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Abstract—In this paper, the bistatic polarimetric signature of a
perfectly conducting faceted octahedron with high dimensions with
respect to the wavelength, is considered and a closed form solution for
its fast computation is developed. This particular object, composed
by eight triangularly shaped trihedral corner reflectors, should exhibit
a large bistatic and monostatic Radar Cross Section (RCS) over a
wide angular range. Scattering from a Trihedral Corner Reflector
(TCR) is dominated by single, double and triple reflections. First,
shadowed areas in excitation and observation are evaluated with the
help of Geometrical Optics (GO). A Physical Optics (PO) integration
is performed on each plate for the computation of scattered fields,
taking into account the shadowed surfaces. GO is used to take into
account the lighting of each face for initial reflections of double and
triple reflections. First-order diffractions, which are based on the fringe
current expressions for the exterior edges of the TCR are also included
in the analysis with the help of Method of Equivalent Currents /
Incremental Length Diffraction Coefficients (MEC/ILDC). This permit
us to calculate fast the bistatic signature of a TCR for arbitrary
incidence and observation angles. The polarimetric bistatic signature
of an octahedral reflector is then obtained, and results are discussed.
Finally, several prospects are explained.

1. INTRODUCTION

Corner reflector is a very interesting radar target because it exhibits
a large bistatic and monostatic Radar Cross Section (RCS) over a
wide angular range. Indeed, this is due to double and triple reflection
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contributions which provide a return of the incident wave in several
directions. This justifies the employment of the TCR as radar
enhancement device for navigational purposes, as appropriate reference
target for RCS measurements [1, 2] and, also, for the calibration of
Synthetic Aperture Radar (SAR) images [3].

The RCS is maximum when multiple internal reflections occur,
that relates to the case where the transmitter and the receiver
illuminate the interior region of the TCR. This configuration
corresponds, in the FSA convention as shown in Fig. 1, to elevation
angles {π−θi; θd} and azimuth angles {φi+π, φd} defined with respect
to the transmitter and the receiver, respectively, and ranging from 0
to π

2 radians.
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Figure 1. Illustration of the shadowed area in excitation (FSA
convention).

In order to obtain a high RCS on 4π steradians, the reflector have
to preserve the geometrical characteristics of the interior region of the
TCR on the whole space. This reflector can be obtained by assembling
eight TCRs with isosceles right triangular faces mutually orthogonal
which correspond to faceted trirectangular tetrahedrons. This
Octahedral Reflector (OR), which is rigorously a faceted octahedron,
is depicted in Fig. 2. The trihedral corners are assumed to be perfectly
conducting, so they are considered all independent, that is to say, there
is any coupling effect between all the trihedral corner reflectors.

Consequently, the signature of the octahedral reflector can
be obtained from the coherent summation of the signature of
each trihedral corner reflector all expressed in the same system of
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Figure 2. The octahedral reflector.

coordinates. However, many TCRs in the OR can be illuminated
and/or observed laterally, so the bistatic signature of the TCR must
be evaluated for any excitation and observation angles.

By using high-frequency methods, the bistatic signature of the
octahedral reflector has never been evaluated, until now. In this paper,
this calculus is detailed and obtained from the bistatic signature of the
TCR on 4π steradians.

This method is based on the works of Corona et al. [4] and
Polycarpou et al. [5] but with a different formalism using properties
of the Sinclair matrix and some matrix relations [6, 7]. Corona et
al. and Polycarpou et al. used a similar approach in order to
evaluate the monostatic RCS of the TCR but those works were all
done in the restricted domain of the interior region of the TCR
and with a formalism which is not really appropriate for the more
general context of our work. So, the calculus proposed here is a
generalization, with an appropriate formalism (Sinclair matrix), to the
bistatic full-polarimetric case and for any excitation and observation
angles. This means that the TCR can be illuminated and observed
laterally inducing shadowed regions in excitation [8], as shown in Fig. 1,
and in observation, Fig. 3.

Results in co and cross-polarisation, in monostatic and bistatic
case, will be compared to a numerical method (Multi-Level Fast
Multipole Method as explained in [9, 10]).
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Figure 3. Illustration of the shadowed area in observation (FSA
convention).

2. APPROACH

Corona et al. and Polycarpou et al. [4, 5] have shown that the first
order edge diffractions and the single, double and triple reflections are
the principal contributions in the signature of the TCR.

PO and GO are used for the calculation of single, double and
triple reflections from the corner reflector plates, whereas the Method
of Equivalent Currents (MEC) [11–14] is used for the calculation of
the first-order diffractions from the exterior edges. PO approximation
is applied on each face to evaluate the single reflection contribution.
For double and triple reflections, the GO approximation is used for the
calculation of the initial reflected fields and the PO is then applied only
for the last reflection. To obtain a signature valid for any excitation
and observation angles, the shadowing effect is taken into account with
the help of GO. Thus, the shadowed surfaces are used to evaluate the
area, which are both illuminated and observed, on which PO is finally
applied.

As well known, Geometrical Optics (GO) assumes that an
electromagnetic plane wave impinging on a plane whose dimensions
are much greater than the incident wavelength (high-frequency region)
will still be reflected in the specular direction as a plane wave. It is an
asymptotic expansion of the scattered field in the far field. In this
way, diffraction effects caused by the finite nature of the scatterer
are completely neglected. Thus, the PO theory improves the GO
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results by taking into account the diffraction effects. Indeed, The PO
approximation is an asymptotic expansion of the induced current on
the surface of the target. This is an integral approach based on the
assumption that the induced currents on the surface of the scatterer
are known. When the scatterer is a perfectly conducting body, the
approximated expressions of the surface currents are assumed to be:

�Jpo(�r ) = 2n̂(�r ) ∧ �Hi(�r ) (1)

�Mpo(�r ) = �0 (2)

�Hi(�r) is the incident magnetic field on the surface and n̂ is the
normal to the surface. The PO surface current density is integrated
over the illuminated and observed area of the plate. For the single
reflection case, the observed surface of each illuminated region is
evaluated by taking into account the shadowed region in excitation
and observation. In general case, after evaluating the existence of each
double and triple reflections that could occur, the both illuminated and
observed surfaces are evaluated by taking into account the shadowed
regions in excitation on the first plates of the reflections, and the
shadowed regions in observation on the last plates of the reflections.
For double and triple reflections, the GO approximation is used in
order to evaluate finally the illuminated region on the last plate for
the calculation of the scattered field on this face.

For instance, from Fig. 1 and Fig. 3, according to the laws of
geometrical optics, for arbitrary angles of incidence and observation,
there may be shadowed regions. In Fig. 1, the triangular face (AOC)
is excited on the backside, it induces a shadowed region on the two
others faces. The illuminated patches are finally (BHC) and (BHA)
for the single reflection components. Double reflection needs the use
of GO to evaluate the illuminated area which does not appear on the
draw. In Fig. 3, only a part of the triangular face (BOC) is visible due
to the shadowing effect in observation.

In this paper, we assume time dependence e+jωt.

3. SIGNATURE OF THE OCTAHEDRAL REFLECTOR

The bistatic signature of an octahedral reflector is obtained from the
coherent summation of the signature of each TCR, all expressed in the
global system of coordinates associated to the octahedral reflector:

[
SOR

]
=

8∑
k=1

[
STCRk
global

]
(3)
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The bistatic signature of a TCR, in the global system of
coordinates (0, x, y, z), is derived from the signature of the TCR
obtained in its own local system of coordinates (0, xk, yk, zk), with the
help of the matrix [P ] defined as follows:

[P (θ, φ;αek
, βek

, γek
; θk, φk)]=[Rs(θ, φ)]

T [Re(αek
, βek

, γek
)] [Rs(θk, φk)]

(4)
The symbol T stands for the matrix transpose and k represents the
number of the considered TCR: k = {1 to 8}.

• [Rs(θ, φ)] is the spheric rotation matrix which gives the relation
between a Cartesian basis (�ux, �uy, �uz) and a spherical basis (�ur,
�uθ, �uφ). (θ, φ) are the azimuth and elevation angles, defined in
FSA convention for the incident wave and diffracted wave as in
Fig. 1.

•
[
Re(αej1

, βej1
, γej1

)
]

is the Euler rotation matrix which gives the
transformation from the global system of coordinates (O, x, y, z)
to the local system of coordinates (O,xk,yk,zk) with the help of
three rotations of angles αek

, βek
and γek

.
• [Rs(θk, φk)] is the spheric rotation matrix which gives the relation

between a Cartesian basis (�uxk
, �uyk

, �uzk
) and a spherical basis

(�urk
, �uθk

, �uφk
)

The Euler rotation matrix is defined as follows:

[Rek(αek
, βek

, γek
)] =


Rek11 Rek12 Rek13

Rek21 Rek22 Rek23

Rek31 Rek32 Rek33




=


 c(αek

)c(γek
) − s(αek

)c(βek
)s(γek

)
s(αek

)c(γek
) + c(αek

)c(βek
)s(γek

)
s(βek

)s(γek
)

−c(αek
)s(γek

) − s(αek
)c(βek

)c(γek
) s(αek

)s(βek
)

−s(αek
)s(γek

) + c(αek
)c(βek

)c(γek
) −c(αek

)s(βek
)

s(βek
)c(γek

) c(βek
)


 (5)

With c(x) = cos(x) and s(x) = sin(x). With the rotation angles
defined as:

αek
=
π

2
(k − 1) (6)

γek
= 0 (7)

βek
=

⌊
k − 1

4

⌋
π (8)

For k = {1 to 8}. With the floor function: �x� = sup{n ∈ Z | n ≤ x}
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These rotation angles allow to obtain the vectors of the basis of
each local system of coordinates associated to the TCR:

�uxk
=


 Rek11

Rek21

Rek31


 �uyk

=


 Rek12

Rek22

Rek32


 �uzk

=


 Rek13

Rek23

Rek33


 (9)

The spheric rotation matrix is defined as follows:

[Rs(θ, φ)] =


 sin(θ) cos(φ) cos(θ) cos(φ) − sin(φ)

sin(θ) sin(φ) cos(θ) sin(φ) cos(φ)
cos(θ) − sin(θ) 0


 (10)

Thus, the matrix [P ] allows the transition between the spherical
components of the field expressed in the spherical basis (�ur, �uθ, �uφ)
defined in the global system of coordinates (O,x,y,z) with the angles
(θ,φ), and the spherical components expressed in the spherical basis
(�urk

, �uθk
, �uφk

) defined in the local system of coordinates (O,xk,yk,zk)
with the angles (θk,φk). The signature of the TCR expressed in its
own local system of coordinates is then evaluated in the global system
of coordinates:

 0 0 0
0
0

[
STCRk
global

] 
 = [Pdk]


 0 0 0

0
0

[
STCRk
local−k

] 
 [Pik]

T (11)

With:

[Pdk] = [Rs(θd, φd)]
T [Re(αek

, βek
, γek

)] [Rs(θdk
, φdk

)] (12)

[Pik] = [Rs(θi, φi)]
T [Re(αek

, βek
, γek

)] [Rs(θik , φik)] (13)

The local spheric angles are obtained with:

θpk
= arccos (�upr · �uzk

) (14)

φpk
= arctan

(
�upr · �uyk

�upr · �uxk

)
(15)

With θpk
∈ [0;π] and φpk

∈ [0; 2π] for p = i or d.
The bistatic signature of the TCR k, expressed in its own local

system of coordinates is calculated by the coherent summation of all
the contributions occurring for the TCR k, all expressed in the local
system of coordinates associated to the TCR k:[

STCRk
local−k

]
=

[
Ssdk

]
+ [Ssrk ] +

[
Sdrk

]
+

[
Strk

]
(16)

Where
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•
[
Ssdk

]
is the bistatic signature of the first order edge-diffraction

contribution, also named single diffraction, of the exterior edges
of the TCR, expressed in the local system of coordinates of the
TCR k.

• [Ssrk ] is the bistatic signature of the single reflection contribution
expressed in the local system of coordinates of the TCR k.

•
[
Sdrk

]
is the bistatic signature of the double reflection contribution

expressed in the local system of coordinates of the TCR k.
•

[
Strk

]
is the bistatic signature of the triple reflection contribution

expressed in the local system of coordinates of the TCR k.

The single reflection on the exterior of the trihedral corner (single
reflection for faces illuminated on the backside) is not taken into
account in the signature of the TCR because for the octahedral
reflector, these contributions correspond to single internal reflection
of other TCRs.

The next parts of this paper present the evaluation of all of these
contributions. Calculations are done in the local system of coordinates
of the trihedral reflector numbered k. In the following, the local
system of coordinates (O,xk,yk,zk) is considered as the global system
of coordinates, in order to improve the comprehension.

4. SINGLE REFLECTION OF THE TRIHEDRAL
CORNER REFLECTOR

The procedure of the calculus is the same for the three faces, so we
use a label “j1” with j1 = {1, 2, 3}. In fact j1 represents the number
of the face on which the single reflection is evaluated. The faces are
numbered as shown in Fig. 1. So, the contribution is calculated for the
three faces in their local system of coordinates. The existence of each
reflection is evaluated by two conditions:

�uir · �uzj1
< 0 (17)

�udr · �uzj1
> 0 (18)

The face j1 is excited by the incident wave if the first condition is
validated, and if the second one is validated the face is observed by the
receiver. So the single reflection calculation can be done for the face j1.
The faces of the TCR are defined from Fig. 4, and the local cartesian
basis system, defined in the global system of coordinates associated to
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Figure 4. Configuration for the single reflection calculus.

the trihedral corner is:

�uxj1
=



δ3j1
δ2j1
δ1j1


 �uyj1

=



δ1j1
δ3j1
δ2j1


 �uzj1

=



δ2j1
δ1j1
δ3j1


 (19)

j1 = {1, 2, 3}
And where δji is the Kronecker delta:

δji =
{

1 if i = j
0 if i �= j (20)

The calculus is made in the local system of coordinates of the face
j1, i.e: (Oj1 ,xj1 ,yj1 ,zj1), in order to generalise the method for the three
faces. We set the three vertices of the trihedral corner defined in the
local system of coordinates (Oj1 ,xj1 ,yj1 ,zj1):

Aj1 =


 +L

0
0


Bj1 =


 0

+L
0


Sj1 =


 0

0
+L


 (21)

We also define the two other faces j2 and j3 such as the faces j1,
j2 and j3 are numbered in the direct sense, this an arbitrary choice but
this must be defined for the following, so:

j1 = {1, 2, 3}
j2 = Mod(j1, 3) + 1
j3 = 6 − j1 − j2
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Figure 5. Shadowing effect in incidence on the face j1 for the single
reflection calculus.

Face j
1

Common 
edge with 
the face j

3

Aj1

Bj1

So'

So
j2

So
j3

0

Common 
edge with 
the face j

2

zj1

xj1

yj1
shadowed surface in 
observation

Face j
1

Common 
edge with 
the face j

3

Aj1

Bj1

So'

So
j3

So
j2

0

Common 
edge with 
the face j

2

zj1

xj1

yj1

 

shadowed surface in 
observation

Face j
1

Common 
edge with 
the face j

3

Aj1

Bj1

So'

So
j3

So
j2

0

Common 
edge with 
the face j

2

zj1

xj1

yj1

 

shadowed surface in 
observation

Figure 6. Shadowing effect in observation on the face j1 for the single
reflection calculus.

Where the modulo operation Mod(x, y) finds the remainder of division
of x by y

The problem geometry is illustrated in Fig. 4. First, we determine
the point Si

′
by doing a projection in the excitation direction, of

the vertex Sj1 on the considered plate called j1. In Fig. 5, the
three possibilities of shadowing effect in excitation are depicted. The
same way is used to obtain the point So

′
defined with respect to the

observation. In Fig. 6 the three possibilities of shadowing effect in
observation are depicted. By knowing the coordinates of Si

′
and So

′
,

one can evaluate the shadowed regions in excitation and observation
by calculating intersection with the limits of the face. By taking
into account the intersection of these shadowed regions, the both
illuminated and observed patch is finally evaluated. The shape of the
surface used for the calculation is an arbitrary triangle shown in Fig. 7.

The signature of the single reflection of the considered plate is
then derived from the local signature of elementary triangle from the
PO theory given in Appendix A, and expressed in the local system of
coordinates of the plate j1.
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Figure 7. Example of shadowing effect in incidence and observation
for the single reflection contribution.

The signature of the single reflection expressed in the local system of
coordinates of the plate j1 is then evaluated in the global system of
coordinates associated to the TCR k:

 0 0 0
0
0

[
Ssrj1global−k

] 
 = [Pdj1 ]


 0 0 0

0
0

[
Ssrj1local−j1

] 
 [Pij1 ]

T (22)

The matrices [Pdj1 ] and [Pij1 ] are defined from Eqs. (4), (12) and
(13).

Signature of single reflection contribution expressed in the global
system of coordinates of the trihedral reflector k is the summation of
the signature of the single reflection of each face evaluated in this global
system of coordinates:

[Ssrk ] =
3∑

j1=1

[
Ssrj1global−k

]
(23)

The next section presents the evaluation of the double reflection
contribution.

5. DOUBLE REFLECTION OF THE TRIHEDRAL
CORNER REFLECTOR

There are six double reflections, three in the direct sense: 1 → 2, 2 → 3,
3 → 1, and three others in the indirect sense: 1 → 3, 2 → 1, 3 → 2.
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The procedure of the calculus is the same for all the double reflections,
so we use the label “j1” with j1 = {1, 2, 3}. In fact j1 represents the
number of the first face on which the first reflection occurs. The double
reflection considered is j1 → j2. The GO approximation permits to
calculate the characteristics of the reflected ray on the first face of the
double reflection. The specular reflection direction is defined, in the
local system of coordinates associated to the face j1, by the spherical
angles (θrj1j2

, φrj1j2
) obtained from the spherical angles of incidence

(θij1 , φij1 ) evaluated from Eqs. (14) and (15):

θrj1j2
= π − θij1 (24)

φrj1j2
= φij1 (25)

Moreover, �uzj1
is a normal unit vector of the face j1, so the

reflection director vector of the reflected ray on the face j1 towards
a face j2 is evaluated in the global system of coordinates of the TCR
k:

�urj1j2r = �uir − 2(�uir · �uzj1
)�uzj1

(26)

And finally

�urj1j2r =




(1 − 2δ2j1) sin(θi) cos(φi)
(1 − 2δ1j1) sin(θi) sin(φi)

(1 − 2δ3j1) cos(θi)


 (27)

The ray reflected on the face j1 can encounter the two other faces
of the trihedral reflector. Faces being numbered, double reflections in
the direct sense (1 → 2, 2 → 3, 3 → 1) and in the indirect sense (1 → 3,
2 → 1, 3 → 2) are distinguished. The subscript of the second face of
the double reflection j2 is defined as:

j2 = j2i(1 − sense)/2 + j2d
(1 + sense)/2 (28)

With
sense = +1;−1

j2d
= Mod(j1, 3) + 1

j2i = 6 − j1 − j2d

So, the third face which participates in the double reflection only for
the shadowing effect is:

j3 = 6 − j1 − j2 (29)

The second reflection on the face j2 occurs only if the director vector
of the reflected ray by the face j1 satisfies the relation:

�urj1j2r · �uzj2
≤ 0 (30)
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�uzj2
is the normal unit vector of the face j2. Eq. (30) ensures that

the reflected wave (after the first reflection) will encounter the face
j2, and implies that the face j2 does not create a shadowing effect in
excitation on the face j1. So, the double reflection must be evaluated
for only two cases: shadowing effect in excitation due to the face j3 on
the face j1 and the case for no shadowing effect in excitation.
So, the existence of each double reflection is evaluated by three
conditions:

�uir · �uzj1
< 0 (31)

�uir · �uzj2
< 0 (32)

�udr · �uzj2
> 0 (33)

The face j1 is excited by the incident wave if the first condition
(31) is validated. If the second (33) holds, the face j2 does not shadow
the face j1 in excitation. Finally, if the third one (32) is satisfied the
face j2 is observed by the receiver. So the double reflection j1 → j2
must be calculated.

As the single reflection, the shadowed region in excitation is
evaluated on the first plate of the double reflection, by geometrical
projection parallel to the direction of incidence. Then, the illuminated
surface on the face j1 can be projected on the face j2 parallel to the
specular reflection direction.

The director vector of the reflected ray can be easily evaluated in
the local system of coordinates of the face j2:

�uj2i =




sin(θij2 ) cos(φij2 )
sin(θij2 ) sin(φij2 )

cos(θij2 )


 (34)

(θij2 , φij2 ) are the spherical angles of incidence in the local system of
coordinates of the face j2 obtained from the director vector of the
reflected ray and from Eqs. (14) and (15):

θij2 = arccos
(
�u rj1j2r · �uzj2

)
(35)

φij2 = arctan


�u rj1j2r · �uyj2

�u rj1j2r · �uxj2


 (36)

With θij2 ∈ [0;π] and φij2 ∈ [0; 2π].
With the help of �uj2i , the illuminated surface on the face j2 is

obtained by geometrical projection of the illuminated surface of the



186 Kubické, Bourlier, and Saillard

Face j 2

Common 
edge with 
the face j 3

Sj1j2

Sj2j3

Sr'

0
zj2

xj2

yj2

 

Sr''

Illuminated area 
on the face j 2

Si
j3

Common 
edge with 
the face j 1

Face j 2

Common 
edge with 
the face j 3

0

Common 
edge with 
the face j 1

zj2 xj2

yj2

 

Illuminated area 
on the face j 2

Sj2j3

Sj1j2

Si
j3

Sr''

Sr'

Face j 2

Common 
edge with 
the face j 3

0

Common 
edge with 
the face j 1

zj2 xj2

yj2

 

Illuminated area 
on the face j 2

Sj2j3

Sj1j2

Sr''

Sr'

Si
j3

Figure 8. Illuminated surface on the face j2 after the first reflection
during double reflection in the indirect sense case.

Face j 2

Common 
edge with 
the face j 3

0

Common 
edge with 
the face j 1

zj2 xj2 

Observed area 
on the face j 2

Sj1j2

Sj2j3

So'

So
j3

yj2

So
j3j1So

j1

Face j 2

Common 
edge with 
the face j 3

0

Common 
edge with 
the face j 1

zj2 xj2

yj2

 

Observed area 
on the face j 2

Sj1j2

Sj2j3

mmonSo
j3

So
j3j1

So'

So
j1

Face j 2

Common 
edge with 
the face j 3

0

Common 
edge with 
the face j 1

zj2 xj2

yj2

 

Observed area 
on the face j 2

Sj1j2

Sj2j3

So
j3j1

So'

So
j3

So
j1

Figure 9. Shadowing effect in observation on the face j2 for the double
reflection calculus in the indirect sense case.

face j1 on the face j2. Three cases can be obtained for a given sense,
they are depicted in Fig. 8 for the case of an indirect sense of double
reflection.

However, there are four possibilities for the observation during
the second reflection occurring on j2: shadowing effect in observation
by the face j1 on j2, shadowing effect in observation by the face j3
on j2, shadowing effect in observation by the faces j1 and j3 on j2,
no shadowing effect in observation. As in the single reflection case,
the shadowed surfaces in observation can be obtain by geometrical
projection parallel to the observation direction. The three cases
obtained are depicted in Fig. 9 for the case of an indirect sense of
double reflection. Six configurations of combination of illuminated
surfaces and observed surfaces are encountered Figs. 10 and 11 for
the case of an indirect sense of double reflection.

From appropriate tests and calculus of intersection, the both
illuminated and observed surface is evaluated. It can be an arbitrary
triangle or an arbitrary quadrilateral. These tests and calculus can be
easily generalise for the two senses of double reflection. The signature
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Figure 10. Intersections of illuminated and observed surfaces on the
face j2 for the double reflection calculus in the indirect sense case: no
shadowing effect in excitation on the face j1.
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Figure 11. Intersections of illuminated and observed surfaces on the
face j2 for the double reflection calculus in the indirect sense case:
shadowing effect in excitation on the face j1.

of the double reflection j1 → j2 is then derived from the signature
of elementary triangle from the PO theory (appendix A) expressed
in the local system of coordinates of the plate j2. If the surface is
a quadrilateral, it can be broken up into two elementary triangles,
and the signature is obtained by the coherent summation of the two
signatures of the elementary and independent triangles.
The signature of the double reflection expressed in the local system of
coordinates of the plate j2 is then evaluated in the global system of
coordinates associated to the TCR k:

 0 0 0
0
0

[
Sdrj1j2 global−k

] 
 =

[
Pdj2

] 
 0 0 0

0
0

[
Sdrj1j2 local−j2

] 


× [Pj2j1 ] [F ]
[
Pij1

]T
(37)

The reflection on the first face j1 of the double reflection is treated
by the GO approximation. The specular direction is used for the
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geometrical projection, as seen before, and the Fresnel coefficients
are applied with the help of the matrix [F ], composed by the Fresnel
coefficients for the perfectly conducting case:

[F ] =


 0 0 0

0 1 0
0 0 −1


 (38)

The matrices [Pdj2 ] and [Pij1 ] are defined with the help of Eqs. (4),
(12) and (13) using appropriate subscripts. [Pj2j1 ] is defined as:

[Pj2j1 ] =
[
Rs(θij2 , φij2 )

]T [
Re(αej2

, βej2
, γej2

)
]T

×
[
Re(αej1

, βej1
, γej1

)
] [
Rs(θrj1j2

, φrj1j2
)
]

(39)

Signature of double reflection contribution expressed in the global
system of coordinates of the trihedral reflector k is the summation of
the signature of each double reflection, that could occur, evaluated in
this global system of coordinates:

[
Sdrk

]
=

3∑
j1=1

3∑
j2=1

[
Sdrj1j2 global−k

]
with j1 �= j2 (40)

After evaluating the double reflection contribution, now let us
focus on the calculation of the triple reflection contribution.

6. TRIPLE REFLECTION OF THE TRIHEDRAL
CORNER REFLECTOR

There are six triple reflections, three in the direct sense: (1 → 2 → 3),
(2 → 3 → 1), (3 → 1 → 2), and three others in the indirect sense:
(1 → 3 → 2), (2 → 1 → 3), (3 → 2 → 1).

The reflexion on the first face was detailed in the above section.
The same method is applied to study the reflection on the second face
during the triple reflection.

The ray reflected on the face j2 can encounter the two other faces
of the trihedral reflector. Faces being numbered, triple reflections in the
direct sense and in the indirect sense are distinguished. The numbering
of the subscripts of the faces are used to generalise the calculus for
each triple reflection, they have been already given in the previous
section. So, the triple reflection considered is j1 → j2 → j3. The
specular reflection direction of the second reflection is defined, in the
local system of coordinates associated to the face j2, by the spherical



Progress In Electromagnetics Research, PIER 71, 2007 189

angles (θrj2j3
, φrj2j3

) obtained from the spherical angles of incidence
(θij2 ,φij2 ) obtained in the previous section:

θrj2j3
= π − θij2 (41)

φrj2j3
= φij2 (42)

Moreover, �uzj2
is a normal unit vector of the face j2, so the

reflection director vector of the reflected ray on the face j2 towards
the face j3 is evaluated in the global system of coordinates of the TCR
k:

�urj2j3r = �urj1j2r − 2(�urj1j2r · �uzj2
)�uzj2

(43)

And finally, after vectorial operations:

�urj2j3r =




(1 − 2δ2j1)(1 − 2δ3j2) sin(θi) cos(φi)
(1 − 2δ1j1)(1 − 2δ1j2) sin(θi) sin(φi)

(1 − 2δ3j1)(1 − 2δ3j2) cos(θi)


 (44)

The third reflection on the face j3 occurs only if the director vector of
the reflected ray by the face j2 respects the relation:

�urj2j3r · �uzj3
≤ 0 (45)

�uzj3
is the normal unit vector of the face j3. Eq. (45) ensures

that the reflected wave (after the first and second reflection) will
encounter the face j3, and implies that the face j2 and j3 do not create
a shadowing effect in excitation on the face j1. So, the triple reflection
must be evaluated only for the case where there is no shadowing effect
in excitation.

So, the existence of each triple reflection is evaluated by four
conditions:

�uir · �uzj1
< 0 (46)

�uir · �uzj2
< 0 (47)

�uir · �uzj3
< 0 (48)

�udr · �uzj3
> 0 (49)

The face j1 is excited by the incident wave if the first condition
(46) is satisfied, if the second (47) and third ones (48) hold, the faces
j2 and j3 do not shadow the face j1 in excitation. Finally, if the fourth
one (49) is validated the face j3 is observed by the receiver. So the
triple reflection j1 → j2 → j3 must be calculated.
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As the single and double reflection, the illuminated surface on the
face j1 is projected on the face j2 parallel to the specular reflection
direction. But, the shadowing effect can not occur in excitation, so
the illuminated surface on j1 is the total surface of the face. This
configuration of illuminated surface on the face j2 corresponds to the
case depicted on the left in Fig. 8.

The director vector of the reflected ray, for the second reflection
of the triple reflection, can be easily evaluated in the local system of
coordinates of the face j3:

�uj3i =


 sin(θij3 ) cos(φij3 )

sin(θij3 ) sin(φij3 )
cos(θij3 )


 (50)

(θj3i , φ
j3
i ) are the spherical angles of incidence in the local system

of coordinates of the face j3 obtained from the director vector of the
reflected ray of the second reflection and from Eqs. (14) and (15):

θij3 = arccos
(
�urj2j3r · �uzj3

)
(51)

φij3 = arctan


�urj2j3r · �uyj3

�urj2j3r · �uxj3


 (52)

With θij3 ∈ [0;π] and φij3 ∈ [0; 2π].
With the help of �uj3i , the illuminated surface on the face j3 is

obtained by geometrical projection of the illuminated surface of the
face j2 on the face j3. Three cases can be obtained for a given sense,
they are depicted in Fig. 12 for the case of an indirect sense of triple
reflection.
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Figure 12. Illuminated surface on the face j3 after the first and second
reflection during triple reflection in the indirect sense case.

However, there are four possibilities for the observation during
the third reflection occurring on j3: shadowing effect in observation
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by the face j1 on j3, shadowing effect in observation by the face
j2 on j3, shadowing effect in observation by the faces j1 and j2 on
j3, no shadowing effect in observation. As in the single and double
reflection cases, the shadowed surfaces in observation can be obtained
by geometrical projection parallel to the observation direction. The
three cases obtained are depicted in Fig. 13 for the case of an indirect
sense of triple reflection.
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Figure 13. Shadowing effect in observation on the face j3 for the
triple reflection calculus in the indirect sense case.

Nine configurations of combination of illuminated surfaces and
observed surfaces are encountered, Fig. 14 for the case of an indirect
sense of triple reflection.

With the help of appropriate tests and calculus of intersection,
the both illuminated and observed surface is evaluated. It can be an
arbitrary triangle, an arbitrary quadrilateral or an arbitrary pentagon.
These tests and calculus can be easily generalised for the two senses
of triple reflection. The signature of the triple reflection j1 → j2 → j3
is then derived from the signature of elementary triangle from the PO
theory (appendix A) expressed in the local system of coordinates of
the plate j3. If the surface is a quadrilateral or a pentagon, it can be
broken up into two or three elementary triangles, and the signature
is obtained by the coherent summation of the two signatures of the
elementary triangles.

The signature of the triple reflection expressed in the local system
of coordinates of the plate j3 is then evaluated in the global system of
coordinates associated to the TCR k:

 0 0 0
0
0

[
Strj1j2j3 global−k

] 
 =

[
Pdj3

] 
 0 0 0

0
0

[
Strj1j2j3 local−j3

] 


× [Pj3j2 ] [F ] [Pj2j1 ] [F ]
[
Pij1

]T
(53)

The matrix [F ] is obtained from Eq. (38), the matrices [Pdj3 ]
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Figure 14. Intersections of illuminated and observed surfaces on the
face j3 for the triple reflection calculus in the indirect sense case.

and [Pij1 ] are defined from Eqs. (4), (12) and (13) using appropriate
subscripts. The matrices [Pj2j1 ] and [Pj3j2 ] are defined from Eq. (39)
using appropriate subscripts.

Signature of triple reflection contribution expressed in the global
system of coordinates of the trihedral reflector k is the summation of
the signature of each triple reflection, that could occur, evaluated in
this global system of coordinates:

[
Strk

]
=

3∑
j1=1

3∑
j2=1

3∑
j3=1

[
Strj1j2j3 global−k

]
; j1 �= j2 �= j3 (54)

Finally, the evaluation of the triple reflection contribution has been
explained. The next section relates to the evaluation of the single
diffraction contribution.
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7. SINGLE DIFFRACTION OF THE TRIHEDRAL
CORNER REFLECTOR

The signature of single diffraction contribution of the trihedral corner
reflector k is evaluated by using the Method of Equivalent Currents
(MEC) [11, 12, 14] to take into account the fringe current for the
exterior edges of the TCR. These edges correspond to [AB] [BC] and
[AC] as depicted in Fig. 15. The bistatic signature of the exterior edge

A

C
B

zk

xk yk

O

Face 1 Face 2

Face 3

Figure 15. Exterior edges of the
trihedral corner reflector.

yj1

zj1
xj1

Figure 16. Exterior edge configura-
tion.

of a face j1, belonging to the TCR k, is evaluated in the local system
of coordinates of the face j1 from appendix B. The configuration of
this exterior edge on the face j1 is depicted in Fig. 16. So, the tangent
vector, and the binomial vector of the edge are:

�t = − Lx
LA2

�uxj1
+
Ly
LA2

�uyj1
(55)

�b = − Ly
LA2

�uxj1
− Lx
LA2

�uyj1
(56)

With
�b = �n ∧ �t (57)

And
�n = �uzj1

(58)

The length and the center of the edge are:

LAj1
=

√
L2
x + L2

y (59)

OAj1
= +

Lx
2
�ux +

Ly
2
�uy (60)
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So, the phase integral IAj1
is:

IAj1
=

∫ Lx

0
e
−jk

(
ux′+vLy

1−x′
Lx

)
dx′ (61)

And finally:

IAj1
= Lx · sinc

(
k(uLx − vLy)

2

)
e−jk

uLx+vLy
2 (62)

The ponderation term, necessary for the calculus is then:

PAj1
= Lx · sinc

(
k(uLx − vLy)

2

)
e−jk

uLx+vLy
2 · e

−jkr

2πr
(63)

Then, from the elementary signature given in the appendix B,
the signature of an exterior edge of a face j1 in a TCR k is obtained
in the local system of coordinates of the face j1. This signature is
then expressed in the global system of coordinates of the TCR k with
Eq. (22).

If all the three exterior edges of the TCR k are considered in
the evaluation of the signature of the octahedral reflector, some edges
will be taken into account many times because each edge is common to
another trihedral reflector as we can see in Fig. 2. So, only the exterior
edges belonging to the faces 1 and 3 of the TCRs 1 to 4 and the exterior
edges belonging to the face 1 of the TCRs 5 to 8 are evaluated. The
numbering of the trihedral corner reflectors and the faces in the TCR
are shown in Fig. 2 and Fig. 1. So, the signature of single diffraction of
the TCR k expressed in the global system of coordinates of the TCR
k is:

[
Ssdk

]
=




∑
j1={1,3}

[
Ssdj1 global−k

]
if k = {1, 2, 3, 4}

[
Ssdj1 global−k

]∣∣∣
j1=2

if k = {5, 6, 7, 8}
(64)

After evaluating all the contributions which yield the polarimetric
signature of the octahedral reflector, now let us focus on the results of
our calculus.

8. RESULTS

A program based on the above formulations has been developed to
calculate the bistatic signature of the faceted octahedron. The Sinclair
matrix is defined as:

[S] =
[
Sθθ Sθφ
Sφθ Sφφ

]
(65)
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RCS data are then calculated with the following equation:

σxy = lim
r → +∞

4πr2 |Sxy|2 (66)

Where the subscripts x and y can be θ or φ, Sxy is one of the
components of the Sinclair matrix of the faceted octahedron.
The internal edge length L of the octahedral reflector, shown in Fig. 2,
is equal to 10λ with a frequency of 10 GHz.

Results based on our method are compared with the software
FEKO [15] using a numerical method: Multi-Level Fast Multipole
Method (MLFMM) which is considered as the reference. This method
was used with a density of the mesh which the sampling step is λ/5
(personal computer: CPU Intel Pentium 4 at 2.4 GHz and 1 Go of
RAM), this sampling step was limited due to the capacities of the
computer.

Figure 17. Bistatic RCS of the octahedral reflector in co-polarisation.

In Figs. 17 and 18, the RCS is plotted versus the observation
angle φd with θd = 30◦ in the bistatic case (θi = 180 − 30◦ = 150◦,
φi = 180 + 45◦ = 225◦). In Fig. 17 the RCS in co-polarisation σθθ
is depicted, whereas in Fig. 18 the RCS in cross-polarisation σφθ is
shown.

In Figs. 19 and 20, the RCS is plotted versus the observation
angle θd with φd = 45◦ in the monostatic case (θi = 180◦ − θd,
φi = 180◦ + φd = 225◦). In Fig. 19 the RCS in co-polarisation σθθ
is depicted, whereas in Fig. 20 the RCS in cross-polarisation σφθ is
shown.



196 Kubické, Bourlier, and Saillard

Figure 18. Bistatic RCS of the octahedral reflector in cross-
polarisation.

Figure 19. Monostatic RCS of the octahedral reflector in co-
polarisation.
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Figure 20. Monostatic RCS of the octahedral reflector in cross-
polarisation.

In Fig. 19, the agreement between the two methods in co-polarisation
is excellent.

From Figs. 18 and 20, for the cross-polarisation, a disagreement is
observed between our method and the MLFMM. It can be attributed to
that for the cross-polarisation, the results computed from the MLFMM
is sensitive to the sampling step: the value used is λ/5, but also
it can be due to the limit of our method. Indeed, the use of GO
approximation, during double and triple reflections, assumes that the
electromagnetic wave remains plane after each bounce, allowing to
simplify the calculation but can alter the accuracy of the results.
The PO approximation assumes that the current density is null on
shadowed surfaces, neglecting for example the effect of creeping waves.
The MEC is an approximation of the fringe current expression, so the
concentration of the current near edges is not exactly evaluated. By
studying the special case of the backscattering from isosceles triangular
plates from the Geometrical Theory of Diffraction method, Ross et al.
have underlined that the second-order diffraction (interaction between
two edges) can contribute in the RCS for grazing angles [16]. The
contributions of the second-order diffraction, the reflection-diffraction
and diffraction-reflection for example, were not taken into account
in our model and can affect the values of the results in the cross-
polarisation. This can also explain the differences in the bistatic case,
in Fig. 17, for φd ∈ [180◦; 200◦] and φd ∈ [250◦; 270◦]. A prospect of
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the paper is to take into account the second order diffraction from the
formula of Michaeli [17].

Our calculus is fast but another advantage of our method is that
each component contributing in the total signature can be evaluated
separately. In Fig. 21, same variation as in Fig. 19 is shown but all
the components are separated. The axis of symmetry at θd = 90◦ is

Figure 21. Components of the monostatic RCS of the octahedral
reflector in co-polarisation.

observed in Fig. 19. This was expected because of the geometry of
the object. For θd ∈ [0◦; 90◦] the incident wave illuminates mainly the
TCR numbered 1 then the TCR numbered 6 for θd ∈ [90◦; 180◦].

The value of the single reflection contribution at 0◦ corresponds to
the specular of the square plate composed by the four faces numbered
3 of the TCRs numbered 1 to 4. The value is σθθ = 26, 5 dBm2 which

verifies the value obtained with the expression: σ = 4π
(

2L2

λ

)2
.

The value obtained at 90◦ in the double reflection contribution
is the specular of the effective rhombus composed by the faces 1
and 2 of the TCR numbered 2 and the faces 1 and 2 of the TCR
numbered 6. This effective rhombus has diagonal lengths of L/

√
2 and

2L. The specular value is obtained with σ = 4π
(

2L2√
2λ

)2
, and finally

σ = 23, 5 dBm2. This value is also verified on Fig. 21.
For θd ∈ [20◦; 80◦] the major contribution is due to the triple
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reflection contribution created between the three faces of the TCR
numbered 1.

For θd ∈ [0◦; 35◦], all the edges of the TCRs numbered 1 to 4 are
excited. From the value θd = 35◦, the edge of the face 3 of the TCR
numbered 3 is shadowed. From the value θd = 55◦, the edges of faces 1
and 2 of the TCR numbered 6 are excited. For θd = 90◦ only the edges
of the TCRs 1 and 6 are illuminated. These phenomena are observed
in the behaviour of the single diffraction contribution.

For θd ∈ [0◦; 30◦] an interference effect is shown in Fig. 19. This
phenomenon is due to the interference effect obtained on the single,
double and triple reflection contributions between the TCRs numbered
1 to 4. These fast variations occur in Fig. 21.

The principal advantage of our method is the requirement in
CPU time. For the bistatic simulation shown in Figs. 17 and 18,
the MLFMM method requires 54 minutes 34 seconds whereas only 2.4
seconds for our method to obtain the four components of the scattering
matrix. For the monostatic simulation shown in Figs. 19 and 20, the
MLFMM method requires 138 hours 20 minutes whereas only 5.25
seconds for our method to obtain the four components of the scattering
matrix.

9. CONCLUSION

The hybridation of PO, GO and MEC is a very good approach for the
evaluation of monostatic and bistatic signature of complex structure,
such as octahedral reflector. The evaluation of the signature of this
particular object requires the knowledge of the bistatic signature of
triangularly shaped trihedral corner reflector on 4π steradians and its
evaluation was completely described in this paper with the help of GO
for the evaluation of shadowed surfaces. Numerical results presented in
this paper show good agreement with the numerical method MLFMM
for the co-polarisation and some progress may be required for the cross-
polarisation. Comparatively to MLFMM, our method requires many
less space and CPU time.

APPENDIX A. SIGNATURE OF AN ARBITRARY
SHAPED TRIANGLE

A.1. Signature Of An Arbitrary Plane Polygonal Reflector

A plane polygonal reflector with surface S, contained in the plane
(0, x, y), is considered. As shown in Fig. A1, the axis (0z) is the normal
to the plane reflector (�n = �uz). The direction vectors of the incident
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and scattered rays are defined by the spherical angles (θi, φi) and
(θd, φd). The incident and scattered field components are expressed, in
FSA convention, in the spherical basis (�uir, �u

i
θ, �u

i
φ) and (�udr , �u

d
θ, �u

d
φ). The

Figure A1. Configuration for the bistatic scattering by the surface of
a plane polygonal reflector.

Physical Optics approximation is applied in the electric and magnetic
field equations expressed in far field:

�Ed(�r) = −jk e
−jkr

4πr

∫∫
S

[(
�M(�r ′) − Z0

�J(�r ′) ∧ �udr
)
∧ �udr

]
e+jk"u

d
r ·"r ′

dS ′

(A1)

�Hd(�r) = jk
e−jkr

4πr

∫∫
S

[(
�J(�r ′) +

1
Z0

�M(�r ′) ∧ �udr
)
∧ �udr

]
e+jk"u

d
r ·"r ′

dS ′

(A2)
Where

• �r is the observation point vector (�r = r�udr).
• �r ′ is the integration point vector to the surface S of the object,

directly illuminated by the incident plane wave.
• k = 2π/λ is the wave number.
• ( �Ed(�r ), �Hd(�r )) is the electromagnetic field scattered at the

observation point.
• J(�r ′) and M(�r ′) are the electric and magnetic surface current

density at the integration point.
And we have:

�uir =




sin(θi) cos(φi)
sin(θi) sin(φi)

cos(θi)


 (A3)
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�udr =




sin(θd) cos(φd)
sin(θd) sin(φd)

cos(θd)


 (A4)

And

�r ′ =


 x′

y′

0


 (A5)

With vectorial operations from the magnetic or electric field
equation Eqs. (A1) and (A2), and with the help of the PO
approximation (Eqs. (1) and (2)), the Sinclair matrix is:

[S] = Ps[S̃] (A6)

Where S̃ is the elementary scattering matrix of the surface of a plane
reflector with arbitrary shape:

[S̃] =

[
cos θd cos(φd − φi) cos θd cos θi sin(φd − φi)

sin(φd − φi) cos θi cos(φd − φi)

]
(A7)

Ps is a ponderation term which depends on the observation
distance r, on the wavelength λ, on the incidence and observation
angles and on the shape of the surface reflector:

Ps = j
e−jkr

λr

∫
y

∫
x
e−jk(ux

′+vy′) dx′dy′ (A8)

Because, we can write:

(�uir − �udr) · �r ′ = ux′ + vy′ (A9)

with
u = sin(θi) cos(φi) − sin(θd) cos(φd) (A10)

v = sin(θi) sin(φi) − sin(θd) sin(φd) (A11)

Then, these expressions can be applied for the particular case of
a right triangle.

A.2. Signature of a Right Triangle

The right triangle is shown in Fig. A2.
The calculation of Ps for this case is easily evaluated by analytical
integration and is finally given by:

Ps = jk
LxLy

2
· ψ

(
kuLx

2
,
kvLy

2

)
e−jkr

2πr
(A12)
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Figure A2. Configuration for the bistatic scattering by the surface of
a right triangle.

With:

ψ(x, y) =
sinc(y)e−jy − sinc(x)e−jx

j(x− y) (A13)

And

ψ(0, 0) = 1 lim
x → y
x 
= 0

ψ(x, y) =
e−jx

x

[
sinc(x) − e−jx

]
(A14)

The bistatic signature matrix is then obtained with Eqs. (A6),
(A7) and (A12).

A.3. Signature of the Arbitrary Shaped Triangle

The triangle is located by three points in a given system of coordinates.
In fact, an arbitrary triangle is the union of two right triangles for which
the bistatic signature in a local system of coordinates was studied in
the precedent subsection.

The arbitrary shaped triangle is decomposed into two right
triangles with the evaluation of an height of the arbitrary triangle
as shown in Fig. A3. So, the two right triangles obtained are defined
in their own local system of coordinates as shown in Fig. A3. These
systems of coordinates can be evaluated using the Euler rotation with
the help of the rotation angles for the first right triangle (SHP1):
αet1

, βet1
, γet1

and for the second one (SHP2): αet2
, βet2

, γet2
. These

angles are evaluated from the coordinates of each point of the triangle.
With the expressions of the systems of coordinates, spherical angles in
incidence and diffraction can be known with Eqs. (14) and (15).

The signature of each triangle is then calculated in its own local
system of coordinates from the signature of a right triangle, as seen in
subsection A.2. The signature of each right triangle expressed in its
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Figure A3. Decomposition of the arbitrary shaped triangle.

own local system of coordinates is then evaluated in the global system
of coordinates where the arbitrary shaped triangle is defined:

 0 0 0
0
0

[
Sti−global

] 
 = Tr ·


[Pdti ]


 0 0 0

0
0

[
Sti−local

] 
 [Piti ]

T


 (A15)

Tr is a phase correction to include the translation of the origin.

Tr = e−jk("u
i
r−"ud

r)·
−→0H (A16)

The matrices [Pdti ] and [Piti ] are obtained from Eqs. (4), (12) and (13).
Signature of the arbitrary shaped triangle expressed in the global

system of coordinates is the summation of the signature of each right
triangle evaluated in the global system of coordinates:

[S] =
2∑

ti=1

[
Sti−global

]
(A17)

It can be noted that the bistatic signature of an arbitrary shaped
triangle can be easily used to evaluate the bistatic signature of more
complex polygon, by using appropriate combinations and coherent
summations.

APPENDIX B. SIGNATURE OF THE DIFFRACTION
BY AN EDGE

The bistatic signature of the diffraction by a metallic edge is computed
by using the Method of Equivalent Currents (also named by Mitzner:
Incremental Length Diffraction Coefficients) [7–10]. This method
permits to describe the fringe current expression, source of the
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diffracted field by edges with the help of fictive currents. The edge is
assumed to be locally rectilinear around each point of the considered
contour. The diffracted field is then calculated by a single integral of
the equivalent currents on the contour L of the edge:

�Ed = jk
e−jkr

4πr

×
∫
L

[
Z0Ie(�r ′)�udr ∧

(
�udr ∧ �t(�r ′)

)
+ Im(�r ′)�udr ∧ �t(�r ′)

]
e+jk"u

d
r ·"r ′

dl ′

(B1)

Where
• �r is the observation point vector (�r = r�udr).
• �r ′ is the integration point vector on the contour L of the edge of

the target, directly illuminated by the incident plane wave.
• k = 2π/λ is the wave number.

• ( �Ed(�r), �Hd(�r)) is the electromagnetic field diffracted at the
observation point.

• �t(�r ′) is the unit tangent vector of the edge at the integration point;

• �Ie(�r ′) = Ie(�r ′)�t and �Im(�r ′) = Im(�r ′)�t are the electric and
magnetic equivalent currents at the integration point;
The expressions of the electric and magnetic equivalent currents

at the integration point are obtained from the theory of Mitzner or
from the theory of Michaeli which were all two written on the same
formalism by Knott [14]:

Ie(�r ′) =
2j
kZ0

{
De

[
�Ei(�r ′) · �t(�r ′)

]
+Dm

[
Z0H

i(�r ′) · �t(�r ′)
]}

(B2)

�Im(�r ′) =
2j
k
Dm

[
Z0H

i(�r ′) · �t(�r ′)
]

(B3)

Where ( �Ei(�r ′), H i(�r ′)) is the incident electromagnetic field at the
integration point, and (De, Dem, Dm) are the coefficients of the MCE
[14] which depend on local angles (βi, ψi) and (βd, ψd) defined in the
local basis (�n,�t,�b ) associated to the edge, as depicted in Figs. B1 and
B2 for a rectilinear edge with an aperture of (2 − n)π. The angles βi
and βd are respectively defined in the incidence plane Pi = (�uir,�t) and
in the diffraction plane Pd = (�udr ,�t ) with:

βi = arccos(�uir · �t ) (B4)

βd = arccos(�udr · �t ) (B5)
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Figure B1. Definition of
angles βi and βd in the incidence
and diffraction plane.

Figure B2. Definition of
angles ψi and ψd in the normal
plane of the edge.

The angles ψi and ψd are respectively defined in the planes (�ui
t

r ,
�b ) and

(�ud
t

r ,
�b) with:

ψi = π − [π − arccos(−�uitr ·�b )]Sign(−�uitr · �n) (B6)

ψd = π − [π − arccos(−�udt

r ·�b)]Sign(−�udt

r · �n) (B7)

with

�ui
t

r =
�uir − (�uir · �t)�t∥∥∥�uir − (�uir · �t)�t

∥∥∥ (B8)

and

�ud
t

r =
�udr − (�udr · �t)�t∥∥∥�udr − (�udr · �t)�t

∥∥∥ (B9)

The angles ψi and ψd must respect the condition: ψi, ψd ∈ [0;nπ].
The diffraction coefficients of the MEC are given for the half-plane

(n = 2), by the relations [14]:

De =
sin(ψi/2)

sin2 βi[sin(α/2) + cos(ψi/2)]
(B10)

Dem =
−Q cos(ψd)

2 sin2 βi sin(α/2)[sin(α/2) + cos(ψi/2)]
− cos(βi)

sin2(βi)
(B11)

Dm =
− sin(ψd)

2 sinβi sinβd sin(α/2)[sin(α/2) + cos(ψi/2)]
(B12)
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With
Q =

(1 + cosβd cosβi)(cosβi − cosβd)
sinβd sinβi

(B13)

α =




−j log(µ+
√
µ2 − 1) if µ > 1

−j log(µ+ j
∣∣∣√1 − µ2

∣∣∣) if |µ| ≤ 1

−j log(µ−
∣∣∣√µ2 − 1

∣∣∣) if µ < −1
(B14)

With the function log(z) = ln(|z|)+j arg(z) and arg(z) ∈ [−π;π]. And

µ =
sinβd sinβi cosψd + cosβd cosβi − cos2 βi

sin2 βi
(B15)

So, the coefficients of the MEC can be computed and used to
calculate the signature by the edge of a polygonal plane. Indeed, with
vectorial operations from Eqs. (B1), (B2) and (B3), and with the help
of geometrical properties of the problem, shown in Fig. B3, the sinclair
matrix can be obtained:

Figure B3. Configuration for the diffraction by edges of a plane
polygonal reflector.

[SA] = PA[S̃A] (B16)

Where PA is a ponderation term which depends on the observation
distance r, the wavelength λ, the incidence and observation angles and
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on the length of the edge:

PA = IA
e−jkr

2πr
(B17)

with
IA =

∫
L
e−jk("u

i
r−"ud

r)·"r ′
dl ′ (B18)

And S̃A is the elemental diffraction matrix of the edge of the plane
polygonal reflector:

S̃Aθθ = − cos θd(tx cosφd + ty sinφd) {De cos θi(tx cosφi + ty sinφi)
−Dem(tx sinφi − ty cosφi)}
+(tx sinφd − ty cosφd)Dm(tx sinφi − ty cosφi) (B19)

S̃Aθφ = + cos θd(tx cosφd + ty sinφd) {De(tx sinφi − ty cosφi)
+Dem cos θi(tx cosφi + ty sinφi)}
+(tx sinφd − ty cosφd)Dm cos θi(tx cosφi + ty sinφi) (B20)

S̃Aφθ = (tx sinφd − ty cosφd) {De cos θi(tx cosφi + ty sinφi)
−Dem(tx sinφi − ty cosφi)}
+ cos θd(tx cosφd + ty sinφd)Dm(tx sinφi − ty cosφi) (B21)

S̃Aφφ = −(tx sinφd − ty cosφd) {De(tx sinφi − ty cosφi)
+Dem cos θi(tx cosφi + ty sinφi)}
+ cos θd(tx cosφd+ty sinφd)Dm cos θi(tx cosφi+ty sinφi) (B22)

Finally, let us observe that the bistatic signature of the diffraction
by a metallic edge is evaluated for any incidence and observation angles
with the help of an elemental diffraction matrix which can describe the
diffraction phenomenon, and with the help of a ponderation term which
applies the geometry of the problem.
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