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Abstract—A new method is introduced to analyze arbitrary
nonuniform transmission lines. In this method, the equations of
nonuniform transmission lines are converted to the equations of
uniform transmission lines, which have been excited by distributed
equivalent sources. Then, the voltage and current distributions are
obtained using an iterative method. The validity of the method is
verified using a comprehensive example.

1. INTRODUCTION

Nonuniform Transmission Lines (NTL) are widely used in microwave
circuits as resonators [1], impedance matchers [1, 2], delay equalizers
[3], filters [4], wave shapers [5], analog signal processors [6] and etc. The
differential equations describing these structures have non-constant
coefficients because their primary parameters vary along the line. So,
except for a few special cases, no analytical solution exists for NTLs.
Therefore, many efforts have been done to analyze NTLs. The most
used method is subdividing the NTLs into many short sections [7–
10]. Analysis of arbitrary NTLs using Taylor’s and the Fourier series
expansion of the primary parameters has been introduced in [11–14].
In this paper, a new method is introduced to analyze arbitrary NTLs,
also. In this method, the equations of nonuniform transmission lines
are converted to the equations of uniform transmission lines, which
have been excited by distributed equivalent sources. Then, the voltage
and current distributions are obtained using an iterative method. This
method is applicable to all arbitrary lossy and dispersive NTLs. The
validity of the method is verified using a comprehensive example.
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2. DIFFERENTIAL EQUATIONS OF NTLS

In this section, the equations related to NTLs in the frequency domain
are reviewed. It is assumed that the principal propagation mode of the
lines is TEM or quasi-TEM. This assumption is valid when widths in
the cross section are small enough compared to the wavelength. Fig. 1
shows a typical NTL whose length is d and has been terminated by
arbitrary loads ZS(ω) and ZL(ω).

 

Figure 1. A typical NTL with length d, terminated by arbitrary loads.

The differential equations describing lossy and dispersive NTLs in
the frequency domain are given by

dV (z)
dz

= −Z(z)I(z) (1)

dI(z)
dz

= −Y (z)V (z) (2)

in which

Z(z) = R(z) + jωL(z) (3)
Y (z) = G(z) + jωC(z) (4)

In (3)–(4), R, L, G and C are frequency dependent distributed
primary parameters of transmission lines. The secondary parameters
of transmission lines (the characteristic impedance and the propagation
coefficient) will be as follows

Zc(z) =

√
Z(z)
Y (z)

=

√
R(z) + jωL(z)
G(z) + jωC(z)

(5)

γc(z) = αc(z) + jβc(z) =
√

Z(z)Y (z)

=
√

[R(z) + jωL(z)][G(z) + jωC(z)] (6)



Progress In Electromagnetics Research, PIER 71, 2007 97

Furthermore, the terminal conditions for the loaded NTLs are as
follows

V (0) + ZSI(0) = VS (7)
V (d) − ZLI(d) = 0 (8)

One sees from (1)–(8) that, solving analytically the equations of general
NTLs is a difficult problem.

3. THE EQUIVALENT SOURCES METHOD

In this section, the analysis of arbitrary loaded NTLs using the method
of equivalent sources is introduced. First, the average of the primary
parameters are defined as follows

Z =
1
d

d∫
0

Z(z)dz (9)

Y =
1
d

d∫
0

Y (z)dz (10)

The differential equations (1) and (2) can be converted to the following
equations

dV (z)
dz

= −ZI(z) + VF (z) (11)

dI(z)
dz

= −Y V (z) + IF (z) (12)

The equations (11) and (12) are related to uniform transmission lines,
which have been excited by distributed equivalent sources defined by

VF (z) = −(Z(z) − Z)I(z) (13)
IF (z) = −(Y (z) − Y )V (z) (14)

Combining (11) and (12) with each other, gives the following
differential equations

d2V (z)
dz2

− γ2V (z) =
dVF (z)

dz
− ZIF (z) (15)

I(z) =
1
Z

(
VF (z) − dV (z)

dz

)
(16)
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where
γ =

√
Z Y (17)

As it has been shown in the Appendix, the voltage and current
distributions are obtained from (15) and (16) as follows

V (z) = V + exp(−γz) + V − exp(γz)

+
1
2γ

exp(γz)
z∫

0

exp(−γz′)
(

dVF (z′)
dz′

− ZIF (z′)
)

dz′

− 1
2γ

exp(−γz)
z∫

0

exp(γz′)
(

dVF (z′)
dz′

− ZIF (z′)
)

dz′ (18)

I(z) =
1
Z

VF (z) +
V +

Zc
exp(−γz) − V −

Zc
exp(γz)

− 1
2Z

exp(γz)
z∫

0

exp(−γz′)
(

dVF (z′)
dz′

− ZIF (z′)
)

dz′

− 1
2Z

exp(−γz)
z∫

0

exp(γz′)
(

dVF (z′)
dz′

− ZIF (z′)
)

dz′ (19)

The constants V + and V − in (18) and (19) are obtained from the
terminal conditions (7) and (8) as follows

V + =
1

1 − ΓSΓL exp(−2γd)

×
[

Zc

ZS+Zc
VS−

1
γ

ZS

ZS+Zc
VF (0)+ΓS

exp(−γd)
γ

ZL

ZL+Zc
VF (d)

−ΓS
1
2γ

d∫
0

exp(−γz′)
(

dVF (z′)
dz′

− ZIF (z′)
)

dz′

− ΓSΓL
exp(−2γd)

2γ

d∫
0

exp(γz′)
(

dVF (z′)
dz′

− ZIF (z′)
)

dz′


 (20)

V − =
1

1 − ΓSΓL exp(−2γd)

×
[
ΓL exp(−2γd)

Zc

ZS+Zc
VS − ΓL

exp(−2γd)
γ

ZS

ZS+Zc
VF (0)
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+
exp(−γd)

γ

ZL

ZL+Zc
VF (d)

− 1
2γ

d∫
0

exp(−γz′)
(

dVF (z′)
dz′

− ZIF (z′)
)

dz′

− exp(−2γd)
2γ

ΓL

d∫
0

exp(γz′)
(

dVF (z′)
dz′

− ZIF (z′)
)

dz′


 (21)

where

ΓS =
ZS − Zc

ZS + Zc
(22)

ΓL =
ZL − Zc

ZL + Zc
(23)

in which

Zc =

√
Z

Y
(24)

4. AN ITERATIVE APPROACH

The voltage and current distributions obtained as (18)–(21) require
the distributed equivalent sources defined in (13) and (14). On the
other hand, the equivalent sources require the voltage and current
distributions. To overcome this problem, we can use an iterative
method. At first iteration, we consider the equivalent sources be zero.

V
(1)
F (z) = I

(1)
F (z) = 0 (25)

The voltage and current distributions at first iteration are obtained
from (18)–(21).

V (1)(z) = V +(1) exp(−γz) + V −(1) exp(γz) (26)

I(1)(z) =
1
Zc

(
V +(1) exp(−γz) − V −(1) exp(γz)

)
(27)

in which

V +(1) =
exp(2γd)

ΓL
V −(1) = VS

Zc

ZS + Zc

1
1 − ΓLΓS exp(−2γd)

(28)
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Then, the equivalent sources are corrected at the second iteration using
(13) and (14). Consequently, using (18)–(21) and (13)–(14) alternately,
the voltage and current distributions are obtained with a low error.

The integrals existed in (9)–(10) and (18)–(21) are exactly
calculated if the primary parameters are known at all points,
continuously. However, these integrals can be approximately calculated
if the primary parameters are known only at some points. In this case,
which is more practical, we can assume that the primary parameters
vary between two adjacent points stepwise, linearly or in another
manner.

5. EXAMPLE AND RESULTS

In this section, a comprehensive example is presented to study the
validity of the introduced method. Consider a lossless and exponential
NTL with the following primary parameters.

L(z) = L0 exp(kz/d) (29)
C(z) = C0 exp(−kz/d) (30)
R(z) = G(z) = 0 (31)

This type of transmission line will have the following secondary
parameters defined in (5)–(6)

Zc(z) =
√

L0/C0 exp(kz/d) (32)

γc = jβc = jω
√

L0C0 (33)

Also, the average of the primary parameters defined in (9) and (10)
will be as follows

Z = jωL0
exp(k) − 1

k
(34)

Y = jωC0
1 − exp(−k)

k
(35)

The equivalent sources at the second iteration can be obtained using
(26)–(28) and (13)–(14).

V
(2)
F (z) = jωL0

V +(1)

Zc

(
exp(k) − 1

k
− exp(kz/d)

)

×(exp(−γz) − ΓL exp(γ(z − 2d))) (36)

I
(2)
F (z) = jωC0V

+(1)
(

1 − exp(−k)
k

− exp(−kz/d)
)

×(exp(−γz) + ΓL exp(γ(z − 2d))) (37)
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Also, the voltage and current distributions at second iteration are
obtained by substituting (36)–(37) in (18)–(21) as follows

V (2)(z) = V +(2) exp(−γz)+V −(2) exp(γz)+
1
2γ

exp(γz)(A(z)−A(0))

− 1
2γ

exp(−γz)(B(z) − B(0)) (38)

I(2)(z) =
1
Z

V
(2)
F (z) +

V +(2)

Zc
exp(−γz)−V −(2)

Zc
exp(γz)

− 1
2Z

exp(γz)(A(z)−A(0)) − 1
2Z

exp(−γz)(B(z) − B(0))

(39)

where

V +(2) =
1

1 − ΓSΓL exp(−2γd)
×

(
Zc

ZS + Zc
VS − 1

γ

ZS

ZS + Zc
V

(2)
F (0)

+ΓS
exp(−γd)

γ

ZL

ZL + Zc
V

(2)
F (d) − ΓS

1
2γ

(A(d) − A(0))

− ΓSΓL
exp(−2γd)

2γ
(B(d) − B(0))

)
(40)

V −(2) =
1

1 − ΓSΓL exp(−2γd)
×

(
ΓL exp(−2γd)

Zc

ZS + Zc
VS

−ΓL
exp(−2γd)

γ

ZS

ZS + Zc
V

(2)
F (0) +

exp(−γd)
γ

ZL

ZL + Zc
V

(2)
F (d)

− 1
2γ

(A(d) − A(0)) − exp(−2γd)
2γ

ΓL(B(d) − B(0))
)

(41)

in which A(z) and B(z) are two functions defined as

A(z) = jωL0
V +(1)

Zc

[
− γ − k/d

2γ − k/d
exp((k/d − 2γ)z)

+ΓL
γ + k/d

k/d
exp(kz/d − 2γd)

− γ
exp(k) − 1

k

(
ΓL exp(−2γd) − 1

2γ
exp(−2γz)

)]

−jωC0ZV +(1)
[
1−exp(−k)

k

(
ΓL exp(−2γd

)
z− 1

2γ
exp(−2γz))
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+
1

k/d+2γ
exp(−(k/d+2γ)z)+ΓL exp(−2γd)

1
k/d

exp(−kz/d)
]

(42)

B(z) = jωL0
V +(1)

Zc

[
γ − k/d

k/d
exp(kz/d)

+ΓL
γ + k/d

2γ + k/d
exp((k/d + 2γ)z − 2γd)

− γ
exp(k) − 1

k

(
z + ΓL

1
2γ

exp(2γ(z − d))
)]

−jωC0ZV +(1)
[
1−exp(−k)

k

(
z + ΓL

1
2γ

exp(2γ(z − d))
)

+
1

k/d
exp(−kz/d)−ΓL exp(−2γd)

1
2γ−k/d

exp((2γ−k/d)z)
]

(43)

Now, assume that Zc(0) =
√

L0/C0 = 50 Ω, β = ω
√

L0C0 = ω/c (c is
the velocity of the light), k = 1, d = 20 cm, f = 1.0 GHz, ZS = Zc(0) =
50 Ω, ZL = Zc(d) = 136 Ω and VS = 1.0 V. Figures 2–3, compare
the magnitude of the voltage and current distributions obtained from
exact solutions [11] and from the introduced method in its first and
second iterations. One observes a good agreement between the exact
solutions and the solutions obtained from the proposed method at the
second iteration. Also, Figures 4–5 illustrate the magnitude of the
input reflection coefficient, given by

Γin =
V (0) − 50I(0)
V (0) + 50I(0)

(44)

versus the frequency and for d = 10 cm and 20 cm, respectively. It is
concluded from Figs. 2–5 that the accuracy of the obtained solutions is
increased as the iterations are increased. Also, as the source frequency
or the length of the lines increases, the accuracy of the method is
decreased. Hence, as the length of the lines or the source frequency
increases, the necessary iterations have to be increased. From the above
example, one may satisfy that the introduced method is very efficient
and can be applicable to all arbitrary lossy and dispersive NTLs, whose
primary parameters are known at all or even at some points along their
length.
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Figure 2. The magnitude of the voltage distribution for d = 20 cm at
frequency f = 1.0 GHz.

Figure 3. The magnitude of the current distribution for d = 20 cm at
frequency f = 1.0 GHz.
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Figure 4. The magnitude of the input reflection coefficient for
d = 10 cm.

Figure 5. The magnitude of the input reflection coefficient for
d = 20 cm.
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6. CONCLUSIONS

A new method was introduced to analyze arbitrary Nonuniform
Transmission Lines (NTLs). In this method, the equations of
nonuniform transmission lines are converted to the equations of
uniform transmission lines, which have been excited by distributed
equivalent sources. Then, the voltage and current distributions are
obtained using an iterative method. The validity of the method was
verified using a comprehensive example. It was seen that this method
is applicable to all arbitrary NTLs, whose primary parameters are
known at all or even at some points along their length. Also, as the
source frequency or the length of the lines increases, the accuracy of
the method is decreased. Hence, as the length of the lines or the source
frequency increases, the necessary iterations have to be increased.

APPENDIX A.

To solve (15), consider the following differential equation

d2V (z)
dz2

− γ2V (z) = F (z) (A1)

The solution of (A1) can be written as follows

V (z) = V + exp(−γz) + V − exp(γz) +
∞∫

−∞
h(z − z′)F (z′)dz′ (A2)

where h(z) is the solution of (A1), when F (z) is an impulse function,
i.e.,

d2h(z)
dz2

− γ2h(z) = δ(z) (A3)

One can see that

h(z) =
1
2γ

(exp(γz) − exp(−γz))u(z) (A4)

Substituting (A4) to (A2), gives us

V (z) = V + exp(−γz) + V − exp(γz) +
1
2γ

z∫
0

exp(γ(z − z′))F (z′)dz′

− 1
2γ

z∫
0

exp(−γ(z − z′))F (z′)dz′ (A5)

Therefore, (18) is obtained as the solution of (15).
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