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Abstract—A new algorithm for numerical evaluation of the fields
in the near zone of conducting scatterers or antennas of arbitrary
shape is developed in the present work. This algorithm is simple, fast,
robust and is based on a preceding calculation of the current flowing
on the conducting surface using the electric filed integral equation
(EFIE) technique that employs the Rao-Wilton-Glisson (RWG) basis
functions. To examine the validity of the near field computational
algorithm developed in the present work, it is applied to calculate
the near field due to plane wave incidence on a variety of conducting
scatterers. The solution obtained for the fields in the near zone is found
to satisfy the boundary conditions on both planar and curved scatterer
surfaces and the edge condition for structures possessing edges or
corners. The solutions obtained using the new algorithm are compared
with those obtained using some commercial packages that employ the
finite-difference-time-domain (FDTD). The algorithm defined in the
present work gives results which are more accurate in describing the
fields near the edges than the results obtained using the FDTD.

1. INTRODUCTION

The integral equation technique is one of the most widely used
electromagnetic techniques up till now [1–5]. However, most of
the literatures concerned with this technique give attention to the
evaluation of the current, input impedance and far field rather than
the evaluation of the near field. The present paper concentrates on
developing an algorithm that accurately evaluates the near field as a
subsequent computation after the evaluation of the current flowing on
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the surface of the radiator or scatterer using the EFIE and method of
moments (MoM).

The most important and critical quantities to be calculated
when treating electromagnetic radiation and scattering problems using
computational techniques are the near field and current quantities. The
far field can be entirely determined from the current in the scatterer
or from the near field in the vicinity of the scatterer. For realizing
the validity of the solutions obtained by a numerical technique, the
boundary conditions on the scatterer surface and the edge conditions
for open scatterers must be satisfied.

An appropriate method that can deal efficiently with the
electromagnetic problems of thin conducting surfaces is the EFIE
technique, described by Rao, Wilton and Glisson [6]. An integral
equation is formulated for the unknown current on the scattering
surface. The integral equation is then converted to a linear system of
equations, which can be solved using well-known numerical techniques.
Once the current distribution on the antenna surface is obtained, the
near field, far field and the antenna characteristics can be directly
obtained.

The method used in [6] to evaluate the surface integrals required
to formulate the EFIE depends on the transformation of the integrands
from the Cartesian coordinates to the so-called normalized area
coordinates or simplex coordinates. This enables the expression of
each integral as a double integral which is evaluated on the area
of each triangular patch. For each combination of triangular patch
pairs, three independent integrals must be numerically evaluated. The
application of such a transformation results in a huge number of double
surface integrals which requires a huge computer memory and long
computational time.

A more efficient and optimized alternative to compute the
integrals computation involved in the EFIE technique when applied
to conducting surfaces is used in the present work. This technique
depends on dividing each triangular patch into a number of sub-
triangles. In this way, the surface integral over each patch is
expressed as a finite summation over the sub-triangles constituting
this patch. Using the same triangular patches model of the scatterer,
the latter technique considerably reduces the numerical effort required
for obtaining accurate results for the current on the scatterer.

The geometrical modeling using cubical pieces (as the cells
employed in FDTD), is appropriate only for planar or piecewise
planar scatterers. For smoothly curved surfaces, cubical pieces are
used to build a staircase model, which causes enormous troubles in
electromagnetic computations [7]. The staircase model, even if a very
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large number of such pieces is used, is still not able to conform the
actual surface or boundary. Staircase model possesses corners and
edges all over the scatterer model which is not the case for actual
smooth surfaces. This results in that some of the near field components
may incorrectly exhibit edge behavior at the points of the scatterer
surface although the actual surface is smooth. Moreover, the boundary
conditions are not accurately satisfied when a staircase model is used.
Thus, a staircase model generally results in unavoidable spurious
solutions. The analysis of errors introduced by such an approximation
has been proposed in the literature for overcoming the problem of
staircase model. Some of them are those employing a globally
curvilinear grid [8], using contour path FDTD (CPFDTD) [9] and using
locally conformal grid [10] for modeling curved surfaces. However,
each of the above approaches has its limitations and may suffer from
instability. Moreover, much sophistication may be involved in modeling
curved surfaces and may be impractical for treating arbitrarily-shaped
surfaces. Furthermore, a severe problem may appear when these
methods are used to treat closed surfaces; that is for closed structures
there is no mechanism for dissipating the spuriously generated energy
and, hence, stable meaningful results are not usually obtainable [10].

The most strong point of the EFIE method is its efficient
treatment of perfectly or highly conducting surfaces. Only the surface
of the scatterer or radiator is meshed; no “air region” around the
antenna or the scatterer needs to be meshed. For conducting wire
antennas, the treatment is even more efficient since only a one-
dimensional discretization of the wire is undertaken. Moreover, the
EFIE automatically incorporates the “radiation condition” i.e., the
correct behavior of the field far from the source (proportional to 1/r
in free space). No near-to-far field transformation is required. In the
EFIE, the working variable is the current density, from which many
important antenna parameters (impedance, gain, radiation pattern
etc.) may be derived, some directly and some via straightforward
numerical integration. In conclusion, one can state the fact that the
EFIE is preferred to FDTD and the other computational techniques
for radiation and scattering problems involving perfectly or highly
conducting bodies without the existence of inhomogeneous dielectrics
or penetrable materials [1]

2. FORMULATION OF THE EFIE FOR THE CURRENT
ON THE CONDUCTING SCATTERER

The electric field radiated due to a surface charge density σ and current
J flowing on a conducting surface, S, can be obtained by the following
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expression.
E(r) = −jωA(r) −∇Φ(r) (1)

where A(r) is the magnetic vector potential defined as

A(r) =
µ

4π

∫
S

J
e−jk|r−r′|

|r − r′| dS′, (2)

and Φ(r) is the electric scalar potential defined as

Φ(r) =
1

4πε

∫
S

σ
e−jk|r−r′|

|r − r′| dS′, (3)

where r′ is a point on S and r is a point in the near or far zone of free
space. The surface charge density σ is related to the surface divergence
of the current J flowing on S through the equation of continuity,

∇s · J = −jωσ (4)

In the following analysis, for simplicity, A(r) and Φ(r) are
replaced by A and Φ, respectively. Let the conducting surface S be
constructed up by Q triangular patches; a pair of them is shown in
Fig. 1. Upon this discretization of S, the potentials A and Φ caused
by the currents flowing on this surface, can be expressed as follows

A =
N∑

n=1

An, (5)

Φ =
N∑

n=1

Φn, (6)
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Figure 1. Two triangular patches sharing an edge.
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where N is the total number of non-boundary edges of the triangular
patches constituting the surface S, An and Φn are the potentials due to
the current component associated with the non-boundary edge number
n. These potentials can be decomposed as follows,

An = An
n+ + An

n− , (7)
Φn = Φn

n+ + Φn
n− , (8)

where n+ and n− are the numbers of the patches sharing the edge
number n; the plus and minus designations denote a positive current
reference direction for the non-boundary edge number n; that is, n+ is
the number of the patch of which the current of the non-boundary edge
number n is assumed to be flowing out, whereas n− is the number of
the patch into which this current is flowing. Thus An

q and Φn
q are the

potentials due to the part of the current component associated with
the non-boundary edge number n and flowing through the patch Pq.

In [6], the current basis function associated with the non-boundary
edge number n, is defined as

fn(r′) =




ln
2Sn+

(
r′ − r+

fn

)
, r′ ∈ Pn+

ln
2Sn−

(
r−

fn
− r′

)
, r′ ∈ Pn−

0 otherwise

(9)

where ln is the length of the shared edge number n, Sn+ and Sn− are
the areas of the triangular patches Pn+ and Pn− , respectively, and r±

fn

is the vertex of the triangular patch Pn± , which does not belong to the
non-boundary edge number n.

Using the basis function fn(r′), the current J flowing on the
conducting surface can be approximated as

J =
N∑

n=1

Infn(r′) (10)

where In is unknown coefficient (of fn in the current expansion series)
and is to be determined by the moment method.

3. DEVELOPMENT OF THE NEAR-FIELD
COMPUTATIONAL ALGORITHM

Making use of (2), (3), (4) and (10), one gets the following expressions
for An

n± and Φn
n± , respectively,

An
n± =

µIn

4π

∫
Pn±

fn(r′)FdS′, (11)
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Φn
n± = − µIn

4πjωε

∫
Pn±

∇s · fn(r′)FdS′, (12)

where

F =
e−jkR

R
, (13)

R = |r − r′| (14)

Using the definition of fn, given by (9), one gets the following
expressions for An

n± and Φn
n± , respectively,

An
n± = ± µInln

8πSn±

∫
Pn±

(
r′ − r±

fn

)
FdS′, (15)

Φn
n± = ∓ Inln

4πjωεSn±

∫
Pn±

FdS′, (16)

Dividing each triangular patch into a number of identical sub-
triangles as shown in Fig. 2, the integrals in (15) and (16) can be
evaluated as follows,

An
n± = ±µInln

8πK2

K2−1∑
t=0

(
rt

cn± − r±
fn

)
F t

cn± , (17)

Φn
n± = ∓ Inln

4πjωεK2

K2−1∑
t=0

F t
cn± , (18)
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Figure 2. A triangular-patch divided into a number of identical sub-
triangles.
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where K is the number of sub-triangles to which a triangular patch
is divided, rt

cq is the centroid of the sub-triangle number t on the
triangular patch Pq,

F t
cq =

e−jkRt
cq

Rt
cq

, (19)

and
Rt

cq =
∣∣∣r − rt

cq

∣∣∣ (20)

Let us define the following series,

Sq =
K2−1∑
t=0

F t
cq (21)

Sq =
K2−1∑
t=0

rt
cqF

t
cq (22)

Making use of (21) and (22), expressions (17) and (18) can be rewritten
as

An
n± = ±µInln

8πK2

[
Sn± − Sn±r±

fn

]
, (23)

Φn
n± = ∓ Inln

4πjωεK2
Sn± (24)

The straightforward way of thinking to numerically evaluate the
potentials A and Φ suggests that for each non-boundary edge n, the
quantities Sn+ ,Sn− ,Sn+ , and Sn− are first calculated using (21), (22)
and then the quantities An

n+ ,An
n− ,Φn

n+ , and Φn
n− are calculated using

(23), (24) and finally, the potentials A and Φ are calculated using (5)–
(6). However, if this algorithm is applied a considerable time will be
wasted because most of the quantities Sn+ ,Sn− ,Sn+ , and Sn− may be
calculated two or three times. A more efficient scheme suggests that
the quantities Sq, Sq are calculated for q = 1, 2, 3, . . . , Q and stored in
the computer memory. When the expressions (23), (24) are then used,
for each n, the proper quantities are restored from the memory. For
a closed surface, this method would save two-third the computational
time required if the last algorithm were used.
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4. CALCULATION OF THE ELECTRIC FIELD IN THE
NEAR ZONE

The electric field components can be numerically calculated by
discretizing equation (1) in the space as follows.

Ex = −jωAx − ∆Φ
∆x

(25)

Ey = −jωAy −
∆Φ
∆y

(26)

Ez = −jωAz −
∆Φ
∆z

(27)

To enable the above computations, the three-dimensional space is
discretized by the 3D main grid shown in Fig. 3 and Fig. 4. For
accurate numerical differentiation, the scalar potential Φ is calculated
at the points indicated by crosses on the three-dimensional grid shown
in Fig. 3 and Fig. 4, whereas the electric field components are calculated
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Figure 3. Space discretization to calculate the electric and magnetic
fields in the near zone.
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at the intermediate points which are indicated by dots. The points of
the grid are arranged such that each point is defined by three indices
i = 1, 2, 3, . . . , Ie, j = 1, 2, 3, . . . , Je and k = 1, 2, 3, . . . ,Ke. The
selection of the points at which a potential or field quantity is calculated
can be described as follows. The scalar potential Φ is calculated at
the points whose indices summation i + j + k is even whereas the
components of the vector magnetic potential are calculated at the
intermediate points, i.e. the points whose indices summation is odd.
In this way, the electric field components can be calculated as follows.

Ex

∣∣∣
i,j,k

= −jωAx

∣∣∣
i,j,k

− 1
∆x

(
Φ

∣∣∣
i+1,j,k

− Φ
∣∣∣
i−1,j,k

)
(28)

Ey

∣∣∣
i,j,k

= −jωAy

∣∣∣
i,j,k

− 1
∆y

(
Φ

∣∣∣
i,j+1,k

− Φ
∣∣∣
i,j−1,k

)
(29)

Ez

∣∣∣
i,j,k

= −jωAz

∣∣∣
i,j,k

− 1
∆z

(
Φ

∣∣∣
i,j,k+1

− Φ
∣∣∣
i,j,k−1

)
(30)

It is clear that the components of the electric field are calculated at
the same points of calculating the components of the magnetic vector
potential. To enable the calculation of all the components of the
electric field at all the points of the main grid specified for this, the
scalar potential must be calculated at other (auxiliary) points lying
just outside the main grid. These auxiliary points are indicated as
pentagonal stars as shown in Fig. 4. Table 1 indicates the potential
or field component that should be calculated at the points having the
designations shown in Fig. 4.

Table 1. The potentials and field components to be calculated at the
different points of the main and auxiliary points.
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Figure 4. Auxiliary points are used to calculate the electric field at
all the points of the main grid. The shaded area represents the main
grid where as the auxiliary points are plotted outside this area.

5. CALCULATION OF THE MAGNETIC FIELD IN THE
NEAR ZONE

The magnetic field components can be calculated from the electric field
components through the Maxwell curl equation:

µ
∂H

∂t
= ∇× E (31)

The last equation can be decomposed into three scalar equations and
written in the frequency domain as follows.

jωHx =
1
µ

[
∂Ey

∂z
− ∂Ez

∂y

]
(32)

jωHy =
1
µ

[
∂Ez

∂x
− ∂Ex

∂z

]
(33)

jωHz =
1
µ

[
∂Ex

∂y
− ∂Ey

∂x

]
(34)

To numerically calculate the magnetic field components, the last
three equations can be discretized in space as follows.

Hx =
1

jωµ

[
∆Ey

∆z
− ∆Ez

∆y

]
(35)
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Hy =
1

jωµ

[
∆Ez

∆x
− ∆Ex

∆z

]
(36)

Hz =
1

jωµ

[
∆Ex

∆y
− ∆Ey

∆x

]
(37)

Using the same three-dimensional grid of Fig. 3, the magnetic
field components are calculated at the points whose indices summation
i + j + k is even, i.e., at the same locations of calculating the scalar
potential, Φ; this can be done through the following equations.

Hx

∣∣∣
i,j,k

=
1

jωµ



Ey

∣∣∣
i,j,k+1

− Ey

∣∣∣
i,j,k−1

∆z
−

Ez

∣∣∣
i,j+1,k

− Ez

∣∣∣
i,j−1,k

∆y


 (38)

Hy

∣∣∣
i,j,k

=
1

jωµ



Ez

∣∣∣
i+1,j,k

− Ez

∣∣∣
i−1,j,k

∆x
−

Ex

∣∣∣
i,j,k+1

− Ex

∣∣∣
i,j,k−1

∆z


 (39)

Hz

∣∣∣
i,j,k

=
1

jωµ



Ex

∣∣∣
i,j+1,k

− Ex

∣∣∣
i,j−1,k

∆y
−

Ey

∣∣∣
i+1,j,k

− Ey

∣∣∣
i−1,j,k

∆x


 (40)

The electric field components are calculated at the auxiliary points
just outside the main grid, which are indicated as solid square blocks,
squares containing dots and rhombuses containing dots as shown in
Fig. 4. If this is done, the three components of the magnetic field can
be calculated at all the selected points of the main grid, which are
indicated by crosses in Figures 3 and 4.

In this way, the six field components Ex, Ey, Ez, Hx, Hy, Hz, are
all calculated at all the selected points of the main grid.

6. RESULTS AND DISCUSSION

To examine the validity of the near field computational algorithm
developed in the present work, it is applied to calculate the near
field due to a variety of conducting scatterers. As a first examination,
the solution obtained for he fields in the near zone should satisfy the
boundary conditions and the edge condition for open structures. The
solutions obtained using the present algorithm are, also, compared
with those obtained using some commercial packages that employ other
computational techniques such as FDTD.

In the following, we present some results concerning the scattering
of plane waves from flat square plates and cylindrical structures. For a



278 Hussein

stringent test of the employed computational technique, it is intended
to include curvatures and/or edges in the scatterer body to examine
the boundary conditions and the field behavior at edges.

6.1. Scattering from a Square Plate

A square plate of dimensions 1
2λ×

1
2λ is subjected to a normally incident

plane wave polarized such that the electric field is parallel to one of
the plate edges. A Cartesian system of coordinates, Fig. 5, is selected
such that the plate lies in the xy-plane (z = 0) and the electric field is
in the x-direction.

The distributions of the total electric field component Ex (incident
and scattered) in the planes z = 0 and y = 0 are presented in gray
color scale as shown in Figs. 6a and 6b, respectively. Since the incident
electric field is x-directed, the total electric field exhibits the edge
behavior at the perpendicular plate edges x = −0.25λ and x = +0.25λ.

To examine the accuracy of proposed algorithm, the same problem
is solved using Remcom Inc. “XFDTD” r© package. Fig. 7 presents the
electric field distributions in the planes z = 0 and y = 0 as obtained by
this package. The results presented in this Fig. 7 seems to be identical
to those presented in Fig. 6.

iE  

Direction  
of incidence 

z 

y x 

Figure 5. Triangular-patch model of a square plate and direction of
incidence and polarization of the plane wave.

For more illustration of the field behavior near the square plate,
Fig. 8a shows a plot for the Ex component of the total electric field
against x starting from x = −λ to x = +λ. The electric field exhibits
singular behavior at the plate edges x = −0.25λ and x = +0.25λ as
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(a) xy-plane                                               (b) xz-plane

Figure 6. Electric field distribution (Ex) in the near zone due a
normally incident plane wave on 0.5λ× 0.5λ square plate obtained by
the computational algorithm proposed in the present work (xy-plane:
z = 0, −λ < x < λ, −λ < y < λ), (xz-plane: y = 0, −λ < x <
λ, −λ < z < λ).

   

(a) xy-plane                                               (b) xz-plane

Figure 7. Electric field distribution (Ex) in the near zone due a
normally incident plane wave on 0.5λ × 0.5λ Square plate obtained
using Remcom Inc. “XFDTD” r© package (xy-plane: z = 0, −λ <
x < λ, −λ < y < λ), (xz-plane: y = 0, −λ < x < λ, −λ < z < λ).

shown in the figure. Despite being of high magnitude at the plate edges,
Ex dramatically falls to zero over the range −0.25λ < x < 0.25λ just
to satisfy the boundary condition that yields vanishing the tangential
electric field at the plate surface; a behavior which is clear in the figure.
On the other hand, Fig. 8b shows a plot for the Ex component of the
total electric field against y starting from y = −λ to y = +λ. As shown
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Figure 8. Total electric field (Ex) at the perpendicular and parallel
edges of the square plate.
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Figure 9. The total electric field (Ex) due to a normally incident
plane wave on a 0.5λ× 0.5λ square plate.
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Figure 10. Triangular-patch model of a slotted cylinder of finite
length.

in the figure, the electric field satisfies the boundary conditions at the
plate surface without exhibiting a singular behavior as it is parallel to
the plate edges y = −0.25λ and y = +0.25λ.

Fig. 9 shows a comparison of the behavior of the total electric
field (Ex) at the perpendicular and parallel edges of the square plate
as obtained in the present work with those obtained by XFDTD.
The results obtained by the present work are quite identical to those
obtained by Remcom Inc. “XFDTD” r© package, which ensures the
validity and accuracy of the applied algorithm.

6.2. Scattering from a Slotted Cylinder

The proposed algorithm is examined here by applying it to get
the scattered fields from curved conducting surfaces with edges. A
triangular patch model of an axially slotted cylinder of finite length is
shown in Fig. 10. It is clear that a small number of triangular patches
is enough to accurately model the cylindrical surface.

A cylinder of 0.5λ height, 0.5λ diameter and with an axial slot of
width 90◦ is subjected to a plane wave incident in a direction parallel
to its axis and polarized such that the electric field is normal to the
plane that contains one of the slot edges and the cylinder axis as shown
in Fig. 11.

The distribution of the total angular electric field Eφ (incident
and scattered) in the plane z = 0 is presented in gray color scale as
shown in Fig. 12. It is clear the total electric field exhibits the edge
behavior at the slot edges φ = 0◦ and φ = 270◦.
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iE  

Direction  
of incidence

a 

�φ = 0

�φ = 270

iE

o

Figure 11. Direction of incidence and polarization of a plane wave
incident on a slotted cylinder.

Figure 12. Electric field distribution (Eφ) in xy-plane (z =
0, −0.5λ < x < 0.5λ, −0.5λ < y < 0.5λ) due to a normally incident
plane wave on a slotted cylinder of finite length.
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Figure 13. Magnitude of the angular electric field due to a plane wave
normally incident on a slotted cylinder of finite length.

For more illustration of the behavior of the near around the slotted
cylinder, Fig. 13 shows a plot for the Eφ component of the total electric
field against φ starting from φ = 0◦ to φ = 360◦. As shown in the figure,
the electric field exhibits singular behavior at the slot edges. Despite
being of high magnitude at the slot edges, Eφ dramatically falls to zero
over the range 0◦ < φ < 270◦ just to satisfy the boundary condition
that yields vanishing the tangential electric field at the cylindrical
surface; a behavior which indicates the consistency of the obtained
solution.

7. CONCLUSION

A simple, fast and robust algorithm for numerical evaluation of the
fields in the near zone for conducting scatterers of arbitrary shape is
developed in the present work. The algorithm is built on a preceded
calculation of the surface current flowing on the scatterer using the
EFIE technique and employing the RWG basis functions. To examine
the validity of the near field computational algorithm developed in
the present work, it is applied to calculate the near field due to
planar and curved conducting scatterers. As a first examination, the
solution obtained for he fields in the near zone should satisfy the
boundary conditions and the edge condition for open structures. The
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solutions obtained using the present algorithm are, also, compared with
those obtained using some commercial packages that employ FDTD
technique such as Remcom “XFDTD” r©.
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