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Abstract—This paper presents a combined Entropy Decomposition
and Support Vector Machine (EDSVM) technique for Synthetic
Aperture Radar (SAR) image classification with the application on
rice monitoring. The objective of this paper is to assess the use of
multi-temporal data for the supervised classification of rice planting
area based on different schedules. Since adequate priori information is
needed for this supervised classification, ground truth measurements
of rice fields were conducted at Sungai Burung, Selangor, Malaysia
for an entire season from the early vegetative stage of the plants
to the ripening stage. The theoretical results of Radiative Transfer
Theory based on the ground truth parameters are used to define
training sets of the different rice planting schedules in the feature
space of Entropy Decomposition. The Support Vector Machine is then
applied to the feature space to perform the image classification. The
effectiveness of this algorithm is demonstrated using multi-temporal
RADARSAT-1 data. The results are also used for comparison with
the results based on information of training sets from the image using
Maximum Likelihood technique, Entropy Decomposition technique
and Support Vector Machine technique. The proposed method of
EDSVM has shown to be useful in retrieving polarimetric information
for each class and it gives a good separation between classes. It not
only gives significant results on the classification, but also extends
the application of Entropy Decomposition to cover multi-temporal
data. Furthermore, the proposed method offers the ability to analyze
single-polarized, multi-temporal data with the advantage of the unique
features from the combined method of Entropy Decomposition and
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Support Vector Machine which previously only applicable to multi-
polarized data. Classification based on theoretical modeling is also
one of the key components in this proposed method where the results
from the theoretical models can be applied as the input of the proposed
method in order to define the training sets.

1. INTRODUCTION

In many parts of Asia where rice is the staple food of the people,
the monitoring of the growth of rice plants has important significance
to the national economy development. Hence, there needs to be an
effective means by which rice fields can be monitored in order to control
and maintain a close balance between the rice production and demand.
However, rice crops are mainly cultivated in warm tropical climates
where rainfall is high and cloud cover is dense throughout the year.
Hence, under such climate condition, Synthetic Aperture Radar (SAR)
remote sensing provides unique and great capabilities, since microwaves
can penetrate through clouds and has all-weather capabilities. For
this reason, space-borne SAR remote sensing images are considered as
suitable source for rice monitoring. Since the operation of satellites,
much work has been performed to interpret the temporal variation
of SAR measurements over rice fields, with a view to retrieve useful
information from the satellite SAR data [1–5].

The characterization and classification of land cover using SAR
data has been extensively investigated and reported in recent few
decades. Cloude et al. [6–8] introduced a classification scheme called
Entropy Decomposition based on the use of the two-dimensional H−α
feature space, where it represents major scattering mechanisms. Using
this technique, parameters H and α represent the entropy and the type
of the scattering within the resolution cell, respectively [9]. Based on
this idea, a great progress was made in the target type discrimination
by the eigenvalues and their associated eigenvectors of the coherency
matrix [10]. However, this technique is normally performed using
polarimetric data which require more information on the polarization
[11]. So far, multi-temporal data have never been considered for this
classification technique. Moreover, the technique requires arbitrary
selection of decision boundaries in the H − α feature space [12]. As
such, we extend the popularly used Entropy Decomposition technique
to combine with Support Vector Machine, hence, provide a new
method for better analysis for multi-temporal SAR data. Simulated
result from the theoretical modeling is used as training sets and an
advance machine learning, Support Vector Machine is proposed to
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be combined with Entropy Decomposition technique to determine
the decision boundaries in the H − α feature space for the multi-
temporal images. The popularly used Support Vector Machine has
been applied alone with good performance in hyperspectral and SAR
data classification in terms of accuracy and robustness [13–16]. The
properties of this technique make them well-suited to solve the problem
of image classification since they can work with a relatively low number
of training samples and deal with noisy samples in a robust way [17–
19]. In this paper, we examine the experimental results obtained
from the ground truth measurement and interpret the observations
using the theoretical modeling. Then, we propose the usage of the
combined technique of Entropy Decomposition and Support Vector
Machine (EDSVM) to classify the rice planting schedule on multi-
temporal images. This classification technique is performed on Sungai
Burung, Selangor, Malaysia RADARSAT images.

The paper is outlined as follows. Section 2 describes the
proposed techniques of EDSVM in the classification of the rice planting
schedules and the application of the proposed technique is presented in
Section 3. This includes the description of the study area and ground
truth measurement. Performance comparisons between Maximum
Likelihood, Entropy Decomposition, Support Vector Machine and
EDSVM are provided in Section 4. In Section 5, we conclude this
paper with recommendations for future work.

2. PROPOSED TECHNIQUE

In this section, the proposed technique of image classification based on
the simulated results from theoretical modeling using hybrid Entropy
Decomposition and Support Vector Machine (EDSVM) is presented.
The flow of the proposed technique is as shown in Figure 1.

Ground truth measurements were conducted in the rice fields at
different planting schedules to obtain the physical parameters of the
rice crops. This information is necessary in the theoretical modeling
simulation in order to calculate the backscattering coefficient of the rice
crops for different planting schedules. The backscattering coefficient is
then used to form the multi-temporal coherency matrix, which will be
input to the Entropy Decomposition technique to produce the multi-
temporal alpha, αT and entropy, HT . This information is then treated
as the training feature vectors. Similarly, testing feature vectors that
represent the whole study area can be obtained from αT and HT of the
study area. The training and testing feature vectors are then applied
to Support Vector Machine technique for EDSVM classification. For
comparison purpose, the backscattering coefficient values of the multi-
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Figure 1. Flow chart of EDSVM approach.

temporal images are used to conduct Maximum Likelihood, Entropy
Decomposition and Support Vector Machine classification. Maximum
Likelihood classifier is chosen as a comparison classifier due to the
popularity and the robustness of the algorithm. It is the most common
statistical procedures used in the supervised classification. Maximum
Likelihood classifier calculates the probability of the pixel belonging to
a class in digital form. The pixels are then assigned to the class with
the highest probability. The Maximum Likelihood classifier function
in Environment for Visualizing Images software (ENVI) is used to
perform this classification.

2.1. Entropy Decomposition Technique

Recently, Entropy Decomposition is popularly used to demonstrate
the basic ability of polarimetry to distinguish features in an image.
However, there remains a curiosity to extend this basic classification
philosophy to the use of multi-temporal image. We propose a technique
for the application of Entropy Decomposition in multi-temporal image
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by extracting and applying the backscattering coefficient values from
the multi-temporal images in the Entropy Decomposition process.

In this case, each pixel in an image is expressed as the multi-
temporal coherency matrix, [TT ]. It is obtained from the multi-
temporal scattering vector,

k†T = [SHHT1
SHHT2

SHHT3
] (1)

kT where SHHT1
SHHT2

and SHHT3
are the backscattering coefficient

of first, second and third multi-temporal images, respectively. The
three images selected must be representative enough to represent
different growth stages of the rice field and they can be arranged
in any sequence but must be consistent throughout the classification
process. In the case of rice field, as mentioned in Le Toan [2], the
temporal backscatter variation is significant in the rice growth cycle,
such as in the vegetative, reproductive and ripening stages. As the
rice crops grow (vegetative stage), the backscattering coefficient will
increase until it reaches its peak (reproductive stage). After that, it
starts to decrease slowly (ripening stage) until the crops are harvested.
Thus, the suitable three stages of growth for application in this case
shall be vegetative stage, reproductive stage and ripening stage. The
backscattering coefficient used can be HH, V V , V H or HV . In
this paper, as RADARSAT images are used later for comparison,
the HH backscattering coefficient shall be used for the application.
Modification on the expressions can be done with added dimension to
include more than three images. Averaging the outer product of them
over the given samples yields

[TT ] =
〈
kT k†T

〉
=
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(2)
where k†T refers to the conjugate transpose of kT .

The multi-temporal coherency matrix [TT ] can then be trans-
formed into

[TT ] = [UT3][ΛT ][UT3]−1 (3)

where [UT3]−1 represents the inverse matrix of [UT3] and

[ΛT ] =


 λT1 0 0

0 λT2 0
0 0 λT3


 , [UT3] = [uT1 uT2 uT3], (4)

[ui] = [cosαi cosαi sinβi sinαi sinβi], i = T1, T2, T3. (5)
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where λi and ui are the eigenvalues and eigenvectors of [T ] with
i = T1, T2, T3.

Based on the idea of Entropy Decomposition [6], multi-temporal
alpha, αT and entropy, HT are proposed as follows:

αT = PT1αT1 + PT2αT2 + OT3αT3 (6)

and

HT = −
3∑

i=1

Pi log3(Pi) (7)

where Pi are the probability obtained from the eigen values of [TT ] as
expressed in

Pi =
λi

3∑
k=1

λk

, i = T1, T2, T3. (8)

However, the main disadvantage of the Entropy Decomposition is that
the location of the decision boundary is arbitrary [12]. Studies have
been done on the RADARSAT image using Entropy Decomposition for
selected rice fields with different planting schedules and the distribution
of the feature space are as shown in Figure 2. It is depicted that HT

and αT for rice field for different planting schedules are found to be
overlapping to each other and thus, the separation between classes are
difficult to be done.

In this study, theoretical model simulation is used to define the
training sets of each planting schedules. This model is based on
Radiative Transfer Theory where the formulation is solved iteratively
to obtain up to second order solutions [20]. A more detailed description
of the theoretical modeling is included in Appendix. The input
physical parameters for the theoretical model are collected from the
ground truth measurement. The information obtained from the
theoretical model simulation are then used to produce HT and αT

from Entropy Decomposition technique. These values are drawn on
the HT − αT feature space based on different planting schedules as
shown in Figure 3.

It is found that the separation between the second and third
planting schedules is better now. However, the clusters for the first
planting schedule and non rice are still overlapping to each other.
To surmount this problem, Support Vector Machine is used to find
the decision boundaries of the rice planting schedules in a higher
dimensional feature space. Hence, an image classification technique
based on the calculated results from theoretical models is proposed
using combined Entropy Decomposition and Support Vector Machine
(EDSVM).
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Figure 2. HT − αT feature space for different rice planting schedules
obtained from images.

2.2. Support Vector Machine

Support Vector Machine is proposed to combine with Entropy
Decomposition to create a better separation between classes. The
Support Vector Machine algorithm is a machine learning technique
based on statistical theory [21] that can be used for classification
purposes. In this study, Support Vector Machine classifier is used
to train the different rice planting schedules based on the simulated
results of theoretical modeling. This is possible by utilizing the special
property of Support Vector classifier, which finds an ideal separating
hyperplane in a higher dimensional feature space.

For a given training sample belonging to two different classes,
Support Vector Machine derives a hyperplane which is at a maximum
distance from the closest points belonging to both the classes. To
find the optimal separating hyperplane, assume that the two classes to
be distinguished are linearly separable, and denote the input space X
with input vectors, �x and the training set Tr = {(x1, y1), . . . , (xN , yN )},
where xi ∈ X and yi ∈ Y, Y = {1,−1}. In practice, it will often be
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Figure 3. HT − αT feature space for different rice planting schedules
obtained from theoretical modeling.

the case where the data cannot be separated linearly by means of a
hyperplane [22].

One of the basic ideas behind Support Vector Machine is to have
a mapping Φ from the original input space X into a high-dimensional
feature space F [23]. The decision boundary which is linear in F
corresponds to a non-linear decision boundary in X as shown in
Figure 4 [13].

The Support Vector Machine technique solves

min ‖�w‖2 (9)

constrained to

yi (〈Φ(�xi), �w〉 + b) for i = 1, . . . , N. (10)

where �w is a vector perpendicular to the hyperplane while b determines
the displacement of the hyperplane along the normal vector �w [24].
To solve the constrained minimization problem, the Lagrangian dual
problem technique is introduced as

maximize L(l) =
N∑

i=1

li −
1
2

N∑
j=1

liljyiyj 〈Φ(�xi),Φ(�xj)〉 (11)
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Figure 4. Linear separation in the feature space, F .

subject to li ≥ 0, i = 1, . . . , N and
m∑

i=1

liyi = 0. (12)

with Lagrange multipliers li ≥ 0 [25]. After solving this dual problem,
the decision function implemented by the classifier for any test vectors
x is expressed by

f(x) = sgn

(
N∑

i=1

liyi 〈Φ(�xi),Φ(�xj)〉 + b

)
. (13)

Multi class Support Vector Machine is usually implemented by
combining several two-class Support Vector Machine. We use the ‘one-
against-one’ approach [26] in which k(k−1)/2 are constructed where k
is the number of classes and each trains data from two different classes.
This strategy was first used on Support Vector Machine by Friedman
[27] and Kreßel [28]. In the classification, voting scheme was used
where each binary classification is considered to be a vote and the pixel
will be assigned to the class with the maximum votes. Studies show
that ‘one-against-one’ obtains better accuracy and shorter training
time [29] compared to other multi class SVMs, namely one-against-
all and Directed Acyclic Graph Support Vector Machine (DAGSVM).
Therefore, with the unique feature of multi class Support Vector
Machine, it is possible to further improve the classification of crop
fields.
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3. APPLICATION OF PROPOSED TECHNIQUE

In radar imagery, rice fields appear very dark during the flooded
vegetative phase, and turn brighter during the reproductive and
ripening phase [3]. As such, the multi-temporal images are useful to
identify the variation of backscattering coefficient for rice monitoring.
In order to achieve accurate classification, preprocessing of the images
is an essential step.

3.1. Image Preprocessing

First, the multi-temporal images are geocoded using PCI software.
The purpose of geocoding is to match the RADARSAT-1 image to the
actual position on the ground based on the GCP points. The location
of the rice fields can be identified easily from each image of the multi-
temporal images.

The geocoded images of September 15, October 9, and November
2, 2006 are as shown in Figures 5(a), (b) and (c), respectively. Since the
phase information from the backscattering coefficient of these pixels is
not correlated among multi-temporal images, the intensity values of
the backscattering coefficient for these pixels are actually used for the
image classification.

After that, an area of 1024×1024 pixels is selected from the
geocoded image for purpose of the classification of rice planting
schedules. This study area is chosen to cover the wide area of rice
fields. Lee filter is also applied on the study area to reduce speckle.
Figure 6 shows the selected study area for the multi-temporal images.
Besides, ground truth measurement has also been conducted on the
selected plots of the study area.

3.2. Ground Truth Measurement

The understanding of rice growing conditions and cultural practices
are crucial in order to retrieve rice crop parameters and develop an
algorithm for rice monitoring. Thus, ground truth measurements for
an entire rice crop season have been conducted at 12-day intervals from
September 15, 2005 to December 5, 2005 at Sungai Burung, Selangor,
Malaysia. The dates are chosen so as to coincide with RADARSAT-1
image acquisitions.

Ten different test fields in the region are selected and shown in
Figure 7. Test fields 3, 5 and 8 are later excluded from the study
because of incomplete data collection due to heavy rains and partial
destruction of the rice fields. Parameters that were measured include
plant geometry such as plant height, leaf length, leaf width, leaf
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thickness, plant density, plant water content and plant biomass. The
measurement was done by a group of researchers from Multimedia
University and Malaysian Centre for Remote Sensing (MACRES) as
collective effort for various research purposes.

     

      (a)        (b)

   

(c)

Figure 5. Geocoded RADARSAT-1 images acquired on (a) 15
September 2005 (b) 09 October 2005 (c) 02 November 2005.
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         (a)         (b)

   

  (c)

Figure 6. Selected study area of Sungai Burung acquired on (a) 15
September 2005 (b) 09 October 2005 (c) 02 November 2005.

4. RESULTS AND DISCUSSION

In this study, the pattern of the rice planting schedule has been
observed from the H − α feature space and it is useful for the rice
monitoring purpose. An improved classifier has been developed by
combining the Entropy Decomposition and Support Vector Machine
classifiers to extend the application to multi-temporal data and
produce an efficient classification.
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Figure 7. A superimposed image of the multi-temporal RADARSAT-
1 images dated 15 of September, 2005, 09 of October, 2005 and 02 of
November, 2005 (in grayscale) showing 7 test fields at Sungai Burung,
Selangor, Malaysia.

The classification is done on the images with different window
sizes. An accuracy assessment has been done to obtain the optimal
window size and the results are shown in Figure 8. From the
accuracy assessment results, it is shown that the results from EDSVM
outperform those of Maximum Likelihood, Entropy Decomposition and
Support Vector Machine. The optimal window size for the classification
of rice growth is 7. The overall accuracy obtained from Maximum
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Figure 8. Accuracy assessment with different window sizes.

Likelihood technique is 67.66%, Entropy Decomposition technique is
53.77%, Support Vector Machine is 74.63% and EDSVM is 92.33%.
Figure 9 shows the classified results using Maximum Likelihood,
Entropy Decomposition, Support Vector Machine and EDSVM for the
window size 7×7.

From the classified image using Entropy Decomposition (ED)
technique, it can be seen that there are misclassifications for most
of the classes. First planting schedule and non rice classes are not
classified correctly due to poor separation between the classes when
using Maximum Likelihood technique (Figure 9 (a)). Misclassification
also occurs on the first planting schedule and non rice classes when
using only Entropy Decomposition technique (Figure 9(b)). On
the other hand, some of the first and third planting schedules rice
fields are wrongly classified as non rice areas in the Support Vector
Machine classification (Figure 9(c)). However, EDSVM has managed
to separate them well (Figure 9(d)). It is clearly indicated that
EDSVM has yielded good separation for the rice planting schedules.
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Figure 9. Classified images with window size 7×7 for (a) Maximum
Likelihood, (b) Entropy Decomposition, (c) Support Vector Machine
and (d) EDSVM.
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5. CONCLUSION

The paper is intended to assess the use of the multi-temporal
RADARSAT-1 images for the classification of rice planting schedule.
For this purpose, the combined technique of EDSVM based on
theoretical modeling are applied to perform a good separation between
the different rice planting schedules. This novel technique not only
gives significant results on the classification, but most importantly, it
extends the application of Entropy Decomposition to cover the multi-
temporal data. Our future work will be done to evaluate on other
useful parameters extracted from SAR data to further improve the
classification accuracy.
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APPENDIX A. THEORETICAL MODEL

A theoretical model is developed to enable the study of the scattering
mechanisms involved in the backscattering of rice canopies throughout
the entire season. The parameters of the training areas from the ground
truth measurements are used as the input to the theoretical model to
simulate the multi-temporal coherency matrices of the rice fields, the
results of which will be applied to determine the training sets of the
proposed technique.

In the development of the theoretical model, the rice canopy is
modeled as a single layer or double layer medium, depending on its
growth stage, over a smooth water surface. The phase matrices of
needles and cylinders are used to represent the rice leaves and stems
respectively. For the rice grains, tiny cylinders are used. During
the early stages of growth, the stems are still submerged underwater.
Therefore, only a single layer of needles is used to model the canopy
[Figure A1(a)]. When the plants mature, two layers are used. Needles
are used in both layers while cylinders are used in the lower layer to
represent the stems [Figure A1(b)]. Tiny cylinders are added to the
top layer when the plants enter the reproductive stage [Figure A1(c)].

In sparse media, far field and non-coherent approximations are
used in the calculation of the phase matrix. In this model, however,
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needle 

stem cylinder 

grain cylinder 

     (a)                                              (b)                                              (c) 

Figure A1. Variations in the model used for the computation of
backscattering coefficients of paddy fields in the (a) early vegetative
stage, (b) late vegetative stage and (c) reproductive stage.

the rice fields are modeled as electrically dense media, where the
average distance between the scatterers are small in comparison to
the wavelength of the incident wave. The Dense Medium Phase
and Amplitude Correction Theory (DM-PACT) [30, 31] is used to
account for the coherent effects between scatterers, while the Fresnel
Corrections [32] are used to consider the near field effects. The phase
matrices are then applied to the radiative transfer equation [33], given
as:

cos θ
dI

dz
= −κeI +

∫
PIdΩ (A1)

where I is the Stokes vector that describes the intensity of the wave,
while κe and P are the extinction matrix and phase matrix of the
medium, respectively. The equation is solved up to the second order
to obtain the intensity of the backscattered wave. The backscattering
coefficient can then be obtained using the equation:

σpq =
4π cos θsIsp

Iiq
(A2)

where p and q represent the backscattered and incident polarizations
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respectively and can be ν or h. θs is the angle of the scattered field
with respect to the normal of the medium. Isp is the intensity of the
backscattered waves, while Iiq is the intensity of the incident wave. The
first order solutions contain terms that include single volume scattering
and surface-volume scattering. On the other hand, the second order
solutions give the double volume scattering terms.

In this study, the theoretical model is used to calculate the multi-
temporal coherency matrix of rice crop canopies over a range of values
at various stages of growth. For each particular stage of growth, a
range of possible values of plant geometry and canopy heights based
on measured ground truth data are used as input parameters for the
theoretical model [34]. The plant dielectric constants are calculated
using the equation in [35]. A statistical distribution is used for the
leaf angles, based on the equation given in [36]. These are then used
to generate a range of possible values for the coherency matrices at
each stage of growth to assist in determining the decision boundaries
needed for classification.
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