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Abstract—The lowering and raising operators of cylindrical harmon-
ics are used to derive the general fast multipole expressions of arbitrary
order Hankel functions. These expressions are then employed to trans-
form the dense matrix in the scattering matrix method (SMM) into
a combination of sparse matrices (aggregation, translation and disag-
gregation matrices). The novel method is referred to as fast multipole
accelerated scattering matrix method (FMA-SMM). Theoretical study
shows FMA-SMM has lower complexity O(N1.5) instead of SMM’s
O(N2), where N stands for total harmonics number used. An empiri-
cal formula is derived to relate the minimum group size in FMA-SMM
to the highest order Hankel functions involved. The various imple-
mentation parameters are carefully investigated to guarantee the algo-
rithm’s accuracy and efficiency. The impact of the cylinders density on
convergence rate of iterative solvers (BiCGStab(2) here), memory cost
as well as CPU time is also investigated. Up to thousands of cylinders
can be easily simulated and potential applications in photonic crystal
devices are illustrated.
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1. INTRODUCTION

Scattering matrix method, also called T-matrix method or Foldy-
Lax equations, is usually used to calculate the multiple scattering
of many objects, the cases usually encountered in remote sensing
modelling. The original theory was first proposed by Foldy [1],
then developed by Lax [2] and many other authors [3–6]. The T-
matrix of a single object relates the scattered waves to the incident
waves in its local coordinates, based on the expansions of cylindrical
harmonics in two-dimensional (2D) cases as well as spherical harmonics
in three-dimensional (3D) cases. This description has the benefit of
independence to the directions or angles of incident waves. Thus, with
the aid of the addition theorems of cylindrical or spherical harmonics,
T-matrix method allows straightforward consideration of the multiple
scattering effects of many objects. However, just like the traditional
method of moments (MoM), traditional T-matrix method has the
computational complexity of O(N2) where N is the total harmonics
number used for all objects.

To explore fast algorithms based on T-matrix method, Chew
et al. have proposed several kinds of recursive aggregated T-matrix
algorithms (RATMA) for either 2D or 3D scattering problems [7].
In these algorithms, an arbitrary shaped target is first meshed into
many small elements represented by circular cylinders or spheres whose
T-matrix can be derived analytically. These elements are naturally
located layer-by-layer from the center point of the target. Then the
addition theorems of harmonics are recursively used to derive the
aggregated T-matrix from inner layer to outer layer, and finally the T-
matrix of the whole target can be obtained. The advantage of such kind
of algorithms is that the monostatic scattering is easily calculated once
the T-matrix of the target has been derived. However, the complexity
of RATMA remains O(N2), which prohibits its further applications in
large problems.

Recently, scattering matrix method has found many new
applications such as the analysis of finite size photonic crystal devices
[8–10] and metamaterials [11, 12]. Moreover, the authors of [13]
proposed an innovative way to apply this method to 3D photonic
crystal structures. A similar method, generalized multipole technique,
is recently used to analyze a lossy microring add-drop optical filter in
[14]. Unlike mesh based numerical methods such as finite difference
time domain (FDTD) and finite element method (FEM), T-matrix
method takes advantage of the specific structure of photonic crystals
and uses cylindrical harmonics to express the field distributions.
Although this semi-analytical approach is found to be nearly ten times
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faster than FDTD or FEM [9], it is still cumbersome to be used for the
design of large photonic crystal structures due to its relatively higher
computational complexity.

The objective of this paper is to develop an efficient scattering
matrix method accelerated by fast multipole method for multiple
scattering of a large number of cylinders. It is worth noting that
some efforts have been put on fast multipole method (FMM) in 3D
multiple scattering problems for Helmholtz equation. (More details
can be obtained by referring to [15–17] and the book written by N.
A. Gumerov and R. Duraiswami [18]). However, to the best of our
knowledge, there is no description of utilizing FMM into 2D scattering
matrix method so far.

FMM has been extensively used in solving integral equations
arising from electromagnetic scattering [19–22]. The principal formula
in 2D FMM is to express the far field of the Green’s function into
an integration involving the diagonalized translation operator, see
Eq. (13) in [21]. In the 2D case, to facilitate our description,
we call it the fast multipole expression of the zero-order Hankel
function. Obviously, the previous FMM can not be used directly
in the scattering matrix method since the higher-order, instead of
only the zero-order, Hankel functions are often required to express
the field distribution of each cylinder. To extend the applications of
FMM in scattering matrix method, we first derived the general fast
multipole expressions of arbitrary order Hankel functions by using the
lowering and raising operators of the cylindrical harmonics. Then,
these general expressions are employed to convert the dense matrix
in scattering matrix method into a combination of sparse matrices.
Similar to the conventional FMM, these sparse matrices can be named
as aggregation matrix, translation matrix and disaggregation matrix.
Theoretical investigation shows that the computational complexity of
the fast multipole accelerated scattering matrix method (FMA-SMM)
is O(N1.5).

This paper is organized as follows. Section 2 briefly introduces
the scattering matrix method. In Section 3, the general fast multipole
expressions of arbitrary order Hankel functions are derived. To
facilitate the implementation of the algorithm, the sparse matrix form
of the FMA-SMM is provided. The implementation rules, which
are different from conventional FMM, for various parameters of the
algorithm are presented in Section 4 to ensure the accuracy of the
algorithm. Validation and some numerical examples are provided in
Section 5 followed by a short summary of this work.
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2. SCATTERING MATRIX METHOD

Consider a set of randomly distributed cylindrical rods shown in Fig. 1,
where the rods can be different in radii and dielectric constants. For
an observation point �ρ outside of all the rods, the scattered field can
be expressed as the summation of all the scattered waves from each
rod, and given by

Figure 1. Schematic of a set of random cylindrical rods.

Φ(�ρ) =
Nc∑
q=1

Mq∑
n=−Mq

fn
q H

(2)
n (kρq)ejnφq

(1)

where symbols (ρq, φq) is the local coordinates defined as ρq = |�ρ− �ρq|,
φq = arg{�ρ−�ρq}; Nc is the total number of rods and 2Mq+1 represents
the truncated number of Hankel functions used to express the scattered
waves of qth rod and fn

q is the corresponding unknown expansion
coefficients (n = −Mq,−Mq + 1, · · · ,Mq). The unknown expansion
coefficients vector f q satisfies the following equation:

fq = Tq


aq +

Nc∑
p=1;p�=q

Aqpfp


 (2)

where Tq stands for the T-matrix of qth rod; aq denotes the expansion
coefficients of incident wave on qth rod in terms of Bessel functions.
Matrix Aqp represents the translation matrix between the pth and
the qth rods, representing the incident wave of qth rod caused by the
scattered wave of pth rod. The elements of the translation matrix can
be derived from the following addition theorem of cylindrical harmonics
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(Appendix D, [23])

H(2)
n (kρp)ejnφp

=
∞∑

m=−∞

[
H

(2)
m−n(kρpq)e−j(m−n)φpq

]
Jm(kρq)ejmφq

(3)

where symbols ρpq and φpq are defined as ρpq = |�ρp − �ρq|, φpq =
arg{�ρp − �ρq}. Therefore, matrix Aqp can be obtained by

Aqp(m,n) = H
(2)
m−n(kρpq)e−j(m−n)φpq (4)

Collecting (2) for all the rods yields a linear system of equations

(I − TS)f = Ta (5)

where I is the unit matrix; T is the block diagonal matrix expressed
as T = diag{T1,T2, · · · ,TNc}; vector f = [f1, f2, · · · , fNc ]T stands
for the unknown expansions of scattered waves and vector a =
[a1,a2, · · · ,aNc ]T is the expansion vector of incident waves on all the
rods. Matrix S is the combined translation matrix written as

S =




0 A12 · · · A1Nc

A21 0 · · · A2Nc

...
...

. . .
...

ANc1 ANc2 · · · 0


 (6)

From (4), matrix S is a nearly full matrix whose storage is in the
order of N2, where N =

∑Nc
p=1(2Mp + 1) is the dimension of matrices

and vectors in (5). Therefore, the computational complexity is O(N2)
when an iterative solver is employed to get the solution of (5).

3. FAST MULTIPOLE ACCELERATED SCATTERING
MATRIX METHOD

3.1. General Fast Multipole Expressions of Any Order
Hankel Functions

To reduce the complexity of (5), the general fast multipole expressions
of arbitrary order Hankel functions are first derived by using the
following raising operator of Hankel functions (Eq. (2.2.16), [23]):

H(2)
n (kρ)ejnφ = −k−1 (∂x + j∂y)H

(2)
n−1(kρ)e

j(n−1)φ (7)

and lowering operator

H(2)
n (kρ)ejnφ = k−1 (∂x − j∂y)H

(2)
n+1(kρ)e

j(n+1)φ (8)
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Since H(2)
−n(kρ) = (−1)nH

(2)
n (kρ), we can rewrite (7) and (8) as

H(2)
n (kρ)e−jnφ = (−k)−n (∂x − j∂y)

nH
(2)
0 (kρ) (9)

H
(2)
−n(kρ)ejnφ = k−n (∂x + j∂y)

nH
(2)
0 (kρ) (10)

for any n ≥ 0. The fast multipole expression of the zero-order Hankel
function has been given as [21]:

H
(2)
0 (kρpq) �

1
2π

∫ 2π

0
β̃ps(α)TP

st (α)β̃∗
qt(α)dα (11)

where symbol * stands for complex conjugate and function TP
st (α) and

β̃ps are defined as

TP
st (α) =

P∑
r=−P

H(2)
r (kρst)e−jr(φst−α−π/2) (12)

β̃ps(α) = ejk(xps cos α+yps sin α) (13)

where ρst = |�ρs − �ρt| and, �ρs and �ρt are the center of group gs

and gt respectively, as shown in Fig. 2. (xp, yp) and (xs, ys) are
the Cartesian coordinates of p-th rod and group gs, respectively; and
xps = xp − xs, yps = yp − ys.

Figure 2. Geometry of groups and cylinders.

Substituting (11) into (9) and exchanging the integral and
differential operators leads to the following equation after some
mathematical treatments

H(2)
n (kρpq)e−jnφpq � 1

2π

∫ 2π

0
β̃ps(α)TP

st (α)β̃∗
qt(α)e−jn(α+π/2)dα (14)
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Similarly, substituting (11) into (10), we can obtain the same
expression as (14). In other words, (14) is valid for arbitrary integer
n, and can be viewed as the generalization of the conventional FMM
expression of the zero-order Hankel function.

3.2. Sparse Matrix form of FMA-SMM

Replacing index n with m−n in (14), the element of matrix Aqp given
in (4) can be rewritten as

Aqp(m,n) � 1
2π

∫ 2π

0
β̃ps(n, α)TP

st (α)β̃∗
qt(m,α)dα (15)

β̃ps(n, α) = ejk(xps cos α+yps sin α)+jn(α+π/2) (16)

β̃qt(m,α) = ejk(xqt cos α+yqt sin α)+jm(α+π/2) (17)

We select Q sampling points of the polar angle α to approximate the
integration of (15) as

AF
qp(m,n) � 1

Q

Q∑
r=0

β̃ps(n, αr)TP
st (αr)β̃∗

qt(m,αr) (18)

where the sampling angle αr = 2πr/(Q − 1). Here, we use symbol
AF

qp(m,n) to differentiate the approximation expression of (18) from
the exact Aqp(m,n) of (4).

In the procedure of fast multipole method, all rods are distributed
into groups according to the distance to the group centers. To each
group, all groups can be classified into a near group set and a far group
set. For example, to group gt, we denote its near group set as Ngt and
far group set as Fgt. We assume that p-th and q-th rod belongs to
group gs and gt respectively. If gs belongs to the near group set Ngt,
exact formula (4) is used to calculate the interaction of rods p and
q. On the other hand, if gs belongs to the far group set Fgt, the
approximation expression (18) would be adopted instead. Therefore,
(2) is converted into

fq = Tq


aq +

∑
p∈gs;gs∈Ngt

Aqpfp +
∑

p∈gs;gs∈Fgt

AF
qpfp


 (19)

where the (2Mq + 1)× (2Mp + 1) matrix AF
qp can be decomposed from

(18) as

AF
qp =

1
Q

V+
q MqpVp (20)
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here the symbol ‘+’ denotes the transpose conjugate matrix; Vp(Vq)
is a Q× (2Mp(q) + 1) matrix whose elements are

Vp(q)(r, n) = β̃ps(qt)(n, αr), n ∈ [−Mp(q),Mp(q)] (21)

and Mqp is a Q ×Q diagonal matrix whose elements are obtained by
TP

st (αr), r = 1, 2, · · ·Q.
Substituting (20) into (19) and combining the equations for all the

rods, the final equation of fast multipole accelerated scattering matrix
method is derived as[

I − T
(
SN +

1
Q

V+MV
)]

f = Ta (22)

where SN represents the near group interaction while the sparse matrix
V is the aggregation matrix, and M denotes the translation matrix.

3.3. Complexity of the Fast Multipole Accelerated
Scattering Matrix Method

When an iterative method, e.g., Bi-conjugate gradient Stabilized
(BiCGStab) [24], is used to solve (22), the computational complexity of
the matrix-vector product involved is in the same order as the storage
of all sparse matrices. We assume that a total ofNc rods are distributed
in G groups and an average of M cylindrical harmonics are used to
model each rod. Furthermore, for each group, there are an average of
p near groups. Then, the orders of non-zero elements in each sparse
matrix are listed below

SN ∼ p
(NcM)2

G
(23)

V ∼ QNcM (24)
M ∼ G(G− p)Q (25)

Similar to the discussion in [21], parameters G and Q are set
into the same order of

√
N , i.e., G ∼ c1

√
N and Q ∼ c2

√
N , where

N = NcM is the total number of unknowns. Therefore, the total
storage of non-zero elements of sparse matrices in (22) is in the order
of

[
p/c1 + c2 + (1 − p

c1
√

N
)c1c2

]
N1.5 and c1, c2 are implementation

constants. So the theoretical computational complexity of the FMA-
SMM is O(N1.5). This complexity can be further reduced by its
multilevel version [22].
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4. IMPLEMENTATION OF THE FMA-SMM

The implementation of the fast multipole method requires setting up
of group structures. In traditional FMM for integral equations, the
discretized elements are first enclosed in a squared box and the box
is divided into four small equally sized boxes. This procedure is
repeated until the dimension of the smallest box, or group, satisfies the
requirement. The details of setting up hierarchical group structures
can be found in [22]. For conventional fast multipole method,
the dimension of the smallest group can be about half wavelength.
However, great errors have been found if the minimum group size is
set to be half wavelength for FMA-SMM implementation. Therefore,
how to select various parameters, including the accuracy criterion, the
group size, the multipole number P in (12) and the sampling point
number Q in (18), becomes critical.

Rigorous study of the constraints among these parameters needs
more careful mathematical analysis. Here, we adopt a numerical
approach to provide an empirical rule for selection of these parameters.

From the exact expression (4) and its FMM approximation (18),
a relative error �ε is defined as

�ε(p, q, ρst, P,Q,m− n) =
|Aqp(m,n) − AF

qp(m,n)|
|Aqp(m,n)| (26)

Here �ε is a function of source point p, observation point q, expansion
multipole number P , sampling points Q and the order of Hankel
functions. We assume that a hierarchical group structure has been
constructed. Fig. 3 shows a schematic of part of the group structure
with source group s, target group t1 and t2, and the corresponding
rods p and q.

If target group t1 is the nearest far group of source group s, we call
it 1 box buffer size implementation. This means that the near groups
of group s are located on only one surrounding layer from it. On the
other hand, if target group t2 is the nearest far group of group s, it
is called 2 box buffer size implementation. In this paper, we restrict
ourselves to the discussion of 1 box buffer size implementation due to
its easiness for the future implementation in its multilevel version.

It is very complicated to investigate the relative error versus
so many parameters simultaneously. Fortunately, after extensive
numerical tests, we found following properties for the various
implementation parameters:

• For a specific order of Hankel function m − n, the relative error
(26) becomes maximum when source point p and target point q
are located at the corners of the groups shown in Fig. 3.
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Figure 3. Schematic of a part of the group structure.

• For a specific multipole number P , the relative error �ε will
decrease steadily with the increase of Q until Q = 2P + 1. The
increase of Q after 2P+1 would not reduce �ε significantly. Since
the increase of the sampling point number Q will dramatically
increase the storage cost, we strongly suggested Q = 2P + 1.

• The multipole number P can be selected as similar expression
given in [25] as

2P + 1 = int
(
c1kD + c2(kD)1/3

)
(27)

where kD =
√

2ka is the diameter of groups and the function
int(x) is the greatest integer less than or equal to real number x.
In this paper, we found that the empirical selection of c1 = 1.4
and c2 = 3.2 is able to guarantee the accuracy of (18) up to an
order of 50.

After specifying the points p and q, multipole expansion number
P and sampling number Q, we can discuss the relationship between
the order of Hankel functions and the minimum group size. As shown
in Fig. 4, higher order of Hankel function requires larger group size
to reduce the relative error. Therefore, the group size can not be too
small in order to meet a specific error criteria. This fact has been
defined as the low frequency break down problem for the zero-order
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Hankel function [25]. For traditional FMM, this problem is not so
critical since only zero-order Hankel function is involved and the group
size can be as small as half wavelength. However, from Fig. 4, it can be
seen that an overly small group will introduce greater calculation errors
for higher-order Hankel functions which is the case often encountered
in scattering matrix method.

Figure 4. Relative error versus the group size for various order of
Hankel functions.

From Fig. 4, we can get the minimum group size required for a
specific order of Hankel function when the relative error is set to be
0.01 and 0.001 as shown in Fig. 5. In our code implementation, an
empirical rule to determine the minimum group size a/λ versus order
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Figure 5. The relationship among minimum group size, order
of Hankel functions and the accuracy required for 1 box buffer
implementation.

of Hankel functions involved m− n is given as following segment lines

a

λ
=

{
1.0 + 0.35(m− n) m− n ≤ 10
4.5 + 0.275(m− n) 10 < m− n ≤ 50 (28)

Hence, in order to get accurate results, FMA-SMM first needs to
know the maximum dimension of the T-matrix of involved cylinders.
Then, a hierarchical group structure is set up from bottom up following
the minimum group size given in (28). This procedure is different from
that of the traditional FMM for integral equations. Once the group
structure is set up, the near or far group set for each group are obtained
steadily, and the sparse matrices in (22) can be calculated and stored
in certain sparse matrix format. Iterative solvers are required to get
the solution of (22). In this work, BiCGStab(2) are employed [24].

5. NUMERICAL RESULTS

First, the conventional SMM code is validated by comparing with
previous publications. The accuracy and efficiency of FMA-SMM will
be tested by comparing with the validated SMM code.

Figure 6 shows the scattering from two dielectric rods computed
by our SMM code. Up to 25 cylindrical harmonics are used in T-
matrix of each rod. Our results exactly meet those of Fig. 6 in [26].
Similar comparisons have been conducted with those in [27] and [28].
very good agreements are also found (not presented here due to limited
pages).
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Figure 6. Bistatic scattering width of two dielectric rods (εr = 2 : 25).

To further test the near field calculation of the SMM code, a finite
size photonic crystal structure with one defect proposed by Fig. 4 in [8]
is analyzed. Fig. 7(a) compares present transmission spectra with that
of [8]. A good agreement is found between these two results except for
wavelengths with transmission below −35 dB. More importantly, the
resonant wavelength is predicted to be λ = 9.0572, exactly same to
that calculated in [8]. Fig. 7(b) shows the electric field distribution of
the resonant mode, quite similar to the mode pattern shown in Fig. 6
of [8]. These numerical examples have verified our implementation of
SMM code.

Figure 8(a) shows the electric field distribution of a photonic
crystal power splitter proposed in [29] at λ = 1.55µm, a useful
wavelength for current telecommunication systems. The whole
structure is constructed by removing some rows or columns from a
square lattice of infinitely long dielectric cylinders, whose pitch is
a = 0.4 × 1.55 = 0.62µm and the permittivity is εr = 11.56. The
black spots in Fig. 8(a) represent the position of total 465 dielectric
rods. The radius of the rods is 0.18a = 0.11µm. In our calculation, 3
harmonics are used for each rod. Therefore, there are 1395 unknowns
in total. It can be seen that the agreements among FMA-SMM
and SMM are quite good (refer to [29] for the field distribution
which is obtained by FDTD). The figure shows that the power of
electromagnetic wave is equally divided and transferred from one
photonic crystal waveguide into two channels. Fig. 8(b) gives the
residual errors versus iterative steps of BiCGStab [24] for both FMA-
SMM and SMM. The convergence rate of FMA-SMM is almost equal
to the conventional SMM. It takes a total of 158 seconds for SMM to fill
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(a)

(b)

Figure 7. (a) Transmission spectra of a finite size photonic crystal
with one defect (solid line: present; Dash line: [8]), (b) Electric field
distribution of the resonant mode (λ = 9 : 0572).

up all the matrix elements and get the final solution while FMA-SMM
only uses 72 seconds, nearly two times faster than SMM.

Furthermore, a triangular lattice of cylindrical rods as shown in
Fig. 9 is used to test the accuracy and efficiency of the FMA-SMM
algorithm. It is assumed that there areMx column andMy row circular
dielectric rods with radius r0. (In this figure, Mx = 9, My = 11). The
period of these rods is a and b/2 in x and y directions, respectively.

Figure 10 compares the FMA-SMM and SMM results for
scattering patterns of a triangular lattice of metal rods. It can be seen
that the maximum absolute errors of these two methods are less than
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0.3 dB. Such good agreements of FMA-SMM and SMM demonstrated
in Fig. 8 and Fig. 10 have verified the accuracy of FMA-SMM for both
near and far fields computing.

To obtain the computational complexity of FMA-SMM in terms
of CPU time and memory cost, different size problems are simulated
by varying the row number My of the triangular lattice of rod array
shown in Fig. 9 while keeping the column number of rods constant.
In the following examples, we select Mx = 20 and row number My is
chosen from 20 to 110. The radii and dielectric constant of all the rods
are set as r0 = 0.2λ, εr = 3.0. TM wave illumination is assumed and
seven harmonics are used for each dielectric rod.

(a)

(b)

Figure 8. (a) Electric field distribution of a multimode interference-
based photonic crystal power splitter, (b) iterative procedure of FMA-
SMM and SMM.
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M
y

M
xz

y

x

2r
0

b

a

Figure 9. Schematic of triangular lattice of cylindrical rods.

Figure 10. Comparison of SMM and FMA-SMM for bistatic echo
width of a rod array (a = 1.0λ, b = 2.0λ, Mx = 21, My = 10, r0 = 0.4λ,
φinc = 90◦, total 205 metal rods in case of TM incidence.

Moreover, in order to investigate the impact of rod density on the
computational complexity and convergence properties of the algorithm,
two specific cases with different lattice spacings are carefully studied

• case 1: a = 0.5λ, b = 1.0λ.
• case 2: a = 1.0λ, b = 2.0λ.

Figure 11 shows the comparison of SMM and FMA-SMM on
memory cost versus unknowns. Obviously, the density of rods does
not influence the memory cost of SMM. However, for FMA-SMM,
case 1 requires more memory than case 2. This is because case 1
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Figure 11. Memory requirement comparison of SMM (estimated) and
FMA-SMM for different density of cylinders.

Figure 12. Total CPU time versus unknowns of SMM and FMA-SMM
for different cases.

has higher rod density and thus, results more elements stored in near
group interaction matrix SN in (22).

Figure 12 provides the total CPU time versus unknowns for SMM
and FMA-SMM in both case 1 and 2. It can be seen that in both
cases, FMA-SMM is faster than SMM. On the other hand, for case
1, both SMM and FMA-SMM requires much more CPU time than
their counterparts in case 2. This can be explained by Fig. 13. More
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Figure 13. Comparison of iteration numbers versus unknowns solving
with SMM and FMA-SMM using BiCGStab(2).

iterative steps are needed for denser rod lattice due to stronger mutual
scattering than those in sparser one. The residual error criteria is set
to be 0.001 for BiCGSTab(2) in all numerical results in this paper.
Fig. 13 shows that SMM and FMA-SMM needs almost same iteration
numbers to converge. This indicates the equation matrix in FMA-
SMM formula (22) has almost same condition number to the matrix in
(5). This, from another aspect, verifies the effectiveness of FMA-SMM.

For case 1, BiCGStab(2) fails to converge to the relative error
criteria for the lattice with more than 1000 cylinders. That’s the reason
no memory cost and CPU time data are given when unknown number
is more than 7000 for case 1 in Figs. 11 and 12. For analysis of a large
number of dense rods, more efficient iterative solver needs to be further
studied.

Finally, to demonstrate the powerfulness of the FMA-SMM
algorithm, the bistatic scattering pattern of the largest array we
simulated in case 2 is shown in Fig. 14. The array contains 2200
rods (My = 110) and occupies more than 2, 200λ2 area. Then the
total unknown N is 15,400. Fig. 15 shows the iterative history
of BiCGStab(2) for simulation of 14. It takes total 5752 iterative
steps and 17,758 seconds (nearly 5 hours) to reach the residual error
8.94114 × 10−4. Traditional scattering matrix method requires more
than 1.8 Gbytes memory while the new algorithm developed needs less
than 0.12 Gbytes memory. In this case, the novel FMA-SMM is nearly
15 times faster than conventional SMM. This example demonstrates
that FMA-SMM can dramatically reduce the memory cost of SMM.
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Figure 14. Bistatic scattering from a large array of 2200 dielectric
rods (a = 1.0λ, b = 2.0λ, Mx = 20, My = 110, r0 = 0.2λ, εr = 3.0,
φinc = 90◦).

Figure 15. Iterative history of BiCGStab(2) for FMA-SMM solution
of Fig. 14.

However, the convergence rate remains same to SMM, quite slow for
dense lattice or lattice with a large number of rods. How to construct
efficient preconditioning technique is critical for FMA-SMM’s further
applications.

The above examples demonstrate the potential applications of the
novel FMA-SMM in many applications, for example, in analysis of
photonic crystal devices.
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6. CONCLUSION

The general fast multipole expressions of arbitrary order Hankel
functions are derived by using lowering and raising operators. An
efficient algorithm, fast multipole accelerated scattering matrix method
(FMA-SMM), is proposed for analysis of multiple scattering from
a large number of cylinders. The empirical formula is provided
to determine the minimum group size in FMA-SMM versus the
highest order of Hankel functions involved. The accuracy of the
algorithm is validated by comparing with previous studies of both
near field distribution and the far field radiation pattern. Numerical
examples demonstrate the lower computational complexity in memory
requirements and CPU time of the novel fast algorithm. An example
of a large array with more than two thousands cylinders is provided
to show the efficiency of the FMA-SMM. The novel fast algorithm can
be used in simulation of various 2D photonic crystal devices.
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