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Abstract—Yasuura’s mode-matching method is employed in the
investigation of plasmon resonance absorption on a metal grating with
a gold over-coating and the results are compared with experimental
data. Enhancement of TM-TE mode conversion accompanying the
plasmon resonance absorption is examined. When a TM wave is
incident on a metal grating, enhanced TM-TE mode conversion occurs
at angles of incidence at which the surface plasmons are excited. The
strength of the mode conversion depends strongly on the azimuth angle
of the mounting. This is verified by experiment and an application for
refractive index measurement is suggested.

1. INTRODUCTION

A metal grating has an interesting property known as the resonance
absorption in the optics region [1]: partial or total absorption of
incident light occurs at a specific angle of incidence, which is called
a resonance angle. This is caused by excitation of plasmon surface
waves and is accompanied by an abrupt change of diffraction efficiency
known as a resonance anomaly [1–3]. For a grating placed in planar
(or classical) mounting (the plane of incidence is perpendicular to
the grooves) this phenomenon can be seen in TM incidence alone.
While in conical mounting (the plane of incidence is not perpendicular
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to the grooves) the absorption is observed in both TM and TE
incidence; and the absorption is accompanied by enhanced TM-TE
mode conversion [4, 5]. Although the mode conversion always occurs in
conical mounting, it is enhanced by the excitation of surface plasmons.
In fact, when the resonance absorption occurs, the TM-component of
the reflected wave almost vanishes and the TE-component is dominant.
The TM-TE mode conversion can be a practical measure in finding the
resonance angle.

Although a plasmon index sensor with a prism has been examined
by many researchers in detail, few works with a metal grating can be
seen. We examine the possibility of employing the plasmon resonance
absorption as an index sensor comparing the numerical results with
experimental data. We show that the use of polarization conversion
accompanying the resonance absorption is necessary in designing a
precise measurement system.

2. FORMULATION AND THE METHOD OF SOLUTION

This section deals with the theoretical part of the present work:
statement of the problem and a concise introduction of the method
of solution. In this paper, a time factor exp(−iωt) is suppressed.

2.1. Statement of the Problem

Figure 1 shows the schematic representation of diffraction by a layered
grating made of a metal and having an over-coating made of another
metal. The grating is uniform in the Y direction and is periodic in X.
The surface profiles are given by

S1 : z1 = η1(x) = h sin(2πx/d)
S2 : z2 = η2(x) = η1(x) − e (1)

where h, d, and e are the amplitude (half depth) of the surface
modulation, the period, and the thickness of the coating. Note that
the small letters (x, y, z) denote a point on the surface. The surfaces
separate the whole space into three regions:

V1 : Z > η1(X) (free space)
V2 : η1(X) < Z < η2(X) (metal-coating)
V3 : Z < η2(X) (metal)

(2)

We assume that V1, V2 and V3, respectively, are filled with a
dielectric (with a positive refractive index n1), a metal (having a
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Figure 1. Schematic representation of diffraction by a metal grating
with gold over-coating.

complex-valued index n2), and another metal (with a complex n3).
Note that the capital letters (X, Y , Z) show the coordinates of a point
in these regions. A convention P = (X, Y, Z) will be used as well. The
electric and magnetic field of an incident light is given by(

Ei

H i

)
(P ) =

(
ei

hi

)
exp(iki · P ) (3)

with
hi = (1/ωµ0)ki × ei (4)

Here, ei is the electric-field amplitude and ki is the incident wave vector

ki = (α, β, −γ) (5)

with α = n1ki sin θ cos φ, β = n1ki sin θ sin φ, γ = n1ki cos θ, and
ki = 2π/λ. As shown in Fig. 1, θ is a polar angle between the Z-axis
and the incident wave vector and φ is an azimuth angle between the X-
axis and the plane of incidence. When φ = 0◦, the incident light comes
from a direction orthogonal to the grooves and the diffracted waves
propagate in directions in the plane of incidence. This arrangement
is called planar (or classical) mounting. While if φ �= 0◦, as shown
in Fig. 1, the directions lie on a cone centered at the origin. This is
termed conical mounting.
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Let us decompose the amplitude of the incident light into a TE-
and a TM-component, where TE (or TM) means the absence of the
Z-component in the relevant electric (or magnetic) field. To do this,
we first define two unit vectors that span a plane orthogonal to ki:

eTE = (sin φ,− cos φ, 0) (6)

eTM = (cos θ cos φ, cos θ sin φ, sin θ) (7)

Apparently, eTE has no Z-component. The fact that the magnetic
amplitude accompanying eTM cannot have any Z-component is seen
by direct manipulation. In addition, they are perpendicular to each
other, and both of them make a right angle with ki. Hence, they are
the unit vectors in the direction of the TE- and TM-component in the
sense above. The amplitude ei is decomposed as

ei = cos δeTE + sin δeTM (8)

where δ is the angle between eTE and ei (see Fig. 2) and is termed
a polarization angle. In particular, δ = 0◦ means TE incidence and
δ = 90◦ stands for TM incidence. Thus the incident light is specified
by the wavelength λ, the polar angle θ, the azimuth angle φ, and the
polarization angle δ. In this paper, we only consider the case of TM
incidence (δ = 90◦).

Figure 2. Definition of the polarision angle.

We consider the problem to seek the diffracted electric and
magnetic fields in Vj (j = 1, 2, 3). Note that they consist of both
TE- and TM-components. The solutions should satisfy the following
requirements:

D1: The Helmholtz equations in each region;
D2: A radiation condition in the Z-direction that the diffracted waves

in V1 (or V3) propagate or attenuate in positive (or negative) Z
direction;
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D3: A periodicity condition that: for any component of diffracted light,
the relation f(X + d, Y, Z) = eiαdf(X, Y, Z) holds and the phase
constant in Y is β; and

D4: The boundary conditions on S1 and S2 that the tangential
components of the electric and magnetic fields must be continuous
across the boundary.

2.2. Method of Solution

Because the diffracted fields have both TE- and TM-components, we
need TE and TM vector modal functions to construct the solutions.
The modal functions are derived from the Floquet modes (separated
solutions of the Helmholtz equation satisfying the radiation and the
periodicity condition) and are defined by

ϕTE
jm(P ) = eTE

jm exp(ikjm · P )

ϕTM
jm (P ) = eTM

jm exp(ikjm · P ) (9)
m = 0,±1,±2, . . . (P ∈ Vj ; j = 1, 2, 3)

with

eTE
jm = kjm × iZ /|kjm × iZ |
eTM

jm = eTE
jm × kjm

/∣∣∣eTE
jm × kjm

∣∣∣ (10)

Here, iZ is a unit vector in the Z-direction and

k1m = (αm, β, γ1m)
k2m = (αm, β,∓γ2m)
k3m = (αm, β,−γ3m) (11)

are the wave vectors of the mth order diffracted modes in Vj with

αm = α + 2mπ/d (12)

and
γ2

jm = (njk)2 − (α2
m + β2), Im(γjm) ≥ 0 (13)

Note that the modal functions given in (9) are used in constructing the
diffracted electric fields. For the magnetic fields another set of modal
function can be obtained from (9) though Maxwell’s equations as:

ψq
jm(P ) = (1/ωµ0)kjm ×ϕq

jm(q = TE, TM) (14)

Approximate solutions in V1 are defined as finite linear
combinations of up-going modal functions with unknown modal
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coefficients. Likewise, the solutions in V3 are finite sums of down-going
modal functions. Whereas the solutions in V2 must have both up-
and down-going modal functions. All the solutions, of course, should
consist of TE- and TM-components unless the planar mounting case.
The approximate solutions in each region, hence, can be expressed as:

(
Ed

1N

Hd
1N

)
(P ) =

N∑
n=−N

ATE
1n (N)

(
ϕTE

1n

ψTE
1n

)
(P )

+
N∑

n=−N

ATM
1n (N)

(
ϕTM

1n

ψTM
1n

)
(P )

(
Ed

2N

Hd
2N

)
(P ) =

N∑
n=−N

ATE−
2n (N)

(
ϕTE−

2n

ψTE−
2n

)
(P )

+
N∑

n=−N

ATM−
2n (N)

(
ϕTM−

2n

ψTM−
2n

)
(P )

+
N∑

n=−N

ATE+
2n (N)

(
ϕTE+

2n

ψTE+
2n

)
(P )

+
N∑

n=−N

ATM+
2n (N)

(
ϕTM+

2n

ψTM+
2n

)
(P ) (15)

(
Ed

3N

Hd
3N

)
(P ) =

N∑
n=−N

ATE
3n (N)

(
ϕTE

3n

ψTE
3n

)
(P )

+
N∑

n=−N

ATM
3n (N)

(
ϕTM

3n

ψTM
3n

)
(P ) (16)

where N is the number of truncation and the plus and minus
sign represent the direction of propagation. Thus an approximate
representation of the total electric (or magnetic) field in V1 is a sum
of Ei(P ) and Ed

1N (P ) (or H i(P ) and Hd
1N (P )). While Ed

2N (P ) and
Hd

2N (P ) (or Ed
3N (P ) and Hd

3N (P )) are the representations in V2 (or
V3).

Since the approximate solutions already satisfy the requirements
(D1), (D2), and (D3), the modal coefficients should be determined
in order that the solutions satisfy the boundary condition (D4) in an
approximate sense. According to Yasuura’s theory [6–8], we determine
the coefficients by the least-squares method. That is, we find the
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coefficients that minimize the quadratic form

IN =
∫
S1

∣∣∣ν × [Ed
1N +Ei −Ed

2N ](s)
∣∣∣2 ds

+
∫
S2

∣∣∣ν × [Ed
2N −Ed

3N ](s)
∣∣∣2 ds

+W 2
∫
S1

∣∣∣ν × [Hd
1N +H i −Hd

2N ](s)
∣∣∣2 ds

+W 2
∫
S2

∣∣∣ν × [Hd
2N −Hd

3N ](s)
∣∣∣2 ds (17)

where S1 and S2 denote one period of the upper and the lower surface, ν
is a unit normal vector to the surfaces, and W is an intrinsic impedance
of vacuum.

We discretize the quadratic form IN by the trapezoidal rule to have
a discretized least-squares problem. We notice in (15) that there are
8(2N+1) unknown coefficients in total. It is known that the sufficient
number of equations in the least-squares approximation is twice as
many as the number of unknowns [8]. Hence, locating J = 2(2N + 1)
equally-spaced sampling points (with respect to x) on one period of
both S1 and S2 and describing the boundary conditions at these points,
we have 16(2N + 1) linear equations for the coefficients. We solve this
over-determined set of equations in the least-squares sense employing
a QR-decomposition algorithm [9].

3. NUMERICAL RESULTS AND EXPERIMENTAL
DATA

In this section we show some numerical results for TM-wave incidence
obtained by the method in Section 2, the results which confirm
the possibility that the resonance absorption can be used in index
measurement [5, 10]. The numerical results will be compared with
experimental data.

3.1. Preparation for Numerical Computation and
Experiment

We define the efficiency of the zeroth-order diffracted mode in V1 as
per period power carried away by the zeroth mode normalized by the
per period incident power:

ρ0 = ρTE
0 + ρTM

0 (18)
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where the efficiency of the zeroth-order TE and TM mode is given by

ρTE
0 = (γ10/γ)

∣∣∣ATE
10

∣∣∣2 , ρTM
0 = (γ10/γ)

∣∣∣ATM
10

∣∣∣2 (19)

ATE
10 and ATM

10 are the modal coefficients of the zeroth-order TE and
TM mode. In the following examples we employ a commercial ultra
violet (UV) grating made of aluminum (Al) with a thin gold (Au)
over-coating, whose parameters are 2h = 0.061 µm, d = 0.556 µm and
e = 0.044 µm. The incident light is a monochromatic TM plane wave
from a laser diode (LD) with 0.660 µm wavelength. The refractive
indices of Au and Al at this wavelength are n2 = 0.1355 + i3.4679 and
n3 = 1.3517 + i7.1150 [11]. In an experiment we observe the TE- or
TM-component of the zeroth-order diffracted power using a photodiode
with a polariser.

Figure 3 shows the experimental setup. As shown in this figure,
a commercial UV grating made of Al with a thin Au over-coating is
mounted on a stage that rotates about the Z-axis to set the azimuth
angle φ. The incident light is set on a rotating arm that allows polar
angle θ scan with 0.2◦ steps. The TE- or TM-component of the zeroth-
order diffracted wave is monitored by a photodiode (PD) through a
polariser.

X

Y

Z

LD

Polariser

PD

 

Grating

Stage

Figure 3. The experimental setup.

3.2. Numerical Results and Experimental Data

First we show typical plasmon resonance absorption in planar
mounting in Fig. 4. The solid curve and the broken curve represent
numerical result and experimental data. We observe good agreement
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between them. The dip in the efficiency at θ = 8.2◦ corresponds to
the absorption, while the sharp peak at θ = 10.6◦ relates the −1 order
cutoff.

Figure 4. Typical absorption in planar mounting (φ = 0◦).

(a) (b)

Figure 5. ρ0, ρTE
0 and ρTM

0 as functions of θ (φ = 30◦), (a) numerical
results, (b) experimental data.

The next illustration, Fig. 5, is an example of the absorption
in conical mounting. We set φ = 30◦ and obtained the zeroth-
order efficiency ρ0 and its TM- and TE-component (ρTM

0 and ρTE
0 )

as functions of θ. The solid curves in Fig. 5(a) show numerical results
and the dots in Fig. 5(b) represent the experimental data. We observe
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fairly good agreement between the numerical results and experimental
data. The difference in the magnitude of efficiency is caused by the loss
of the polariser. We observe partial absorption of incident light as the
dip of ρ0 at θ = 9.6◦ followed by a sharp peak at θ = 12.8◦. The dip is
caused by excitation of plasmons and the peak is the result of the −1
order cutoff. It appears that the absorption is not so strong as that
in the planar mounting case. We, however, notice the strong TM-TE
mode conversion [4, 5] accompanying the absorption: when the polar
angle θ is in close vicinity to the resonance angle, ρTM

0 almost vanishes,
and ρTE

0 is dominant in ρ0.
The enhanced TM-TE mode conversion can be used in precise

measurement of the resonance angle. For this purpose we define the
ratio ρTE

0 /ρTM
0 and illustrate it as a function of θ in Fig. 6. φ is

a parameter and is shown in the figure. The solid curves in Fig. 6(a)
show numerical results and the broken curves in Fig. 6(b) represent the
experimental data. Although the absorption dips are not sufficiently
sharp, the ratio shows a sharp peak for a specific φ: in this example
this can be seen at φ = 30◦ in both numerical and experimental result.
Thus, we can find the resonance angle with four digits accuracy in a
preliminary experiment without much trouble.

(a) (b)

Figure 6. ρTE
0 /ρTM

0 as functions of θ, (a) numerical results, (b)
experimental data.

Because the absorption is caused by the excitation of a surface
wave, the resonance angle is a sensitive function of the refractive index
of a material in V1, which has been assumed to be vacuum in the above
discussion. This suggests that TM-TE mode conversion accompanying
the resonance absorption can be used for an index sensor. We expect
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that the ratio ρTE
0 /ρTM

0 can be employed in measuring the refractive
index of the material in V1. To examine this possibility we vary n1

in a range from n1 = 1.348 through 1.449 and show the numerical
results in Fig. 7(a). Here, the material in V1 is assumed to be solution
of glycerin (glycerin + aq) whose index is given by n1 = 1.348 (10%
glycerin), 1.356 (20%), 1.384 (40%), 1.400 (50%), and 1.449 (100%).
Fig. 7(b) represents the experimental data in which we observe good
agreement between numerical results and experimental data. We also
observe the change in concentration of samples from 10% through
100% is therefore detected as a shift of a resonance angle θ from
18.2◦ to 27.0◦. We have confirmed numerically that: we can realize
a 750 degrees/RIU (Refractive Index Unit) resolution by adopting the
appropriate azimuth angle φ and polar angle θ, the resolution which
is ten times more sensitive than a conventional prism-based plasmon
index sensor. [5]

(a) (b)

Figure 7. Comparison of the ratio ρTE
0 /ρTM

0 obtained by experiment
with the numerical results (φ = 30◦), (a) numerical results, (b)
experimental data.

4. CONCLUSION

Enhanced TM-TE mode conversion caused by excitation of plasmons
on a metal grating placed in conical mounting has been examined
numerically and the results have compared with experimental data.
The azimuth angle φ has large influence on the location and strength
of the TM-TE mode conversion. For TM-wave incidence the TM-
component of the diffracted wave almost vanished and the TE-
component was dominant in close vicinity to the resonance angle.



102 Suyama, Okuno, and Matsuda

The ratio of diffraction efficiency ρTE
0 /ρTM

0 having a sharp peak at
the resonance angle, hence, could be a good measure in finding the
refractive index because the resonance angle is sensitive to the index.
Results of a preliminary experiment confirmed that we could find the
angle to a 0.1◦ accuracy. If we apply the resonance absorption to
an index sensor, the accuracy means four digits determination of the
refractive index of a material over the grating surface. If necessary
precision in the experiment could be insured, determination of the
refractive index to more than four digits would be achieved without
much trouble.
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