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Abstract—The field refracted by a Wood lens is determined
analytically and numerically in the focal region by Maslov’s method.
Results are compared with those obtained by weak focusing
approximation and Kirchhoff’s diffraction integral. Agreement among
them is fairly good when the parameters satisfy the conditions
associated to the approximation.

1. INTRODUCTION

Asymptotic Ray Theory (ART) is widely used to describe the
electromagnetic wave in both homogeneous and inhomogeneous media
[1-4], but the field in caustics and shadow boundary where ART shows
singularities have to be treated as separate problem. Unfortunately
these singularities are often the points of great interest because of
their usefulness in practical application. Usually, Kirchhoff integral
is used to predict the fields at these points. There is an alternative
method based on Maslov’s theory. Maslov’s asymptotic theory uses
the idea that combines the simplicity of ART and generality of Fourier
transform. A summary of this method has been given by Kravtsov [3]
and Ziolkowski and Deschamps [4] in which they showed how to apply
this method to propagation and radiation of waves in homogeneous
and inhomogeneous media.

The Maslov’s method is considered to be based on the following
properties of ray and wave. (a): Ray trajectory in three dimensions
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may be described in terms of the Hamilton’s canonical equation. The
ray trajectory which is usually considered in spatial domain X, but it
can also be viewed from more generally in the six-dimensional phase
space consisting of position vector X and wave vector p. Therefore we
can describe the ray in the mixed space in which part of components of
position vector are replaced by that of the corresponding components
of wave vector p since these are related by Hamilton’s equation. The
ray has singularity at caustics when we see it in the spectral domain X,
but generally it behaves regular in the mixed space since the location
of corresponding singularity in the two spaces is usually different.
Pictorial interpretation of the concept was given by Ziolkowski and
Deschamps [4]. (b): The solution of the wave equation is expressed
in terms of the superposition of plane wave spectrum through Fourier
transform. It is known that we can derive asymptotic ray expression
from Fourier integral of unknown integrand if we apply the stationary
phase method of integration to the integral. The solution may be
identified to the expression derived from Hamilton optics. From this
process we can determine the formal expression of the integrand of
the Fourier integral. (c): The ray derived in spatial domain which
is associated with the integrand discussed in (b) is represented in
appropriate mixed space using the solution of Hamilton’s equation.
If we apply the inverse Fourier transform to the expression we can
return to the expression in spatial domain. Usually it has finite values
even in caustic region because of the properties of Fourier transform.
We can carry out this integral using higher order stationary phase
method of integration or numerical quadrature. Of course if we apply
the stationary phase method of integration to the Fourier integral,
asymptotic ray expression is obtained.

Although the Maslov’s method have attracted an attention of
many investigators, but literature treating the application of the
method to physical problems are relatively few. Chapman and
Dummond [5] used it to construct the seismograms, Gorman and his
associates [6] showed how to construct the asymptotic solution for
various kinds of differential equation, Hongo and Ji [7-11] showed
how to apply the method to predict the field in the focal region for
various kinds of focusing systems. Hongo and Kobayashi [12] applied
the method to study the radiation characteristics of plano-convex
lens antenna. Agziz et al. determined the field in focal region of the
two dimensional Cassegrain system [13] while Ghaffar et al. analyzed
the three dimensional Cassegrain system [14]. In present work, field
refracted by a Wood lens is determined analytically and numerically
in the focal region by using the Maslov’s method.
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2. HAMILTON’S EQUATION AND SOLUTION

Consider the distribution of permittivity given by the following
expression

€ = e[l = B(a? + y?) + b (a? + )Y (1a)

where b and ¢ are the constants. The Hamilton’s equation for the
medium described by Equation (1a) is given by

dx dy dz

— = Dz, - = s —, — Pz 1
at P at P a7 (1b)
dps _ 10e dpy _ 10e dp,  10¢ (1c)
dt 20« dt 20y dt 20z

It is of interest to determine the solution of Hamilton’s equation
in medium defined by (la) for two situations of permittivity. One
situation deals when ¢ = 0 while other situation deals with situation
when value of ¢ is very small in expression for permittivity. Throughout
the discussion, we have labelled these situations as case 1 and case 2
respectively.

Case 1: For medium defined by Equation (la) with ¢ = 0, the
solution of Hamilton’s equation is given by

r = gcosy, y=mncosy, z=p;t
_—5551111/% py:_ﬁn81n¢a Pz=1/€— pm py_\/ ,627‘0, ]‘d
w:ﬂt) :\/ab7 0252"'77

Case 2: When in Equation (la), the parameter c¢ is very small,
we may write approximate solution for Hamilton’s equation as

= &[(1 4 g) cosyp — g cos 3Y]

y = n[(1+ g)cosy — gcos 3], z=p,t
pz = —BE[(1 + g) sintp — 3gsin 3¢
py = —PBn[(1+ g)siny — 3gsin3¢],

Pz = \/€e—Di—p2

= \Jeel—Br3F +ebtri[(1+g) cos b —geos3ult)  (le)

where

Fiy = [(1+ g)cost — gcos3¢)? + [(1 + g) siny) — 3gsin 3¢)>
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In above equation p, has been assumed in the form
/1 2,.2
b rg
4 )

bV =Mb, ¢ =ke
(1f)

Solution for small ¢ may be considered as perturbation to the

corresponding solution for ¢ = 0 and g is perturbation parameter. The

parameters A and k are determined so that (le) give better solution
and this point has been discussed in next section.

P, = \/ec(l —V2E+ VY, g=

3. DERIVATION OF THE FIELD EXPRESSION FOR
WOOD LENS

The Wood lens is shown in Figure 1. The distribution of the
permittivity in region occupied by the Wood lens is given by
Equation (la) and the parameters b and c are related with the focal
length of the Wood lens. The thickness of the lens is L. We consider
both cases of permittivity one by one.

- T — causte

Figure 1. Profile of dielectric constant and ray trace of wood lens.

Case 1: First we discuss the situation considering ¢ = 0. For
¢ = 0, the Cartesian coordinates of refraction point at the rear face
(&1,m1) and components of associated wave vector are given by

& =¢&cosyr, m=mncoshr, Q=L =0

poo=—0Esin1, py=—PGnsiny1, po=+e — i, p.ot1=1L
(2a)
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t1 is the arc length of the ray for region occupying the Wood lens. In
Equation (2a), (£,n) are the Cartesian coordinates of refraction point
of the front face of the Wood lens.

The coordinates of the ray after passing through the lens, that is
z > L, are given by

=& +pat, y=m+puat, z=C+pat
Pz1 = Pz05, Pyl = Py0, Pzl = 4/ 1 —pil —pil = \/1 - 527‘8 sin® Y1
(2b)

where t signifies the arc length of the ray after passing through the
Wood lens. The GO solution is given by

u(z,y, z) = [2J]77 exp[—jk(¥o + )] (3a)

where
ﬁ4r8 sin® 1y ﬂ7 oL 81113 zpl cos Yy

J(t) = é[

3,2
+6%sinyy (sm 11 + cos wlﬁ L)] 2

zO
1 { ﬁ3r(2) sin® 11 cos ¥ BGLTO sin? 1/)1 cos®

= 2
bz pzlpzo

—

4
[25 sin )1 cos iy + cos 2 ﬁp } } t+1 (3b)
/63 2L:| 20

sz

t1 t1 b2 ﬂr2
U, :/ e(t)dt:/ €c [1—1)27“(2) cos? ﬁt} dt:ec( > t1 — =L sin 24
(3¢)

In the above equation, ¥q is the phase difference between front
and rear faces of the Wood lens. For detail calculations of jacobian,
see Appendix A.

The GO-field contains singularity at the focal point. Using
Maslov’s method our interest is to find the uniform field expression
valid in focal region. The uniform expression which is valid in the
focal region is given by

e o

exp [—jkWa(pa1, Py1, 2) + JE[parz + py1y]] dpardpyr  (4)

= = cos [cos 11 — sin

D=
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Z(&1,m1) is the initial value at the rare face of the lens. Phase
Uo((pe1,py1, 2) is determined as

Vo (pr1,Py1,2) = Yo + to — pr12(Pat, Py1, t2) — Py1y(Da1, Py1, t2)
Vo + to — pr1 (&1 + paeita) — pyi1 (1 + pyita)

= Wg 4ty — pu1&s — pyim — (i1 + Pin )t

= Wo + p2its — pe1él — P

= Yo+ p.i(2z— L) = psr&s — pyim

= Uy + ﬂrg sin i1 cos 1 + \/(1 — ﬁ2r8 sin? Y1)(z — L)

where t9 = 2z — L > 0 is the horizontal distance from the rare face of
the Wood lens.
In Equation (4), quantities in square bracket, are determined as

Opa1 apyl 0z

a(pxhpylaz) _ 6?951 8?)51 gg =p, |:8pxl 8pyl _ apyl apxl]
8(5777775) on an 6_77 - o0& On o On
0 0 D21
37,2
= Fsin1pa [Sin 1+ ﬁpéro cos ¢1}
20
37,2
D(0) = cosn [cos P — ﬁpgro sin 1/)1] D1
20
Therefore we have result
1 1
1 8(pr17py1az):|_§ 1 COS"¢1 |: N /63[/7“3 :|2
= /= +
D©) (& n,1) B\ sy [TV T,
ﬁ3Lr2 2
[cos P — e 0 sinwl} (5)
20

Transforming the integration variables (p;1,py1) into (7o, d) related by
& =rgcosd, n =rgsind, that is,
Pl = —Brgsiny cosd
py1 = —Brgsinyy sind
P21 + py1y = —Prorsinigy cos(d — ¢)

where * = rcos¢ and y = rsin¢g are observation coordinates.
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Equation (4) reduces to

a 27 37 .2 %
u(r) = @/ / T'(ro)+/cos 1y sin )y [sinwl + b é}ro Coswl]
27T 0 0

Po

37,2 3

X [cos Y1 — b éro sin @01}

Do
exp [—jkﬁw‘o sin 11 cos(0 — gzb)} rodrodd

exp |:—jk“1f2 (ro)}

2 3

“ : . /63[17’0
= kﬁ/ T'(ro)+/cos 1y sin )y [Slnwl + o cos wl}
0

20
SL 2 5
[cos P — b 3T0 sin wl}
sz
x Jo(kBrrosiny) exp [—jk‘\llz(ro)} rodrg (6a)

where a is the radius of the lens. T'(r) and other related parameters
are given by

2
T(ro) = TiT, T = :
(0) 142 1 1+m

2\/ec — 3273 cos? 1)y cos O;2

T =
cos O;0 + \/eC — 527“3 cos2 11 cos Oy
[ 2 2
_1 \/Pao T Pyo _1 Brosinyy
fip = tan™ ' Y—— =tan " —————,
Pz0 \/ €c — 527“8
[ 9 2 [ 9 2
Pe1 T D1 Dro T Pyo
;5 = tan~! VY pan! ’ Y
Pa 1 — (p3o + Pyo)
it frosing
\/1 — B%r¢sin? ¥y
L
= —— (6b)

\/ €c — 627"8

and 0;2 and 6,9 are angles of the incidence and the refraction of the ray
at the rear face of the lens.
In deriving the above expression we have used the following
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Jacobian of the variable transformation

A(ps 3Lk
dpz1dpy: _ Ot Pyt) | s — 62 sinapy | sin g+ 220 cos 4| rodrods
8(67 77) Do
and standard integral relation
1 2
o exp(—jacos(d — ¢))dd = Jo(a)
7r

where Jy is Bessel function of zeroth order. Transformation of
observation point from cartesian to polar coordinates is x = r cos ¢,
y = rsin ¢.

Case 2: Now consider the situation assuming that c is very small.
The uniform expression which is valid in the focal region is given by

- %/ [ zem |5 e

exp [—jkW3(pe1, Py1, 2) + JE[pa1z + py1y]] dpardpyr (7a)

N

Quantities in square bracket of Equation (7a) are

8(]?3;1 ) py17 Z)

et ﬂszl{ [(1+ 2g) sin® 1) — 6g sin 3¢5y sin 1]

L

+ cos 11 sin ¥ ﬂTr(Q] [b' 26, — 2e.cY 47“(2)]
Po

+g [2cos 1)y sinty — 3sin 31y cos Yy

/2
—9 cos 311 sin ] ﬁﬁiLro}

sz

D) = pzl{[u 1 2g) cos® 1 — 29 cos 1 cos 3u]

L

— sin )y cos ﬂT (e 2 _2¢.cY 47‘(2])7“(2]
20

—g[2sin 1y cos 1y — sin )y cos 31y

2y
—3 cos 1)1 sin 3] pb 5 }

sz

For detail calculation, see Appendix B and Appendix C. The phase
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function W3 and conversion of (pg1,py1) into (7o, d) yields

U3(pa1,Py1,2) = Vo +paa(z — L) — perés — pyim
= U; + ﬂr% [(1+ g) costpy — g cos 3]
[(14 g)sinty; — 3gsin 3y ]
—i—\/{ 1—32r2[(142g)sin? ¢ —6gsin ¢y sin 3¢ |} (¢ — L)
= W)+ Bre[(1 4 2g) sin; cos 1y — 3gsin 3¢y cos Yy
—gsin 1y cos 311 |
—1—\/{ 1—32r¢[(1+29) sin?1), —6gsin ¥ sin 3w1}} z—10)

dpz1dp,1 = Opr1,py1) rodrodd

a(&,m)
= B2 {[(1+2g) sin® ¢y — 6gsin 3¢y sin e |

L
4+ cos 1)y sin Y %r% [b’ 2ec —e.cV 47“8]

z1
+9g (2 cos 1)y sinyy — 3sin 1) cos Y
72
L
—9 cos 31y sin ] ﬁ% 7’8} rodrodd
z1

Expression for ¥, has been derived in Appendix D. It may be noted
that

pz1 = —Pro[(1+ g)sinyy — 3gsin 3] cosd
py1 = —Prol(1 + g)sinyy — 3gsin 3] sin d
Pa1Z + py1y = —Fror[(1+ g)sinyy — 3gsin 3] cos(d — ¢)

The uniform expression becomes

u(r.2) = k[ 7o) ElkBrr (1+g)sing — 3gsin300)
0
exp|—jkWs]rodry (7b)
where S has been obtained as

S =2 [(1 + 4g) sin? ¢y cos? 1y — 2gsin? Py cos Py cos 31y
BL

—6g sin i cos? 11 sin 3w1] - [b’ 2e.—e.cV 47“8] sin® 11 cos P
p

z1
/2L
9y 553 r2(sin? ¢y — 65sin 3¢ sin ¥y ) sin 1y cos iy
P
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) /3/8/ 2L
—gsin“1y[2 sin ¢ cos 11 —sin 11 cos 31p1 — 3 cos PYysin 391 | —— ro
sz
ﬂT [b’ 263 —e.cV 47“8] cos® 11 sin Yy
Po
/2
L
ﬁﬁ r2(cos? 11 — 3 cos 31b1 cos ;) cos by sin ¢y
zO
2L2
— sin? ¢y cos? ¢y ﬁT 20/ — 2e2V Srd)rg
P20
—gsin; cos 1 [2sin Yy cos ) — sin ey cos 31y
ﬂZﬂ/ 4 2
—3 cos 1y sin 3¢ ] Tro + g[2sin v coshy — 3sin 3¢y cos Y
20
/ ZL / 2L
—9 cos 311 sin ] %r% ((:032 11 — siny cos %T%) (7¢)
P P20

where
2
1+ /ec — 3212 + c2b%r]
2v/€c — B2r¢ cos? iy + cB2b2rd cos? ¢y cos b;n

T(ro) = ThTs, T =

T =
cos Oip + \/ec — 3218 cos? Y1 + c2b2r( cos? by cos Oy
2 2
0 tan—L \/m tan—1 Bro[(1 + g)sin ¢y — 3gsin 3¢
2 = A S G ’
i P20 \/Ec 1— b’2r2 T Y Ay 4)
Oy — tan—! _Prol(1+g)singy —3gsin3y]
\/1—52 [(1+ g)sintyy — 3gsin3))?
31

B Vee(l — b’27’g + b 4rg)

and ;5 and 600 are angles of the incidence and the refraction of the
ray at the rear face of the lens. It may be noted that in deriving
Equation (7e), terms containing square and higher order of g, square
and higher order of ¢/, g¢’ and its higher orders, have been neglected.

3.1. Approximation for Weak Focusing

When the focal length of the Wood lens is relatively large, the condition
b2(€2 + n?) < 1 holds. Under the condition, the derivation of the
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integral is simplified. The result is

u(r,z) = kBbLexp[—jk(z — L)] /OaT(ro) (1 - %b%@)

Jo(kBbLror) exp|—jik¥'|rodrg

b2T2 ﬁQbQLQTZ
Vo= \feL|1 0| - "
Je [ O } /

(z—-1L) (8)

where T'(rg) is the transmission coefficient given in (6b). It may be
noted that we have used

1
P20 & /€c (1 — §b2r8> , bgrg <1
. Lo o
sinq ~ Y1 ~ bL 1—|—§b rH

cosy ~ 1

L 1
t] ~ 14+ =b%r2
1 \/a<+2 ro)

1
Ty = /e L (1 - §b2r§>

2b2 2L2
Uy = W+ /e Lb?*rZ + <1—ﬂ%> (Z-1L)
1 212 2L2
= el (1+§b2r§> + (1—“%) (z— L)

=0V +(z2-1)

B3Lr? 2
£\/sin 41 cos iy [sin W1 cos Py + 0} =bL (1 + b2r§)

21720

If we neglect the term proportional to b%r3, the parameters T (r)
and U’ become constants and (8) gives the well known Airy pattern

Ji(kBbLar)

r

(kBbL) exp[—jk(z — L)]
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4. NUMERICAL RESULTS

4.1. Caustic Curve

The equation of the caustic is obtained by setting the Jacobian be zero
and explicit expression is given by

\/1 — B2rEsin® 1 cog W

Tar =0, Y1 =0, za=L+ 3 sin iy (93‘)
Ty = Ecosty — p2y — Qp2i€siniy,  yer =ncosty — QpIynsiny,
ze2 = L+ %P; (9b)
C 3ro2L , 3rg2L
Q = o C:coswl—ﬁ T?? sin i1, D:slnwl—i—ﬂ T:? cos 1 (9¢)
Po P>o

where (Z¢1,Ye1, 2ze1) and (ze2, Yoo, 2c2) are the rectangular coordinates
of axial (or sagittal) caustic and tangential caustic, respectively.

4.2. Comparison to the Huygens-Kirchhoff’s Expression

To verify the validity of the uniform expression which is valid near the
caustic, we compare the numerical results with those computed from
the Huygens-Kirchhoff’s radiation integral given by

Uteys) = 4 [ [ ot )PP coas,

TZ\/:U—w) +(y—y)? +(Z—Z)2 (10a)

where ¢ is the field distribution behind the lens and cos+~ is the
inclination angle. When the focal length is relatively long, we can
apply the Fresnel approximation. In this case the integration with
respect to angular variable can be carried out resulting

u(r, z) = Z{kL exp {—jk <Z L+ 2(zT—ZL)>]

@ (krrocosir) __1 racos?y;
T = Uy ——— "~ 1
o 0T )= el o S Jpoanaon

4.3. Effect of Quadratic Term of Dielectric Profile

We will discuss the validity of approximate solution (le) of the
Hamilton’s Equations (1b) and (1c). Hamiltonian equations can be
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transformed into inhomogeneous second order differential equation and
its solution can be solved by iterative process. This equation has also
been solved by another method [15]. Comparisons among them shows
two iterations are sufficient for the parameters which we are of interest
here. The solutions by iteration and by [15] are not useful to construct
the radiation integral since their expressions are too lengthy. So we use
more simpler (1f) to derive the radiation integral (7b). When the value
of ¢ is small, (1le) gives very precise results, but discrepancy increases
as ¢ increases. We change the factor A and « slightly and determine
the values of A and « so that gives close values to the iteration solution.
Figure 2 shows the ray trajectories inside the lens computed from (1f)
(dotted line) and more precise iterative method (cross). The figure
shows the ray trajectory inside the lens for incident ray at ro = 0.5a.
The ordinate is the values of = (or y), €. = 2.25, L = a, ¢ = 0.666
and ba = 0.4 for (a) and ba = 0.6 with more focusing effect for

0.5 . B
Terative method 0000
0.49 Smallc Appoxim #ion
ba=04
048 ¢=0.666
L/a=1
0.47 €c =205
2 046
e
= 045
0.44
0.43
0.42
0.41
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5 —
Tterative method 2000,
0.48 : Small ¢ Appoximation
ba=06
0.46 c=0.666
L/a=l1
. 044 Ec =225
-
=
S 042
=
0.4
0.38
0.36
0.34
0.32

0.1 0.2 03 04 05 06 07 08 09 1

Figure 2. Ray trajectory inside the lens.
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(b). The results show that the approximation (le) is sufficient for
the parameters treated here. Figure 3 is the pattern computed by
four different methods along z-axis around the focal point. The four
methods are (1): effect of the quatic term of the dielectric profile is
taken into account (+), (2): effect of quatic term is neglected (¢), week
focusing approximation (Box) and Krichhoff approximation(solid line).

1

Hussain, Naqvi, and Hongo

£ ¢ -- quadratic approx
09 ¢ %DDD 2 + - quatic approx
%D %a O --weakf ocusa pprox
o8 | §ED ;EB —— -- Kirchhoffa pprox
o |
?’D
] ¥
# & ka=1000
07 + 8
‘fa iiag epsilon=225
Jo ke ba=03
06 {2 {e c=0.1
<J} a
o
05+ %D
%o
04| ME
‘15
03| o
A
02+
o1t
0
0

35

Figure 3. Field pattern around the focal region of Wood lens
computed by four different methods.
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APPENDIX A. EXPRESSION FOR JACOBIAN WHEN
C=0

x =Ecosr + prit, y=mncosPr +pyut, z=C +pat=L+pt



Progress In Electromagnetics Research, PIER 73, 2007 121

(z,y,2)
D(t) = =22~
O = BeEns
9z Oy 0z
o6 9¢ O¢
— |9z 9y 0z
on On On
dz Oy 9z
ot ot ot
cos ih1—E sin wlaa—q? + agglt _n Sinwlaa—dg +3§g1t 8gg1t
- —¢ sini)y %ﬁl + 3(;;;1 t  costi—nsiny %ﬁl + 35;;71 t 85:71 t
Pz1 Py1 D1
= A’ + Bt +C
= (COS 1 — Esin ¢188—1/;1 i aggl t>
| 3 61/}1 ap 1 apzl
_pz1 <cos 1 — nsin %3—77 + 6—7y7t _pyla—nt +
: 81/)1 8pyl
- - t
< 7 sin o + o6
[ apzl . awl 8p$1
_plc“?n Pl( Esinn 877+ o +
Ip=1 : 8¢1 Opz1
i (im0
—pg1 | cCOSY — nsinwl% + 8py1t
on  On
where

o¢ on  On O

0 On 0§ On
(apxl apzl apacl apzl)
+ 1

4 = (3px1 Opy1  Opy 3px1> (3py1 Opz1 Opyi 3pzl>
- z1 + xl

dn 0 o0& On

- Oth1 Op: . Ot Op, ap,
B = <—7781n1/)1 ;;1 gnl +7781n1/)1—$f71 ggl — cos §£1>le
. 0P Ops . OYy1 0p.
B KCOS% _€8m¢18i61> gnl +§Smw18lnl gfl]pyl

+ KCOS Y1—Esinyy %@1) 35;;;1 + <cos Y1—nsinyy %—%) 85?
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oY1 apy1 01 Opa1
+E&sinh — an 85 inyn—— an 85}
C = [(coswl Esin);—— O > <COS'¢1—’OSin'¢1%>
o¢ on
0
—&nsin® ¢y 81? 6%}
By using the relations
6;? = —fsinyq — BE cosyq wﬁl 35;1 = —B3c s¢1 ¢1
pr1 = —B§sinyy
W —pneosin . T =~ gsinis - neosin

Pyl = —Bnsiniyy
oyYn . ﬂ3L§ oYn - ﬂgLn P20 = \/€c — /BQT%
o€ 3 o pd P = \/ 1 — #2rgsin® ¢y

and

01 o BPLrd
+ —
: oc " on 3

Op:1 B2 sin ¢y ( oYy >
= — +
a¢ o Esinyn TO cos Y —— €
2 .
Op-1 = —ﬂ sin v (77 sin + TO cos ¢1ﬂ>
on P21 n
éﬁpzl n napzl _ ﬂQTo sin? 1y B 273 siny cos ¢y <§3¢1 +n31/11>
8£ 877 Pz1 Dz1 8£
B ﬁ2r0 sin? ¢y B 35 Lrg sin b cos
Dz1 pzlpzo

A, B, C are evaluated as follows.

A - Opz1 Opy1  Opy1 Opar
! oc on ot on )t

73
ﬂ3 2L:|

sz

= pz1,32 sin [Sinz/)l + cos 1y <§ﬂ + %)]

= pzlﬂ sin ¥y [smwl + cos Yy
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Ay — apyl 8pzl _apyl apzl + 8101:1 8pzl apxl apzl
2 o on oy ot )t on 0t 0¢ Onm

j Op-1 . Op:
:—ﬁ%m%m<§§;+n§1>

+32€n sin by cos vy (3¢1 Op-1 Oy 6]9,21)

0§ on  In O
. 3¢1 6pzl 61[)1 8pz1
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By using these results we have
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APPENDIX B. C # 0, EVALUATION OF 2Be1pu1,2)
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Neglecting the terms containing ¢? yields the following

% = 521%{ [(1+ 2g) sin® 1 — 6 sin 3¢y sin ]

L

+ cos 11 sin i ﬂTrg [b’ 2e. — 2¢.cY 47"(2)]
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where 3 = /e:b'.

APPENDIX C. EXPRESSION FOR CAUSTIC WHEN
C#0
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where
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Neglecting terms containing ¢? yields the following
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It may be noted that D(0) given in above equation reduces to
corresponding expressions of D(0) for ¢ = 0, if we take ¢ = 0 and
replace b’ with b.

APPENDIX D.
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