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Abstract—A peculiarity of counter-propagating energy-flows in
nonlinear left-handed metamaterials (LHMs) is investigated for the
case when the frequency of fundamental wave is in the negative-
index range and second-harmonic wave is in the positive-index
range. Based on the electromagnetic theory, the comparisons of
Manly-Rowe relations for nonlinear materials and process of second-
harmonic generation under phase-matching condition in LHMs and
RHMs are shown separately. That a surface of nonlinear left-handed
metamaterials operates as an effective mirror which reflects the energy
in form of second harmonics is demonstrated. Numerical results of
fundamental and second-harmonic field intensity distributions are in
agreement with theoretical results.

1. INTRODUCTION

The electromagnetics of complex media has been the subject of interest
for many researchers in the past several decades. In recent years,
the topic of metamaterials, i.e., artificial materials synthesized by
embedding specific inclusions in host media, has increasingly received a
renewed attention due to the interest in man-made complex materials
that may possess negative real permittivity and permeability in a
certain range of frequency. In 1967, Veselago postulated theoretically
a material in which both permittivity and permeability were assumed
to have negative real values, and he analyzed plane wave propagation
in such a medium, which he called “left-handed metamaterials” [l].
The vectors K, E, H form a left-handed set in such materials, so
many exciting and unusual properties are expected: negative refractive
index, the anomalous Snell’s law, opposite Doppler effect and backward
Cherenkov radiation cone et al. [2–6]. The study of linear wave
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propagation and the linear properties of left-handed materials (LHM)
is a major subject of research in this field, and it is indeed the case
when both the magnetic permeability and the dielectric permittivity
of the material do not depend on the intensity of the electromagnetic
field. However, the future efforts creating tunable structures in which
the field intensity changes the transmission properties of the composite
structure would require the knowledge of nonlinear properties of such
metamaterials, which may be quite unusual.

In 2003, Zharov et al. proposed the possibility to control the
effective parameters of the metamaterial using nonlinearity [7]. In [8],
they showed that arrays of wires and split-ring resonators embedded
into a nonlinear dielectric or diodes inserted in the SRRs will create
hysteresis-type nonlinear magnetic response. An important property
of subwavelength imaging with opaque left-handed nonlinear lens was
discussed in [9], such lens can transfer the near-field image into second-
harmonic frequency domain, and overcome absorption and dissipative
losses which are the most challenging problems of perfect lens. The
second-harmonic generation in left-handed slabs in the constant-pump
approximation were analyzed in [10] which revealed the existence of
multistable nonlinear effects.

In this paper, the counter-propagating energy-flows in a lossless
nonlinear LHM slab beyond the constant-pump approximation is
analyzed. Firstly, Manly-Rowe relations and the basic coupled-mode
equations for LHM are studied. Secondly, energy conversion process
and spatial distribution of forward-propagating wave of fundamental
frequency and backward-propagating wave of second harmonics under
phase-matching condition are investigated separately in a slab of
a finite thickness and a semi-infinite slab. During this process
some peculiarly properties are obtained. While numerical results
of fundamental and second-harmonic field intensity distribution in a
LHM slab and a RHM slab of finite thickness are given separately.
Finally, the second harmonics under phase-mismatching condition are
investigated to demonstrate the importance of the phase-matching
condition.

2. BASIC COUPLED-MODE EQUATIONS AND
MANLEY-ROWE RELATIONS FOR LOSSLESS
NONLINEAR LHM

2.1. Mode and Basic Equations

We consider a lossless nonlinear slab with a thickness of L shown in
Fig. 1, and assume the frequency of the fundamental wave ω is in
the LHM domain (µ(ω) < 0, ε(ω) < 0), the frequency of second
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Figure 1. Geometry of the second-harmonics process for a finite-
thickness slab of a lossless nonlinear LHM slab.

harmonic wave 2ω is in the RHM domain (µ(ω) > 0, ε(ω) > 0) [9].
An incident flow of fundamental plane wave sω at ω propagates along
the z-axis. For the double negative reason, the fundamental wave
vector kω is opposite to sω along the −z-axis. According to phase-
matching condition k2ω = 2kω, and for the double positive reason, the
second-harmonic wave vector k2ω is equidirectional to s2ω, also along
the −z-axis. The incident plane wave is described as:

H(ω, z) =
1
2
h(ω, z)ejφω (1)

where φω is the wave phase, and h(ω, z) is the field amplitude.
Taking the process of the second-harmonic generation into

account, it contains the process to generate the wave of the sum
frequency 2ω and the process to produce the wave of the difference
frequency ω. And the nonlinear response is primarily associated with
the magnetic component of the waves [8]. The general coupled-mode
equations describing the simultaneous propagation of two harmonics
in the lossless LHM can be written as follow:

∇2H(2ω, z) + ε(2ω)µ(2ω)
(2ω)2

c2
H(2ω, z) = −(2ω)2

c2
χ2ωH2(ω, z) (2)

∇2H(ω, z)+ε(ω)µ(ω)
(ω)2

c2
H(ω, z) = −(ω)2

c2
χ2ωH(2ω, z)H∗(ω, z) (3)

Here, χ2ω is the effective nonlinear susceptibility [9]:

χ2ω =
(πa2)3ω4

0

c3d3UcRdω2

(
ω2

0

ω2
− 1

)−2

(4)
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where a is the radius of the resonator rings, Rd is the differential
resistance of the diode at zero voltage. Uc is the diode parameter
defined from the current-voltage characteristics of the diode which we
take in the form I = I0(eU/Uc − 1).

Although the slab is lossless, the nonlinear response will generate
the coupling among the waves. Refer to the harmonic waves of
frequency of ω and 2ω, part of energy is coupled to the other harmonic
components and vice versa. So H(ω, z) and H(2ω, z) are the functions
of the coordinates. Under the small-signal condition, according to the
perturbation theory, the amplitudes of the harmonic waves are assumed
to vary slowly in both space and time, and then we can get the basic
coupled-mode equations:

dH(2ω, z)
dz

= j
2ε(2ω)ω2

k2ωc2
χ2ωH2(ω, z) exp(−j∆kz) (5)

dH(ω, z)
dz

= j
ε(ω)ω2

2kωc2
χ2ωH(2ω, z)H∗(ω, z) exp(j∆kz) (6)

where ∆k = k2ω−2kω, the asterisk stands for the complex conjugation.

2.2. Manley-Rowe Relations for LHM

Like other nonlinear systems, the sum of the energy is constant in the
process of the wave coupling in nonlinear LHM systems. By the basic
coupled-mode equations, the sum of (5) multiplied by k2ω

ε(2ω)H
∗(2ω, z)

and the complex conjugation of (6) multiplied by kω
ε(ω)H(ω, z) is found

as:
kω

ε(ω)
d|H(ω, z)|2

dz
+

k2ω

2ε(2ω)
d|H(2ω, z)|2

dz
= 0 (7)

The Poynting vector is expressed as:

s =
kω

ε(ω)
|H(ω)|2 (8)

Considering the phase-matching condition k2ω = 2kω, we take µ(ω) =
−µ(2ω), and ε(ω) = −ε(2ω). The integral of (7) is obtained:

|H(ω, z)|2 − |H(2ω, z)|2 = c (9)

Equation (9) is another expression of Manley-Rowe relations for LHM,
c is an integration constant. However, Manley-Rowe relations for the
RHM [11]:

|H(ω, z)|2 + |H(2ω, z)|2 = c (10)
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From (9) and (10) we can get that the difference between the squared
amplitudes in LHM remains constant, but the sum of the squared
amplitudes in RHM is constant. The difference of spatial distribution
of forward-propagating wave of fundamental frequency and backward-
propagating wave of second harmonics between LHM and RHM is
decided by the distinction between (9) and (10), as schematically shown
in Fig. 2.

 

Figure 2. The process of second-harmonic generation under the
phase-matching condition, and the energy spatial distribution of
fundamental wave and second-harmonic wave normalized by h2(ω, 0)
versus z. (a) In LHM (b) In RHM.
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3. SECOND-HARMONIC GENERATION IN A
NONLINEAR LHM SLAB

The plane wave of fundamental frequency ω propagating in the lossless
nonlinear LHM slab generates second-order nonlinear magnetization
intensity constantly. It results in the source of the second-harmonic
wave which propagates along the opposite direction to the surface of
the slab z = 0. Conservation of energy in the slab is expressed as:

s(2ω, z) + s(ω, z) = s(2ω, 0) + s(ω, 0) (11)
|H(ω, z)|2 − |H(2ω, z)|2 = |H(ω, 0)|2 − |H(2ω, 0)|2 (12)

Under the phase-matching condition, substitution of (1) to (5) yields:

dh(2ω, z)
dz

= −ε(2ω)ω2

k2ωc2
χ2ω[h2(2ω, z) + h2(ω, 0) − h2(2ω, 0)]

× exp
[
j

(
2φω − φ2ω − π

2

)]
(13)

Except for the exponential terms the remains are all real in equation
(13), we obtain 2φω − φ2ω − π/2 = 0. It indicates that the
phase difference between fundamental wave and second-harmonic wave
remains constant π/2 in LHM, in accord with that in RHM.

Because of the boundary conditions h(2ω, L) = 0, using the
integral

∫ dx
a2+x2 = 1

aarctanx
a , we solved (13):

h(2ω, z) = σ tan[σκ(L − z)] (14)

where σ =
√

h2(ω, 0) − h2(2ω, 0), κ = ε(2ω)ω2χ2ω/k2ωc2. Expression
(14) is the field distribution of second-harmonic wave in the slab. The
field distribution of fundamental wave is derived from substitution of
(14) to (12):

h(ω, z) = σ sec[σκ(L − z)] (15)

By equations (14) and (15), the energy spatial distribution normalized
by h2(ω, 0) in LHM is shown in Fig. 2(a). The energy of two waves
decreases along the z-axis, and that of the second-harmonic wave
decrease to zero at z = L. The difference of them remains constant
anywhere in the LHM slab.

Then consider the case of a semi-infinite LHM slab at z > 0,
the thickness L → ∞. With phase-matching condition, the energy
of fundamental wave converts into that of second-harmonic wave
constantly. Because their energy fluxes are guided along the opposite
direction, both waves disappear at z → ∞ and their amplitudes
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are equal at z = 0. Taking into account the boundary condition,
h(2ω, 0) = h(ω, 0), 100% of the incident fundamental wave converts
into the reflected second-harmonic wave. It is demonstrated that the
surface of nonlinear LHM can operates as an effective mirror which
reflects all the energy in the form of second harmonics. Solving
equation (13) over again, field distribution expression is obtained:

h(2ω, z) = h(ω, z) =
h(ω, 0)

1 + h(ω, 0)κz
(16)

 

Figure 3. Main plot: Conversion coefficient η versus the normalized
thickness of the slab. Inset: Transmission coefficient of fundamental
wave (dotted curve) and reflection coefficient of second-harmonic wave
(solid curve) versus z/κh(ω, z) in the cases of L/κh(ω, z) = 2 and the
complete conversion in a semi-infinite slab (dashed curve).

Seen from Fig. 3, the solid line of the main plot indicates
transmission coefficient η of the fundamental wave converting into
the second-harmonic wave versus the normalized slab thickness
L/κh(ω, z), η = h2(2ω, 0)/h2(ω, 0). η increases as the slab
thickness adds, and when L → ∞, η → 1. The insert
plot shows the case of L/κh(ω, z) = 2, the dotted line denotes
transmission coefficient of the fundamental wave h2(ω, z)/h2(ω, 0)
versus z/κh(ω, z), the solid line denotes reflection coefficient of the
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Figure 4. The comparison of the magnetic field intensity-distribution
for the fundamental and the second-harmonic waves between a slab of
LHM and a slab of RHM when the thicknesses are L/κh(ω, z) = 2.
(a) Incident fundamental wave within and outside the LHM slab. (b)
Reflected second-harmonic wave within and outside the LHM slab.
(c) Incident fundamental wave within and outside the RHM slab. (d)
Transmitted second-harmonic wave within and outside the RHM slab.
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second-harmonic wave h2(2ω, z)/h2(ω, 0) versus z/κh(ω, z), the dashed
line indicates the complete conversion in the case of semi-infinite slab,
h2(ω, z)/h2(ω, 0) = h2(2ω, z)/h2(ω, 0).

In order to observe the differences of the field distributions in
nonlinear LHM and RHM slabs, we have computed propagating wave
patterns for such slabs when the normalized slab thicknesses are
L/κh(ω, z) = 2. Considering the LHM slab, we follow the mode
of [10], ε(ω) = 1 − ω2

p/ω2, µ(ω) = 1 + Fω2/ω2
0 − ω2, and take

the other parameters of the composite: f0 = 5 GHz, fp = 7 GHz,
F = 0.3, a = 3 mm, d = 6 mm, UcRd = 1, the exact phase-matching
takes place at fF = 5.537 GHz. Fig. 4(a) shows the decreasing
incident fundamental field intensity along the −z-axis in the slab-
region, Fig. 4(b) shows the increasing reflected second-harmonic field
intensity along the-axis, and the wave pattern of (b) is twice denser
than that of (a). To keep the exact phase-matching condition in the
RHM slab, we assume ε and µ are the absolute values of that of the
LHM slab, and the other parameters are the same as the LHM slab.
Fig. 4(c) shows the decreasing incident fundamental field intensity.
Comparing Fig. 4(b) with Fig. 4(d), we can see second-harmonic wave
in LHM slab propagates opposite to that in RHM slab.

4. SECOND-HARMONIC GENERATION UNDER
PHASE-MISMATCHING CONDITION

Under phase-matching condition ∆k �= 0, equation (13) can also be
solved in the small-signal approximation. We assume dH(ω, z)/dz ≈
0, H(ω, z) = H(ω, 0), then equation (4) can be written as:

dH(2ω, z)/dz = j2κH2(ω, 0) exp(−j∆kz) (17)

By the boundary condition H(2ω, L) = 0, the magnetic field of the
second-harmonic wave is the integral of (17):

H(2ω, z) = −j2κH2(ω, 0)
2 sin[∆k(L − z)/2] exp(−j∆k(L + z)/2)

∆k
(18)

The amplitude of the second-harmonic wave is:

h(2ω, z) = 4κh2(ω, 0)
∣∣∣∣sin[∆k(L − z)/2]

∆k

∣∣∣∣ (19)

We note that under phase-mismatching condition, the amplitude
of the second-harmonic wave oscillates between zero and maximum
4κh2(ω, 0)/∆k, the oscillation period is T = ∆k/4π. The greater the
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phase mismatched, the smaller the amplitude of the second-harmonics.
This is the reason why we do not consider the higher order components
in the second-harmonic generation in this paper. When the phase-
matching condition is fulfilled, all other components are badly phase-
mismatched, hence they provide no substantial contribution to the
nonlinear parametric interaction.

5. CONCLUSIONS

Through an exact analysis, we have analyzed the second-harmonic re-
sponse and the counter-propagating energy-flows in the lossless non-
linear LHM slabs beyond the constant-pump approximation. Firstly,
based on the electromagnetic theory, the Manly-Rowe relations for
nonlinear left-handed metamaterials are derived theoretically. Then,
the basic coupled-mode equations in the small-signal approximation
are obtained. The energy conversion process and spatial distribution
of forward-propagating wave of fundamental frequency and backward-
propagating wave of second harmonics under phase-matching condition
are investigated. In particular, it is demonstrated that the surface of
nonlinear LHM can operates as an effective mirror which reflects the
energy in form of second harmonics. While numerical results of the
comparison in the magnetic field intensity-distribution for the funda-
mental and the second-harmonic waves between a finite LHM slab and
a finite RHM slab are given. Finally, the phase-matching condition is
important to the investigation of nonlinear left-handed metamaterials
which is illustrated from the angle of phase-mismatching. This work
extends the nonlinear theory to the domain of LHM, and provides a
basis to realize tunable nonlinear LHM.
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