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Abstract—High frequency field expressions are derived around feed
point of a two dimensional cassegrain system using the Maslov’s
method. Maslov’s method is a systematic procedure for predicting
the field in the caustic region combining the simplicity of ray theory
and generality of the transform method. Numerical computations are
made for the analysis of field pattern around the caustic of a cassegrain
system.

1. INTRODUCTION

Asymptotic ray theory (ART) or the geometrical optics approximation
is widely used to study various kinds of problems in the areas of
electromagnetics, acoustics waves, seismic waves, etc. [1–5]. It is
also well known that the geometrical optics fails in the vicinity of
caustic. So, in order to study the field behavior near caustic [6–9],
other approach is required. Maslov proposed a method to predict the
field in the caustic region [10]. Maslov method combines the simplicity
of asymptotic ray theory and the generality of the Fourier transform
method. This is achieved by representing the geometrical optics
fields in terms of mixed coordinates consisting of space coordinates
and wave vector coordinates. That is by representing the field in
terms of six coordinates. It may be noted that information of ray
trajectories is included in both space coordinates R = (x, y, z) and
wave vector coordinates P = (px, py, pz). In this way, conventional
ray expression may be considered as projection into space coordinates.
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Similarly one can replace a part of the components of (x, y, z) by
corresponding components of (px, py, pz), e.g., (x, py, pz), (x, y, pz),
(x, py, z) to describe a ray. The reason for considering the solution in
mixed or hybrid domain is that, in general, the singularities in different
domains do not coincide. This means that there exists always a domain
which can give bounded solution.

Solving the Hamiltonian equations under the prescribed initial
conditions one can construct the geometrical optics field in space R,
which is valid except in the vicinity of caustic. Near the caustic, the
expression for the geometrical optics field in spatial space is rewritten
in mixed domain. The expression in mixed domain is related to the
original domain R through the asymptotic Fourier transform.

Applications of Maslov’s method in an inhomogeneous medium
and continuation problems have been discussed by Kravtsov [6] and
Gorman [11]. The physical interpretation of the mathematics of
Maslov’s method and its relation to other ART methods have been
discussed by Ziolkowski and Dechamps [7]. Hongo and Co-workers
applied Maslov’s method to derive the high frequency solutions for
field generated by a phase transformer and a cylindrical reflector [8, 9].

Two dimensional Cassegrain system consists of two cylindrical
reflectors, that is, parabolic and hyperbolic reflectors. The aim of this
paper is to derive the field distribution around the feed point using the
Maslov’s method when it is used as the receiving antenna. Before we
discuss the analysis of the field in the caustic of a cassegrain system we
consider the field reflected by a single arbitrary cylindrical reflector.

2. DERIVATION OF THE FIELD IN A SINGLE
CYLINDRICAL REFLECTOR

First we consider the field reflected by an arbitrarily shaped single
cylindrical reflector, whose contour is described by

ζ = f(ξ) (1)

where (ξ, ζ) are the Cartesian coordinates on the reflector. An incident
plane wave is given by

Ei = exp
[
−j

(
kxx+ kzz

)]
, kx = k0 sinφ0, kz = k0 cosφ0 (2)

and the wave vector of the incident wave is given by pi = sinφ0ix +
cosφ0iz. Then the wave vector of the reflected wave is obtained from
the formula pr = pi − 2(pi · n)n, which is derived from Snell’s law,
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where n is the unit normal of the surface given by

n = sin θix+cos θiz, sin θ =
−f ′(ξ)√

1 + [f ′(ξ)]2
, cos θ =

1√
1 + [f ′(ξ)]2

(3)
where f ′(ξ) is the derivative of the function with respect to ξ. By using
these relations we derive pr as

Pr =
[
sinφ0 − 2 sin θ cos(θ − φ0)

]
ix +

[
cosφ0 − 2 cos θ cos(θ − φ0)

]
iz

= − sin(2θ − φ0)ix − cos(2θ − φ0)iz = prxix + prziz (4)

The coordinates of the point on the reflected ray is given by [11]

x = ξ + prxt, z = f(ξ) + przt (5)

and the geometrical optics expression of field associated with the ray
is given by [12]

U(r) = A0(ξ, ζ)
[
D(t)
D(0)

]− 1
2

exp
{
−jk

[
ξ sinφ0 + f(ξ) cosφ0 + t

]}
(6)

where A0(ξ, ζ) is the amplitude of the incident wave at the reflected
point (ξ, ζ), and t represents the distance along the ray from a certain
reference point. The value ξ sinφ0 +f(ξ) cosφ0 represents the initial
value of the phase function. D(t) is the Jacobian of the transformation
from the Cartesian to the ray coordinates, and it is given by

D(t) =
∂(x, z)
∂(ξ, t)

= − cos(2θ − φ0) + f ′(ξ) sin(2θ − φ0) + 2
∂θ

∂ξ
t

= −cos(θ − φ0)
cos θ

− 2 cos2 θf ′′(ξ)t (7a)

J(t) =
D(t)
D(0)

= 1 +
2 cos3 θ

cos(θ − φ0)
f ′′(ξ)t (7b)

The caustic of this ray is given by the point satisfying D(t) = 0 and
(5), more explicitly,

xc = ξ+
sin(2θ − φ0) cos(θ − φ0)

2 cos3 θf ′′(ξ)
, zc = f(ξ)+

cos(2θ − φ0) cos(θ − φ0)
2 cos3 θf ′′(ξ)

(8)
It is seen that the ray reflected from the singular point f ′′(ξ) = 0
can not form the caustics. At the point satisfying (8), the ray becomes
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infinity. According to the Maslov’s method, the ray expression covering
the caustics can be derived from the formula

U(r) =

√
k

j2π

∫ ∞

−∞
A0(ξ)

[
D(t)
D(0)

∂pz
∂z

]− 1
2

× exp
{
−jk

[
S0 + t− z(x, pz)pz + pzz

]}
dpz (9)

where S0 = ξ sinφ0 + f(ξ) cosφ0 is the initial phase. In (9) z(x, pz)
means that the coordinate z should be expressed in terms of mixed
coordinates (x, pz) by using the solution. The same is true for t and it
is given by t = x−ξ

px
. The phase function S(pz) is given by

S(pz) = ξ sinφ0 + f(ξ) cosφ0 +
x− ξ
px

− f(ξ)pz − (pz)2
x− ξ
px

+ pzz

= ξ
[
sinφ0+sin(2θ−φ0)

]
+f(ξ)

[
cosφ0+cos(2θ−φ0)

]
+pxx+pzz

= 2
[
ξ sin θ + f(ξ) cos θ

]
cos(θ − φ0) − ρ cos(2θ − φ− φ0) (10)

and the amplitude of the integrand is evaluated in Appendix A. In the
above equation, we introduce the polar coordinates

x = ρ sinφ, z = ρ cosφ (11)

Substituting these results in (9), we have the field expression valid in
caustic region as

U(r) =
√
π exp

(
−j π

4

) ∫ Θ

−Θ
A0(ξ)

[
cos(θ − φ0)
cos3 θf ′′(ξ)

] 1
2

× exp
{
−j2k

[
ξ sin θ + f(ξ) cos θ

]
cos(θ − φ0)

}
× exp

[
jkρ cos(2θ − φ− φ0)

]
dθ (12)

where Θ is the half angle of θ at the edge of the reflector and we have
changed the integration variable from pz to θ.

In a region far from the caustics, (12) can be evaluated approx-
imately by applying the stationary phase method of integration [11]
and the result should agree with the GO expression derived in (6) with
(7b). This serves as an important check of the validity of the expression
(12). The stationary point is determined from

S′(θs) = 2
[
ξ cos(2θ − φ0) − f(ξ) sin(2θ − φ0)

]
× cos(θ − φ0) + 2ρ sin(2θ − φ− φ0)

= 0 (13)
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The second derivative of the phase function is

S′′(θs) = −4
[
ξ sin(2θ − φ0) + f(ξ) cos(2θ − φ0)

]
+2

[
cos(2θ − φ0) − f(ξ) sin(2θ − φ0)

]dξ
dθ

+4ρ cos(2θ−φ−φ0)

−2
cos(θ − φ0)
cos3 f ′′(ξ)

[
1 + 2

cos3 θ
cos(θ − φ0)

f ′′(ξ)t

]

= −2
cos(θ − φ0)
cos3 f ′′(ξ)

J(t) (14)

and

S(θs) = 2
[
ξ sin θ + f(ξ) cos θ

]
cos(θ − φ0) − ρ cos(2θ − φ− φ0)

= ξ
[
sin(2θ − φ0) + sinφ0

]
+ f(ξ)

[
cos(2θ − φ0) + cosφ0

]
−x sin(2θ − φ0) − z cos(2θ − φ0)

= ξ sinφ0 + f(ξ) cosφ0 + t (15)

We substitute (14) and (15) into (12) and carry out the integration,
then we reproduce (6).

3. RECEIVING CHARACTERISTIC OF CYLINDRICAL
CASSEGRAIN REFLECTOR

Cassegrain reflector consists of two reflectors, one is parabolic main
reflector and another is hyperbolic subreflector. This system has
many advantages over a single parabolic reflector. We consider here
a receiving characteristic of this system by applying Maslov’s method.
The equation of each surface is given by [see Fig. 1]

ζ1 =
ξ21
4f

− f + c, ζ2 = a

[
ξ22
b2

+ 1

] 1
2

, c2 = a2 + b2 (16)

where (ξ1, ζ1) and (ξ2, ζ2) are the Cartesian coordinates of the point
on the parabolic and hyperbolic reflectors, respectively. Incident wave
is given by

Ei = exp(jkz) (17)

The wave vector of the wave reflected by the parabolic cylinder is given
by

pr
1 = − sin 2αix + cos 2αiz (18a)
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Figure 1. Cassegrain system.

and the wave vector of the wave reflected by the hyperbolic cylinder is

pr
2 = − sin(2α− 2ψ)ix − cos(2α− 2ψ)iz (18b)

where

sinα =
ξ1√

ξ21 + 4f2
, cosα =

2f√
ξ21 + 4f2

, n1 = − sinαix + cosαiz

(19a)

sinψ = − 1√
R1R2

a

b
ξ2, cosψ =

1√
R1R2

b

a
ζ2, n2 = − sinψix + cosψiz

(19b)

In the above equation R1 and R2 are the distances from the point
(ξ2, ζ2) to the focal points z = −c and z = c, respectively with
c2 = a2 + b2. The Jacobian associated with the wave reflected by
the parabolic cylinder is obtained by applying (7b) with φ0 = π,
f ′′(ξ) = 1

2f , θ = −α. The result is

Jp(t) =
Dp(t)
Dp(0)

= 1 − cos2 α
f

t (20)
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The Cartesian coordinates of the ray reflected by the hyperbolic
cylinder is given by

x = ξ2 + px2t = ξ1 + px1t1 + px2t (21)
z = ζ2 + pz2t = ζ1 + pz1t1 + pz2t (22)

where t1 =
√

(ξ1 − ξ2)2 + (ζ1 − ζ2)2. In the above equation
(px1, pz1) and (px2, pz2) are the rectangular components of pr

1 and pr
2,

respectively
Now we consider the field after the reflection from the hyperbolic

cylinder. The transformation from the Cartesian coordinates (x, z) to
the ray fixed coordinates (ξ1, t) is given by [see Appendix B]

D(t) =
cos2 α
f

R2

[
1 − t

R1

]
(23)

Thus the geometrical ray expression of the reflected wave is

Er = Er
0

[
1 − t

R1

]− 1
2

exp
[
−jk

(
S0 + t1 + t

)]
(24)

where Er
0 is the amplitude of the incident wave at the reflection point

on the parabolic cylinder and

S0 = −ζ2 = 2f
cos 2α

1 + cos 2α
− c, t1 =

√
(ξ2 − ξ1)2 + (ζ2 − ζ1)2,

t =
√

(x− ξ2)2 + (z − ζ2)2 (25)

It is readily seen that the GO expression of the reflected wave becomes
infinity at the point F2 as is expected. We can derive the refined
expression which is valid at the focal point according to (9). The value

of
[
J(t)∂pz2

∂z

]− 1
2 is given by [see Appendix C]

[
J(t)

∂pz2

∂z

]− 1
2

=
√
R1

sin(2α− 2ψ)
(26)

The phase function is given by

S = S0 + t1 + t− z(x, pz2)pz2 + pz2z (27)

where S0 + t1 is given by (25). The extra term is given by

Sex = t− z(x, pz2)pz2 + pz2z

= t−
[
ζ2 + pz2t

]
pz2 + pz2z = (px2)2t+ (z − ζ2)pz2

= px2(x− ξ2) + pz2(z − ζ2)
= −ρ cos(2α−2ψ−φ)+

[
sin(2α−2ψ)ξ2+cos(2α−2ψ)ζ2

]
(28)
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Figure 2. Parameters in Cassegrain system.

We substitute (26)–(28) into (9), then we have

Er(x, z) =

√
k

j2π

[∫ A2

A1

+
∫ −A1

−A2

] √
R1 exp

[
−jk

(
S0 + t1 + Sex

)]
d(2α)

(29)
In the above equation R1, S0, t1 and Sex are expressed in terms of
α and A1 and A2 are the subtention angles 2α at the edges of the
parabolic and hyperbolic cylinders.

4. RESULT AND DISCUSSION

Field pattern around the caustic of a cassegrain system are determined
using equation (29) by performing the integration numerically.
Figure 3 contains contour plots (equi-amplitude plots) of the field
around the focal region located between the two cylindrical re ectors,
that point F2 in figures. It is assumed that kf = 100, a = 25,
b = 45, d = 30, D = 130. The location of the caustic may be
observed and verified easily. It may be noted that limits of the
integrals in equation (29) are selected using the following relations [see
Appendix D]

A1 = φν = 2 arctan
(
D

2f

)

A2 = arctan
(
d

2c

)
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Figure 3. Contour plot for a Cassegrain antenna.

The results are compared with the results of an equivalent parabola,
whose focal length is determined using the following relation [see
Appendix D]

fe =
(
c+ a
c− a

)
f
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APPENDIX A. EVALUATION OF F = J(t)∂pz

∂z

First we evaluate ∂pz

∂z . From (5) and (4) z can be written as

z = f(ξ) + cot(2θ − φ0)(x− ξ) (A1)

We differentiate (A1) with respect to θ, then we have

∂z

∂θ
= f ′(ξ)

∂ξ

∂θ
− 2(x− ξ)

sin2(2θ − φ0)
− cot(2θ − φ0)

∂ξ

∂θ

= −
[
tan θ + cot(2θ − φ0)

]∂ξ
∂θ

+
2t

sin(2θ − φ0)

− cos(θ − φ0)
sin(2θ − φ0)

1
cos θ

∂ξ

∂θ

[
1 − 2 cos θ

cos(θ − φ0)
∂θ

∂ξ
t

]
(A2)
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Hence the derivative ∂z
∂pz

can be derived as follows.

∂z

∂pz
=
∂z

∂θ

∂θ

∂pz
=

1
2 sin(2θ − φ0)

∂z

∂θ

= − cos(θ − φ0)
2 sin2(2θ − φ0) cos θ

∂ξ

∂θ

[
1 +

2f ′′(ξ) cos3 θ
cos(θ − φ0)

t

]
(A3)

Using (A3) and (7b) yields the final result

F = J(t)
∂pz
∂z

=

[
1 +

2f ′′(ξ) cos3 θ
cos(θ − φ0)

t

] [
2 cos3 θ sin2(2θ − φ0)

cos(θ − φ0)
f ′′(ξ)

]

×
[
1 +

2f ′′(ξ) cos3 θ
cos(θ − φ0)

t

]−1
2 cos3 θ sin2(2θ − φ0)

cos(θ − φ0)
f ′′(ξ) (A4)

APPENDIX B. DERIVATION OF THE JACOBIAN

We evaluate the Jacobian of coordinate transformation (x, z) to (ξ1, t)
with (x, z) given by (21).

D(t) =
∂(x, z)
∂(ξ1, t)

=

∣∣∣∣∣
∂ξ2
∂ξ1

+
∂px2

∂ξ1
t

∂ζ2
∂ξ1

+
∂pz2

∂ξ1
t

px2 pz2

∣∣∣∣∣
= 2

∂(α− ψ)
∂ξ1

t− cos(2α− ψ)
cosψ

∂ξ2
∂ξ1

(B1)

where we have used the relation ∂ζ2
∂ξ1

= ∂ζ2
∂ξ2

∂ξ2
∂ξ1

= tanψ ∂ξ2
∂ξ1

. The relation
between (ξ1, ζ1) and (ξ2, ζ2) is given by

ξ2 − ξ1 = − tan 2α(ζ2 − ζ1) (B2)

and we differentiate the both sides with respect to ξ1. Then we have

∂ξ2
∂ξ1

=
cosψ

cos(2α− ψ)

[
1 − ζ2 − ζ1

f

cos2 α
cos 2α

]

=
cosψ

cos(2α− ψ)
R2 cos2 α

f
(B3)

Furthermore we have

∂α

∂ξ1
=

1
2f

cos2 α,
∂ψ

∂ξ1
=
∂ψ

∂ξ2

∂ξ2
∂ξ1

= cos2 ψ
a4

b2
1
ζ32

∂ξ2
∂ξ1

(B4)
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Substituting (B3) and (B4) in (B1) yields

D(t) = 2t

{
cos2 α

2f
− cos3 ψ

cos(2α− ψ)
a4

b2ζ32

[
1 − ζ2 − ζ1

f

cos2 α
cos 2α

]}

−
[
1 − ζ2 − ζ1

f

cos2 α
cos 2α

]
(B5)

From Fig. 1 and simple calculation we readily find that the following
relations hold

ζ2 = c−R2 cos 2α, ζ1 =
ξ21
4f

− f + c = −f cos 2α
cos2 α

+ c;

1 − ζ2 − ζ1
f

cos2 α
cos 2α

=
R2

f
cos2 α (B6)

Hence D(t) can be written as

D(t) =
cos2 α
f

{[
1 − 2 cos3 ψ

cos(2α− ψ)
a4

b2ζ32
R2

]
t−R2

}
(B7)

By using the relations

cos 2α =
c− ζ2
R2

, sin 2α =
ξ2
R2

(B8)

cos(2α− ψ) in (B7) can be expressed by

cos(2α− ψ) =
c− ζ2
R2

cosψ +
ξ2
R2

sinψ

=
1

R2

√
R1R2

[
b

a
ζ2(c− ζ2) +

a

b
ξ22

]

1
R2

√
R1R2

[
b

a
cζ2 − ab

(
ζ22
a2

− ξ
2
2

b2

)]

=
1

R2

√
R1R2

b

a
(cζ2 − a2) =

b√
R1R2

(B9)

where we have used the relation R2 =
√

(c− ζ2)2 + ξ22 = cζ2−a2

a . Then
the coefficient of t in (B7) is simplified to

U = 1 − 2 cos3 ψ
cos(2α− ψ)

a4

b2ζ32
R2 = 1 − 2abR2

(R1R2)
3
2

aR2

√
R1R2

b(cζ2 − a2)

= 1 − 2a
R1

=
R2

R1
(B10)
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Hence D(t) in (B7) becomes

D(t) =
cos2 α
f

R2

[
1 − t

R1

]
(B11)

This shows that the ray is focused at point F2.

APPENDIX C. EVALUATION OF F = J(t)∂pz2

∂z

We now evaluate the integrand of (9) to derive the expression which is
valid at the focal point F . From the relation

z = ζ2 +
pz2

px2
(x− ξ2) = ζ2 + cot(2α− 2ψ)(x− ξ2) (C1)

we have

∂z

∂ξ2
=
∂ζ2
∂ξ2

− 2(x− ξ2)
sin2(2α− 2ψ)

∂(α− ψ)
∂ξ2

− cot(2α− 2ψ)

= − cos(2α− ψ)
cosψ sin(2α− 2ψ)

+
2t

sin(2α− 2ψ)
∂(α− ψ)
∂ξ2

1
sin(2α− 2ψ)

∂ξ1
∂ξ2

[
2t
∂(α− ψ)
∂ξ1

− cos(2α− ψ)
cosψ

∂ξ2
∂ξ1

]
(C2)

By using the relations

∂z

∂pz2
=
∂z

∂ξ2

∂ξ2
∂pz2

,
∂pz2

∂z
=
∂ξ2
∂z

∂pz2

∂ξ2
;

∂pz2

∂ξ2
= 2 sin(2α− 2ψ)

∂(α− ψ)
∂ξ2

= 2 sin(2α− 2ψ)
∂ξ1
∂ξ2

∂(α− ψ)
∂ξ1

(C3)

we have

∂pz2

∂z
=
∂ξ2
∂z

∂pz2

∂ξ2

= 2 sin(2α− 2ψ)
∂ξ1
∂ξ2

∂(α− ψ)
∂ξ1

sin(2α− 2ψ)
∂ξ2
∂ξ1

×
[
2t
∂(α− ψ)
∂ξ1

− cos(2α− ψ)
cosψ

∂ξ2
∂ξ1

]−1

(C4)
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There we have

D(t)
D(0)

∂pz2

∂z
=

[
2t
∂(α− ψ)
∂ξ1

− cos(2α− ψ)
cosψ

∂ξ2
∂ξ1

][
cosψ

cos(2α−ψ)
∂ξ2
∂ξ2

]
∂pz2

∂z

= 2 sin2(2α− 2ψ)
∂(α− ψ)
∂ξ1

cosψ
cos(2α− ψ)

∂ξ1
∂ξ2

(C5)

From the results of Appendix B we have

D(t)
D(0)

∂pz2

∂z
= 2 sin2(2α−2ψ)

cos2 α
2f

R2

R1

cosψ
cos(2α−ψ)

cos(2α−ψ)
cosψ

f

R2 cos2α

=
sin2(2α− 2ψ)

R1
(C6)

where

R1 =
cζ2 + a2

a
= a

c cosψ +
√
a2 cos2 ψ − b2 sin2 ψ√

a2 cos2 ψ − b2 sin2 ψ
,

cosψ =
c+ a cos 2α√

a2 + c2 + 2ac cos 2α
, sinψ =

a sin 2α√
a2 + c2 + 2ac cos 2α

,

ξ1 = 2f tanα, ζ1 = c− 2f cos 2α
1 + cos 2α

ξ2 =
b2 sinψ√

a2 cos2 ψ − b2 sin2 ψ
, ζ2 =

a2 cosψ√
a2 cos2 ψ − b2 sin2 ψ

(C7)

APPENDIX D. PARAMETERS OF CASSEGRAIN
ANTENNA

D.1. tan φv

2 = D
2f and tan φr

2 = D
2fe

The equation of the parabolic cylinder is given by (16). Hence we have

OA = −f + c, AH =
D2

4f
, FH = f − D

2

4f
(D1)

and

tanφv =
D

f − D
2

4f

=
2 · D

2f

1 −
(
D

2f

)2 =
2 tan

φv

2

1 − tan2 φv

2

(D2)
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From (D2) we have tan φv

2 = D
2f . It may be noted that D is height of

the edge of the parabolic cylinder from horizontal axis.
Similarly we have

tan
φr

2
=
D

2fe
(D3)

where fe is the focal length of the equivalent parabola.

D.2. e = sin 1
2
(φv+φr)

sin 1
2
(φv−φr)

From the similarities of the triangles we have

fe
f

=
Lr

Lv
=
c+ a
c− a =

e+ 1
e− 1

=
tan

1
2
φv

tan
1
2
φr

(D4)

The last term is obtained from the results in (D1). From the above
equation e is obtained as

e =
tan

1
2
φv + tan

1
2
φr

tan
1
2
φv − tan

1
2
φr

=
sin

1
2
(φv + φr)

sin
1
2
(φv − φr)

=
Lr + Lv

Lr − Lv
(D5)

and

1 − 1
e

=
2Lv

Lr + Lv
= 1 −

sin
1
2
(φv + φr)

sin
1
2
(φv − φr)

(D6)
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