the scattering problems in a variety of applications [2–
7, 24–26]. However, MoM requires O(N2) memory usage, where N
is the number of unknowns. It is not easy to satisfy the memory
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requirement to solve large-scale problem using MOM even on most
powerful computers. One of the approaches to overcome such a
problem is the domain decomposition method, which has found wide
applications in the EM community [8–12].

To reduce the computational time, the conjugate gradient (CG)
method combined with the fast Fourier transform (FFT) is employed
to solve the MoM matrix equation. The CG-FFT method is one of the
most efficient ways to solve the volume integral equation for dielectric
targets [13–21], which reduces the operation count from O(N2) to
O(N logN) in each iteration.

This paper presents a hybrid technique, which combines the multi-
region and quasi-edge buffer (MR-QEB) iterative scheme and the
CG-FFT method, to analyze large-scale electromagnetic problems of
dielectric objects. The computational domain is first divided into small
sub-regions. Then the small problem in each sub-region with quasi-
edge buffer region is solved using the CG-FFT method. The solutions
at the processed sub-regions are used to form the problem to be solved
at the next sub-regions. Once all sub-regions are analyzed, an iterative
approach is used to provide the entire domain solution. The iterative
technique requires solutions of fields in sub-regions a number of times
until a convergence criterion is achieved. Using the proposed technique,
the size of required memory can be reduced significantly. Due to the use
of quasi-edge buffer regions, the field discontinuous from the spurious
edge effect has been reduced, and hence the proposed algorithm has a
good convergence. We have verified the accuracy and efficiency of the
algorithm by comparing the numerical results with analytical results
for dielectric spheres.

2. GENERAL FORMULATIONS

Consider a three-dimensional (3-D) dielectric object of arbitrary shape
located in a homogeneous space which is characterized by a relative
permittivities εb. Usually, the homogeneous space is free space:
εb = 1.0. The arbitrarily shaped dielectric object with the complex
permittivity εr(r) is assumed to be inscribed in a cuboid Lx×Ly ×Lz.
Through out the paper, the time dependence of exp(−iwt) is assumed
and suppressed.

Under the illumination of an incident electric field, the total
electric field inside the dielectric object, E, can be determined through
the following volume integral equation

E(r) +
1

4πεb

∫
V
G(r, r′)[εr(r′) − εb]E(r′)dr′ = Einc(r) (1)
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where

G(r, r′) =
eikbR

R5

 Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz

 (2)

is the dyadic Green’s function in the homogenous space, in which the
corresponding matrix elements are given by

Gξζ = (ξ − ξ′)(ζ − ζ ′)
[
(kbR)2 + i3(kbR) − 3

]
, (ξ �= ζ), (3)

Geξξ = (ξ − ξ′)2
[
(kbR)2+ i3(kbR)−3

]
−R2

[
(kbR)2+ i(kbR)−1

]
. (4)

Equation (1) is the integral equation for the internal electric field E.
In fact, it has an equivalent version for the induced electric current J

J(r) +
1
4π

χ(r)
∫

V
G(r, r′) · J(r′)dr′ = Jinc(r) (5)

where χ(r) = ε(r)/εb − 1, and

J(r) = χ(r)E(r), Jinc(r) = χ(r)Einc(r) (6)

are the normalized electric current inside the dielectric object and the
equivalent incident current, respectively.

We first bound the considered dielectric target in a box with the
size of Lx × Ly × Lz. The box is discretized into Nx × Ny × Nz

cuboidal cells. Then the volume of each cell is ∆V = ∆x∆y∆z, where
∆ξ = Lξ/Nξ, and Nξ is the division number in the ξ-direction. Here
and after, we let ξ = x, y, z. Choosing the pulse function as the basis
and testing function, then Eq. (5) can be converted into a linear system
of equations

Z · I = V (7)

where Z is an N × N system matrix, I is a column vector with
the coefficients of the unknown currents, and V is a column vector
associated with the incident fields in the dielectric object. Here
N = 3NxNyNz is the total number of unknowns. For large-scale
electromagnetic problems, N is very large and it is very difficult to
solve the Eq. (7) directly. To reduce the CPU time and memory
requirement down to manageable levels, the MR-QEB iterative scheme
is used. Splitting the computational domain into M sub-regions, the
iterative scheme can be written in a form of matrix as

ẐiiĴ
(k)
i = Ŵi −

M∑
j �=i,j /∈b(i)

Ẑij Îj , i = 1, 2, . . . ,M, (8)
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where

Ẑii =

[
Zii Zib(i)

Zb(i)i Zb(i)b(i)

]
, Ĵ

(k)
i =

[
I(k)
i

Ib(i)

]
, Îj =

{
I(k)
j , j < i,

I(k−1)
j , j > i,

(9)
and

Ẑij =

[
Zij

Zb(i)j

]
, Ŵi =

[
Vi

Vb(i)

]
. (10)

Here, b(i) represents the appropriate buffer region, and I(k)
j is the

appropriate subvector of I corresponding to the jth sub-region after the
kth iteration. In Eqs. (9) and (10), Zii is the self-impedance matrix in
the ith sub-region, Zij is the multual-impedance matrix between the
ith sub-region and the jth sub-region, Zb(i)b(i) is the self-impedance
matrix in the buffer region b(i), Zb(i)i is the multual-impedance matrix
between the buffer region b(i) and the ith sub-region, and Zb(i)j is the
multual-impedance matrix between the buffer region b(i) and the jth
sub-region [22, 23].

To show the spirit of the MR-QEB scheme in details, a simple two-
dimensional (2-D) model is described in Fig. 1. The computational
domain is divided into nine sub-regions by the bold solid line. For

Figure 1. Subregions of a large dielectric object and the quasi-edge
buffer regions.
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each sub-region, the “quasi-edge buffer regions” are those areas of the
scatterer immediately adjacent to the boundaries of the other sub-
regions in all directions, which can be clearly seen from the 1st sub-
region and 5th sub-region in Fig. 1. When the problem in a sub-region
with the quasi-edge buffer regions is solved, we only store the solution
in the sub-region which will be used to set up the problem to be solved
at the next sub-region, and so on. Hence, there are a certain amount
of redundancy in our computations, which are caused by using the
quasi-edge buffer regions. However, these extra calculations include
the interactions of the considered sub-region with buffer regions, which
can suppress the singularities introduced by the abrupt termination of
each sub-region. It is very important that the quasi-edge buffer regions
needed in the proposed algorithm are very small but can dramatically
enhance the stability of the iterative process.

However, the products of discrete Green’s functions and electric
currents in Eq. (8) are quite time and memory consuming. From the
theory of Fourier transform and discrete Fourier transform (DFT) [18],
the cyclic convolution of discrete signals can be fast computed using
FFT. Hence, we can compute all terms in Eq. (8) rapidly by FFT. To
make use of FFT, the discrete Green’s functions must be extended in
a larger computational domain, which can be found in [17].

After defining the extended Green’s functions and the equivalent
electric current, we can obtain the iterative scheme in the sth sub-
region as

J(s)ξ(m,n, k)+
1
4π

χ(s)(m,n, k)F−1

 ∑
ζ=x,y,z

G̃De
(ss)ξζ(i, j, l)J̃

De
(s)ζ(i, j, l)


= χ(s)(m,n, k)E

inc
(s)ξ(m,n, k)

− 1
4π

χ(s)(m,n, k)
M∑

t=1,t�=s

F−1

 ∑
ζ=x,y,z

G̃De
(st)ξζ(i, j, l)J̃

De
(t)ζ(i, j, l)

 (11)

where G̃De
(ss)ξζ(i, j, l) and J̃De

(s)ζ(i, j, l) are DFTs of GDe
(ss)ξζ(m,n, k)

and JDe
(s)ζ(m,n, k), respectively. Similarly, the corresponding adjoint

operations can also be performed using FFT. As a consequence, we
can solve Eq. (11) rapidly through the CG-FFT algorithm [17]. By
several iterations, we can obtain sufficiently accurate solutions.

Based on the complicity of the CG-FFT method, we can obtain
the complicity in the MR-QEB-CG-FFT algorithm. Suppose that the
number of total unknowns is N and the number of unknowns in a single
sub-region is Ns = N/M on average. The CG-FFT method reduces
the computational complexities in solving the entire domain and the
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(a) (b)

(c) (d)

Figure 2. The distribution of internal electric field inside a dielectric
sphere under the illumination of plane wave, where εr = 4 + i,
f = 0.3 GHz, R = 0.2 m, and the buffer region is 2 grids. (a) |Ex|
component along the central line of y = 0 and z = 0. (b) |Ex|
component along the central line of x = 0 and z = 0. (c) |Ez|
component along the central line of y = 0 and z = 0. (d) |Ey|
component along the central line of x = 0 and z = 0.

single sub-domain problems to C1Nit1N logN and C2Nit2Ns logNs,
respectively. Here, Nit1 and Nit2 are iteration numbers in CG-FFT
algorithms for the entire and single sub-region problems. Suppose
that the number of iterations for the MR-QEB-CG-FFT algorithm
is P . Then the total computational cost is estimated as

P ·M · (M ·C2Nit2Ns logNs) = P ·M ·C2Nit2N(logN − logM). (12)

Generally, P equals 3, C1 and C2 are constants used in FFT, which are
nearly the same, and Nit2 is much smaller than Nit1. In the process
of iterations, the memory requirement in the proposed algorithm is
only occupied by single sub-region. Hence the memory requirement
can be drastically reduced to O(Ns). This is extremely important for
large-scale problems.
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(a) (b)

(c) (d)

Figure 3. The distribution of scattered electric field on the
observation plane z = 1.2 m by the dielectric sphere under the
illumination of plane wave, where εr = 4 + i, f = 0.3 GHz, R = 0.2 m,
and the buffer region is 2 grids. (a) |Ex| component along the central
line of y = 0. (b) |Ey| component along the central line of y = 0.
(c) |Ez|component along the central line of y = 0. (d) |Ey|component
along the central line of x = 0.

In the MR-QEB-CG-FFT algorithm, the residual relative error on
the current is used for convergence criterion, which is defined at the
kth iteration as

error(J, k) =
‖ Jk − Jk−1 ‖

‖ Jk ‖ , (13)

where ‖ · ‖ denotes the 2-norm of a column vector.

3. NUMERICAL RESULTS

To illustrate the accuracy and efficiency of the proposed MR-QEB
iterative scheme combined with the CG-FFT method, we first consider
the EM scattering by a sphere which is averagely split into eight
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(a) (b)

(c) (d)

Figure 4. The distribution of internal electric field inside a dielectric
cube under the illumination of plane wave, where εr = 4 + i, f =
0.6 GHz, Edge = 0.4 m, and the buffer region is 4 grids. (a) |Ex|
component along the central line of y = 0 and z = 0. (b) |Ex|
component along the central line of x = 0 and z = 0. (c) |Ex|
component along the central line of x = 0 and y = 0. (d) |Ey|
component along the central line of x = 0 and z = 0.

sub-regions. In the following examples, the background is just free
space. When the dielectric target is a sphere with εr = 4 + i and
illuminated by a plane wave, the comparison of numerical results of the
internal electric fields from MR-QEB-CG-FFT and analytical results is
illustrated in Figs. 2 and 3, where the sphere has a radius of 0.2 m and
the operating frequency is 0.3 GHz. The incident wave is polarized in
the x̂ direction and propagating in the z direction. Here, we have used
16×16×16 cubic meshes in the computational domain. From Fig. 1, we
clearly observe good agreements between the numerical and analytical
results in all cases after five iterations. We have also computed the
scattered electric fields from the dielectric object on the observation
plane z = 1.2 m and compared such results with the exact solutions,
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(a) (b)

(c) (d)

Figure 5. The distribution of scattered electric field on the
observation plane z = 1.2 m by the dielectric cube under the
illumination of plane wave, where εr = 4 + i, f = 0.6 GHz, Edge =
0.4 m, and the buffer region is 4 grids. (a) |Ex| component along the
central line of y = 0. (b) |Ey| component along the central line of
y = 0. (c) |Ez| component along the central line of y = 0. (d) |Ex|
component along the central line of x = 0.

as demonstrated in Fig. 2. Clearly, very good agreements have been
observed in all field components after five iterations. From Figs. 1 and
2, we can also observe the rapid convergence behavior of the internal
fields and scattered fields.

Second, we consider a dielectric cube object with εr = 4+ i, which
is illuminated by the same plane wave as that in Fig. 1. The cube
is averagely split into four sub-regions by the plane x = 0 and plane
y = 0. In such a case, the internal electric fields computed by the
MR-QEB-CG-FFT algorithm are illustrated in Fig. 4, where the cube
has an edge of 0.4 m and the operating frequency is 0.6 GHz. As a
comparison, numerical results of CG-FFT in the entire domain are
also given in the same figure. Correspondingly, the comparison of
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(a) (b)

(c) (d)

Figure 6. The distribution of internal electric field inside a dielectric
cube after three iterations under the illumination of plane wave, where
εr = 4 + i, f = 0.6 GHz, and Edge = 0.4 m. (a) |Ex| component along
the central line of y = 0 and z = 0. (b) |Ex| component along the
central line of x = 0 and z = 0. (c) |Ex| component along the central
line of x = 0 and y = 0. (d) |Ez| component along the central line of
y = 0 and z = 0.

Figure 7. A very large dielectric slab, which is divided into 32 sub-
regions.
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(a) (b)

(c) (d)

Figure 8. The distribution of internal electric field inside the dielectric
slab under the illumination of plane wave, where εr = 4 + i0.5,
f = 0.8 GHz, and the buffer region is 4 grids. (a) |Ex| component
along the central line of y = 0 and z = 0. (b) |Ex| component along
the central line of x = 0 and z = 0. (c) |Ex| component along the
central line of x = 0 and y = 0. (d) |Ey| component along the central
line of x = 0 and z = 0.

scattered electric fields on the observation plane z = 1.2 m is shown in
Fig. 5. From these two figures, we obviously notice that the MR-QEB-
CG-FFT solutions are rapidly convergent to the conventional CG-FFT
solution after several iterations.

To see the effect of quasi-edge buffer regions, the inner field
distributions after three iterations with different sizes of buffers are
plotted in Fig. 6. The figure shows that the buffer region with 2–4
grids is enough to obtain stable solutions. However, the solutions are
not stable if the buffer region is free. As the quasi-edge buffer regions
can suppress spurious edge effects, they can improve the stability of
the proposed algorithm.

After verification of the accuracy and efficiency, we apply
the proposed MR-QEB-CG-FFT algorithm to study the scattering
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(a) (b)

(c) (d)

Figure 9. The distribution of scattered electric field on the
observation plane z = 5 m by the dielectric slab under the illumination
of plane wave, where εr = 4 + i0.5, f = 0.8 GHz, and the buffer region
is 4 grids. (a) |Ex| component along the central line of y = 0. (b) |Ey|
component along the central line of y = 0. (c) |Ez| component along
the central line of y = 0. (d) |Ex| component along the central line of
x = 0.

properties of a large dielectric slab with εr = 4+i0.5, whose dimensions
and the 32 sub-domains are demonstrated in Fig. 7. Here, the
computational domain is 0.2 × 4.0 × 8.0 m3, which is divided into
16 × 320 × 640 cubic meshes. This is a very large problem, involving
3276800 grids and 9830400 unknowns, which cannot be solved by
a personal computer with 2G memory directly even using CG-FFT
method. The operating frequency is 0.8 GHz and the same plane wave
as earlier is used as the incident wave. Figs. 8 and 9 illustrate the
numerical results for the internal electric fields and the scattered fields
along the observation plane z = 5 m using the MR-QEB-CG-FFT
algorithm. From these figures, we can clearly observe the convergence
of the algorithm. The memory requirement of MR-QEB-CG-FFT is
only 260 MB. Hence, the MR-QEB-CG-FFT algorithm can economize
much memory for large-scale electromagnetic problems.
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4. CONCLUSIONS

In this paper, we propose a MR-QEB-CG-FFT algorithm to solve
large-scale electromagnetic problems for dielectric objects. The hybrid
algorithm has the ability to solve very large problems which cannot be
solved in a personal computer. Good convergence have been achieved
by the adoption of the quasi-edge buffer regions, which can suppress
spurious edge effects. The accuracy and efficiency of the proposed
algorithm has been validated using dielectric spheres, which have
closed-form solutions.
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