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Abstract—A new method is introduced to analyze lossy Inhomoge-
neous Planar Layers (IPLs). In this method, the equations of IPLs are
converted to the equations of homogeneous planar layers, which have
been excited by distributed equivalent sources. Then, the electric and
magnetic fields are obtained using an iterative approach. The validity
of the method is verified using a comprehensive example.

1. INTRODUCTION

Inhomogeneous Planar Layers (IPLs) are widely used in electromagnet-
ics as optimum shields and filters and etc. Also, the IPLs potentially
provide less scattering, less stress, larger bandwidth and better cou-
pling effects than homogeneous planar layers [1–8]. The differential
equations describing IPLs have non-constant coefficients and so ex-
cept for a few special cases no analytical solution exists for them. The
most straightforward method to analyze IPLs is to subdivide them into
many thin homogeneous planar layers [2] and [9]. Of course, analysis
of arbitrary IPLs using Taylor’s series and the Fourier series expansion
of primary parameters or solving an integral equation has been intro-
duced in [10, 11] and [12], respectively. In this paper, a new method is
introduced to analyze arbitrary IPLs, also. In this method, the equa-
tions of IPLs are converted to the equations of homogeneous planar
layers, which have been excited by distributed equivalent electric and
magnetic sources. Then, the electric and magnetic fields are obtained
using an iterative approach. This method is applicable to all arbitrary
lossy and dispersive IPLs. The validity of the method is verified using
a comprehensive example.
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2. THE EQUATIONS OF IPLS

In this section, the frequency domain equations of the IPLs are
reviewed. Figure 1 shows a typical IPL with the thickness d, whose
left and right mediums are arbitrary such as the air or conductor. Two
different polarizations are possible, one the TM and other the TE. It
is assumed that the incident plane wave propagates obliquely towards
positive x and z direction with an angle of incidence θi and electric
filed strength of Ei.
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Figure 1. Incident plane wave to IPL structure, (a) TE polarization
mode, (b) TM polarization mode.

The transverse electric and magnetic fields on the surface z =
const. are defined as follows

Et(z) �
{

Ey(z); TE
Ex(z); TM (1)

Ht(z) �
{

−Hx(z); TE
Hy(z); TM (2)

The differential equations describing lossy IPLs are given by

dEt(z)
dz

= −Z(z)Ht(z) (3)

dHt(z)
dz

= −Y (z)Et(z) (4)
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In (3) and (4), two following primary parameters have been defined

Z(z) �
{

Ẑ(z),TE
Ẑ(z) + k2

xŶ −1(z),TM
(5)

Y (z) �
{

Ŷ (z) + k2
xẐ−1(z),TE

Ŷ (z),TM
(6)

where

Ẑ(z) = jωµ0µr(z) (7)

Ŷ (z) = σ(z) + jωε0εr(z) (8)

In (5) and (6), kx is the wavenumber for the x direction

kx =
ω

c
sin(θi) (9)

where c is the velocity of the light and ω is the angular frequency.
Furthermore, there are two boundary conditions as follows

Et(0) + ZSHt(0) = ES (10)
Et(d) = ZLHt(d) (11)

where

ES =
{

2Ei,TE
2Ei cos(θi),TM (12)

Furthermore,

ZS =




√
µ0

ε0

1
cos(θi)

,TE√
µ0

ε0
cos(θi),TM

(13)

for when the left medium is being the air. Also ZL = ZS or ZL =0
for the air- or conductor-backed IPLs, respectively. The reflection and
the transmission coefficients will be determined using the transverse
electric fields on the surfaces z = 0 and z = d as follows

Γin =

{
Et(0)
Ei − 1,TE
Et(0)

Ei cos(θi)
− 1,TM

(14)

T =

{
Et(d)

Ei ,TE
Et(d)

Ei cos(θi)
,TM

(15)
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3. IPLS EXCITED BY EQUIVALENT SOURCES

In this section, the analysis of arbitrary lossy IPLs using the method
of equivalent sources is introduced. First, the average of the primary
parameters are defined as follows

Z̄ =
1
d

d∫
0

Z(z)dz (16)

Ȳ =
1
d

d∫
0

Y (z)dz (17)

The differential Equations (3) and (4) can be converted to the following
equations

dEt(z)
dz

= −Z̄Ht(z) + M(z) (18)

dHt(z)
dz

= −Ȳ Et(z) + J(z) (19)

The Equations (18) and (19) are related to homogeneous planar layers,
which have been excited by distributed equivalent sources (magnetic
and electric types) defined by

M(z) � (Z̄ − Z(z))Ht(z) (20)

J(z) � (Ȳ − Y (z))Et(z) (21)

Combining (18) and (19) with each other, gives the following
differential equations

d2Et(z)
dz2

− γ̄2Et(z) =
dM(z)

dz
− Z̄J(z) (22)

Ht(z) =
1
Z̄

(
M(z) − dEt(z)

dz

)
(23)

where

γ̄ =
√

Z̄Ȳ (24)
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As it has been shown in [13] for similar equations, the electric and
magnetic field distributions are obtained from (22) and (23) as follows

Et(z) = E+ exp(−γ̄z) + E− exp(γ̄z)

+
1
2γ̄

exp(γ̄z)

z∫
0

exp(−γ̄z′)
(

dM(z′)
dz′

− Z̄J(z′)
)

dz′

− 1
2γ̄

exp(−γ̄z)

z∫
0

exp(γ̄z′)
(

dM(z′)
dz′

− Z̄J(z′)
)

dz′ (25)

Ht(z) =
1
Z̄

M(z) +
E+

Z̄c
exp(−γ̄z) − E−

Z̄c
exp(γ̄z)

− 1
2Z̄

exp(γ̄z)

z∫
0

exp(−γ̄z′)
(

dM(z′)
dz′

− Z̄J(z′)
)

dz′

− 1
2Z̄

exp(−γ̄z)

z∫
0

exp(γ̄z′)
(

dM(z′)
dz′

− Z̄J(z′)
)

dz′ (26)

The constants E+ and E− in (25) and (26) are obtained from the
terminal conditions (10) and (11) as follows

E+ =
1

1 − Γ̄SΓ̄L exp(−2γ̄d)
×

[
Z̄c

ZS + Z̄c
ES − 1

γ̄

ZS

ZS + Z̄c
M(0)

+Γ̄S
exp(−γ̄d)

γ̄

ZL

ZL + Z̄c
M(d)

−Γ̄S
1
2γ̄

d∫
0

exp(−γ̄z′)
(

dM(z′)
dz′

− Z̄J(z′)
)

dz′

−Γ̄SΓ̄L
exp(−2γ̄d)

2γ̄

d∫
0

exp(γ̄z′)
(

dM(z′)
dz′

− Z̄J(z′)
)

dz′


(27)
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E− =
1

1 − Γ̄SΓ̄L exp(−2γ̄d)
×

[
Γ̄L exp(−2γ̄d)

Z̄c

ZS + Z̄c
ES

−Γ̄L
exp(−2γ̄d)

γ̄

ZS

ZS + Z̄c
M(0) +

exp(−γ̄d)
γ̄

ZL

ZL + Z̄c
M(d)

− 1
2γ̄

d∫
0

exp(−γ̄z′)
(

dM(z′)
dz′

− Z̄J(z′)
)

dz′

−Γ̄L
exp(−2γ̄d)

2γ̄

d∫
0

exp(γ̄z′)
(

dM(z′)
dz′

− Z̄J(z′)
)

dz′


 (28)

where

Γ̄S =
ZS − Z̄c

ZS + Z̄c
(29)

Γ̄L =
ZL − Z̄c

ZL + Z̄c
(30)

in which

Z̄c =

√
Z̄

Ȳ
(31)

The integrals existed in (16) and (17) and (25)–(28) are exactly
calculated if the primary parameters are known at all points,
continuously. However, these integrals can be approximately calculated
if the primary parameters are known only at some points. In this
case, which is more practical, we can assume that the primary
parameters vary between two adjacent points stepwise, linearly or in
other manners.

4. AN ITERATIVE APPROACH

The electric and magnetic field distributions obtained as (25)–(28)
require the distributed equivalent sources defined in (20) and (21).
On the other hand, these equivalent sources require the electric and
magnetic field distributions. To overcome this problem, we can use
an iterative approach. At first iteration, we consider the equivalent
sources to be zero.

M (1)(z) = J (1)(z) = 0 (32)
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Then, the electric and magnetic field distributions at first iteration are
obtained from (25)–(28) as follows

E
(1)
t (z) = E+(1) exp(−γ̄z) + E−(1) exp(γ̄z) (33)

H
(1)
t (z) =

1
Z̄c

(
E+(1) exp(−γ̄z) − E−(1) exp(γ̄z)

)
(34)

in which

E+(1) =
exp(2γ̄d)

Γ̄L
E−(1) = ES

Z̄c

ZS + Z̄c

1
1 − Γ̄LΓ̄S exp(−2γ̄d)

(35)

Now, the equivalent sources are corrected at the second iteration using
(20) and (21). Consequently, using (25)–(28) and (20)–(21) alternately,
the electric and magnetic field distributions are obtained with a low
error.

5. EXAMPLE AND RESULTS

In this section, a comprehensive example is presented to study the
validity of the introduced method. Consider an exponential IPL with
the following primary parameters

µr(z) = µr0 (36)
εr(z) = εr0 exp(kz/d) (37)
σ(z) = 0 (38)

The average of the primary parameters defined in (16) and (17) will
be as follows

Z̄ = jωµ0 (39)

Ȳ = jωε0εr0
exp(k) − 1

k
(40)

We assume that a plane wave with TE polarization is illuminated to
the assumed IPL. With this assumption, we will find from (7), (20),
(36) and (39) that

M(z) = 0 (41)

The equivalent electric sources at the second iteration can be obtained
using (8), (21), (33), (35), (37) and (40) as follows

J (2)(z) = jωε0εr0E
+(1)

(
exp(k) − 1

k
− exp(kz/d)

)
(
exp(−γ̄z) + Γ̄L exp(γ̄(z − 2d))

)
(42)
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Also, the electric and magnetic field distributions at the second
iteration are obtained by substituting (41) and (42) in (25)–(28) as
follows

E
(2)
t (z) = E+(2) exp(−γ̄z)+E−(2) exp(γ̄z)− 1

2
Z̄c exp(γ̄z)(A(z)−A(0))

+
1
2
Z̄c exp(−γ̄z) (B(z) − B(0)) (43)

H
(2)
t (z) =

E+(2)

Z̄c
exp(−γ̄z)− E−(2)

Z̄c
exp(γ̄z)+

1
2

exp(γ̄z) (A(z)−A(0))

+
1
2

exp(−γ̄z) (B(z) − B(0)) (44)

where

E+(2) =
1

1 − Γ̄SΓ̄L exp(−2γ̄d)
×

(
Z̄c

ZS + Z̄c
ES +

1
2
Z̄cΓ̄S (A(d) − A(0))

+
1
2
Z̄cΓ̄SΓ̄L exp(−2γ̄d) (B(d) − B(0))

)
(45)

E−(2) =
1

1 − Γ̄SΓ̄L exp(−2γ̄d)
×

(
Γ̄L exp(−2γ̄d)

Z̄c

ZS + Z̄c
ES

+
1
2
Z̄c (A(d) − A(0)) +

1
2
Z̄cΓ̄L exp(−2γ̄d)(B(d) − B(0))

)
(46)

in which A(z) and B(z) are two functions defined as

A(z) = jωε0εr0E
+(1)

[
exp(k) − 1

k

(
Γ̄L exp(−2γ̄d)z − 1

2γ̄
exp(−2γ̄z)

)

− 1
k/d − 2γ̄

exp((k/d − 2γ̄)z)

−Γ̄L exp(−2γ̄d)
1

k/d
exp(kz/d)

]
(47)

B(z) = jωε0εr0E
+(1)

[
exp(k) − 1

k

(
z + Γ̄L

1
2γ̄

exp(2γ̄(z − d))
)

− 1
k/d

exp(kz/d) − Γ̄L exp(−2γ̄d)
2γ̄ + k/d

exp((2γ̄ + k/d)z)
]

(48)

Now, assume that εr0 = 4 and µr0 = 1. A plane wave with TE
polarization, the angle of incidence θi = 60◦, the electric field strength
Ei = 1.0 V/m and the excitation frequency 1.0 GHz is illuminated to
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Figure 2. The magnitude of the electric field distribution for d =
20 cm and k = 1 at frequency f = 1.0 GHz.

Figure 3. The angle of the electric field distribution for d = 20 cm
and k = 1 at frequency f = 1.0 GHz.
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Figure 4. The magnitude of the electric field distribution for d =
10 cm and k = 1 at frequency f = 1.0 GHz.

Figure 5. The angle of the electric field distribution for d = 10 cm
and k = 1 at frequency f = 1.0 GHz.
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Figure 6. The magnitude of the reflection coefficient versus frequency
for d = 20 cm and k = 1.

Figure 7. The magnitude of the reflection coefficient versus frequency
for d = 20 cm and k = 0.5.
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the assumed structure. Figs. 2–5, compare the magnitude and the
angle of the electric field obtained from the exact solutions [9, 10] and
from the introduced method in its first and second iterations, for k = 1
and d = 20 cm and 10 cm. Also, Figs. 6–7 compare the magnitude
of the reflection coefficient versus the frequency, obtained from the
exact solution and from the presented method for d = 20 cm and
k = 1 and 0.5. One observes a good agreement between the exact
solutions and the solutions obtained from the proposed method at the
second iteration. It is concluded from Figs. 2–7 that the accuracy
of the obtained solutions is increased as the iterations are increased.
Also, the error has been spread along the whole thickness of the IPL.
Furthermore, the amount of error alters with respect to frequency but is
increased altogether. Moreover, the error is increased as the thickness
of IPLs or the variations of their primary parameters (k) increases.
From the above example, one may satisfy that the introduced method is
applicable to all arbitrary IPLs, whose primary parameters are known
at all or even at some points along their thickness.

6. CONCLUSION

A new method was introduced for frequency domain analysis of
arbitrary lossy and dispersive inhomogeneous planar layers (IPLs). In
this method, the equations of IPLs are converted to the equations of
homogeneous planar layers, which have been excited by distributed
equivalent sources. Then, the electric and magnetic fields are obtained
using an iterative approach. The validity of the method was verified
using a comprehensive example. It was seen that this method is
applicable to all arbitrary IPLs, whose primary parameters are known
at all or even at some points along their thickness. It was seen that,
the accuracy of the obtained solutions is increased as the iterations are
increased. Also, as the excitation frequency, the thickness of IPLs or
the variations of their primary parameters (k) increases, the necessary
number of iterations increases.
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