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Abstract—The quasi-linear Maxwell equations describing electromag-
netic wave propagation in nonlinear media permit several weak solu-
tions, which may be discontinuous (shock waves). It is often conjec-
tured that the solutions are unique if they satisfy an additional entropy
condition. The entropy condition states that the energy contained
in the electromagnetic fields is irreversibly dissipated to other energy
forms, which are not described by the Maxwell equations. We use the
method employed by Kružkov to scalar conservation laws to analyze
the implications of this additional condition in the electromagnetic
case, i.e., systems of equations in three dimensions. It is shown that
if a cubic term can be ignored, the solutions are unique and depend
continuously on given data.

1. INTRODUCTION

There are three classical questions regarding a given mathematical
problem: 1) does a solution exist, 2) is the solution unique, and 3) does
the solution change only little when we perturb the data? When all
these questions are answered in the positive, we say the problem is well
posed, in the sense of Hadamard [9]. One reason for this statement is
that these properties guarantee reproducible results from simulations.
For instance, if the model permits multiple solutions, how can we be
sure which one we are calculating and that it is physically relevant?

In this paper, we treat the questions of uniqueness and continuity
for solutions of the Maxwell equations, when modeling nonlinear media.
Using a technique developed by Kružkov [17] for scalar conservation
laws, we study the consequences of postulating an additional condition



318 Sjöberg

to the Maxwell equations, known as the entropy condition. We show
that if a certain term can be ignored, the solution is indeed unique.

The Maxwell equations alone are not sufficient to describe
wave propagation through a material. They must be supplemented
by constitutive relations, modeling the interaction between the
electromagnetic fields and the material. These relations are often
linear, but for large field strengths it is necessary to include some
nonlinear interactions as well, as is done in [31–34]. When the material
reacts much faster than the typical time scale of the wave, we may
assume an instantaneous model. In this case, the Maxwell equations
takes the mathematical structure of a symmetric system of hyperbolic
conservation laws. In our case, the key word in this classification
is “hyperbolic” [6, p. 401], in the sense that we can diagonalize the
system of equations into a system of weakly coupled, scalar transport
equations, allowing wave solutions.

Nonlinear hyperbolic conservation laws have been extensively
studied, mostly from the perspective of continuum mechanics and
thermodynamics. Much of the early engineering work up to 1948
is reported in [3], and a recent survey of mainly the mathematical
aspects of this field is given in [5]. A nice introduction to the numerical
treatment as well as a summary of theoretical results is found in [7],
and the subject is treated in text books on partial differential equations
[6, 12, 30]. One of the key results is that these equations permit
solutions which become discontinuous in finite time, even if the initial
data is infinitely differentiable. This means we cannot guarantee the
existence of classical derivatives, and the solution must be interpreted
in a weak sense, e.g., as a distribution or a measure.

It is well known that weak solutions to nonlinear hyperbolic
conservation laws are not necessarily unique, see e.g., [6, p. 142]. One
remedy to this problem is to define the hyperbolic conservation law as
the limit of a parabolic equation, which has well-defined solutions. This
is the technique of vanishing viscosity, and was first introduced in [10].
This programme has been quite successful, but some difficulties remain,
especially for systems of equations in several space variables. However,
it has been shown that if the limit can be suitably defined, the solution
satisfies an entropy condition, which can be defined independently of
the limit process. This entropy condition is well motivated from a
modeling point of view, and can often be shown to be a means of
selecting the unique, physically relevant solution. When uniqueness
proofs fail, it is often conjectured that the entropy condition provides
unique solutions [7, p. 32].

There are many kinds of entropy conditions. Probably the first
was considered by Jouguet [14], followed by Olĕinik’s condition E for
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a scalar equation [25], which was later extended by Liu [22], and a
similar condition for strictly hyperbolic systems was formulated by
Lax [20]. These conditions essentially require that when the equations
allow a discontinuous solution, the characteristics should cross each
other, which can be interpreted as “loss of information” or increase of
entropy. There are also conditions for systems of conservation laws
which are directly linked to the physical entropy, especially in gas
dynamics. From an energy conservation point of view, this can also be
considered as the dissipation of the energy defined by the conservation
law. Dafermos has proposed an entropy condition requiring this
dissipation to be maximal [4].

This paper is organized as follows. In Section 2 we present the
notation used in the paper and the constitutive relations leading to
the formulation of the Maxwell equations as a symmetric system of
hyperbolic, quasi-linear conservation laws. We postulate the entropy
condition in Section 3, and discuss the relevant interpretation of this
condition. In Section 4 we treat the questions of uniqueness and
continuous dependence on data for our solution using the technique
of “doubling the variables” introduced by Kružkov for a scalar
conservation law in [17]. We conclude by giving an explicit example in
Section 5 of a situation where the Maxwell equations alone permit two
solutions, and use the entropy condition to choose the relevant one.
Some final remarks are made in Section 6.

2. THE QUASI-LINEAR MAXWELL EQUATIONS

In this paper we use a slight modification of the Heaviside-Lorentz units
for our fields [13, p. 781], i.e., all electromagnetic fields are scaled to
units of

√
energy/volume,

E =
√
ε0ESI, H =

√
µ0HSI, J =

√
µ0JSI, (1)

D = 1/
√
ε0DSI, B = 1/

√
µ0BSI, (2)

where E and H is the electric and magnetic field strength, respectively,
and D and B is the electric and magnetic flux density, respectively, and
J is the electric current density. The index SI is used to indicate the
field in SI units. We use the scaled time t = c0tSI, where c0 = 1/

√
ε0µ0

is the speed of light in vacuum, and the constants ε0 and µ0 are the
permittivity and permeability of free space, respectively. The six-
vector notation from [28, 8], i.e.,

e =
(

E

H

)
, d =

(
D

B

)
, j =

(
J

0

)
, ∇× J =

(
0 −∇× I

∇× I 0

)
,

(3)



320 Sjöberg

where I is the unit 3 × 3 matrix, enables us to write the Maxwell
equations in the compact form

∇× Je + ∂td = −j. (4)

In this paper we treat the six-vectors as column vectors, i.e., we write
the scalar product as eTd =

∑6
i=1 eidi. This is merely for notational

convenience and does not capture the full mathematical structure,
which is not needed here. For more ambitious attempts to construct a
six-vector notation, we refer to [8, 21].

The Maxwell equations must be supplemented by a constitutive
relation, whose purpose is to model the interaction of the
electromagnetic field with the material. When the material reacts very
fast to stimulance, we can model it with an instantaneous constitutive
model, where the values of the electric flux density D and the magnetic
flux density B are completely determined by the values of the electric
field strength E and magnetic field strength H at the same point in
spacetime. We write this as

d(r, t) = d(e(r, t)), (5)

where d(e) is the gradient of a scalar function φ(e) with respect
to e, i.e., in terms of thermodynamics, the field gradient of the
thermodynamic potential (or the free energy density or the free
enthalpy density) [18, 2]. We use the notation d(e) = φ′(e) to denote
this derivative, i.e., di(e) = ∂φ/∂ei, i = 1, . . . , 6. The model is passive
if we require that the symmetric 6 × 6 matrix d ′(e) = φ′′(e), where
[d ′(e)]ij = ∂2φ/∂ei∂ej , is a positive definite matrix, which is the case
if the scalar function φ(e) is a convex function.

The Maxwell equations with an instantaneously reacting consti-
tutive model is

∇× Je + d ′(e)∂te = −j, (6)

and since d ′(e) is positive definite and symmetric, this is by definition
a quasi-linear, symmetric, hyperbolic system of partial differential
equations [30, p. 360]. The source free version of this system has been
extensively studied in [28], where it is shown that the equations in
general support two waves, the ordinary and the extraordinary wave,
each with its own refractive index.

Due to the quasi-linearity, the system (6) may exhibit shock
solutions, i.e., even if we give smooth data, the solution becomes
discontinuous in finite time. This means the derivatives cannot be
classically defined everywhere, but we can make a weak formulation of
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the problem by requiring the equality∫
R

∫
R3

[−eT∇× Jϕ − d(e)T∂tϕ + jTϕ] dV dt = 0 (7)

to hold for all six-vector test functions ϕ defined on R
3 × R, i.e.,

vector-valued functions which are infinitely differentiable with compact
support. We do not consider static fields in this paper, i.e., if j = 0
for t < 0, then e = 0 for t < 0.

One problem with the weak formulation is that we lose uniqueness,
i.e., there are several weak solutions e which satisfy the above
criteria. In the following section we present an entropy condition which
guarantees uniqueness of the weak solutions.

3. THE ENTROPY CONDITION

When the solutions to (6) are smooth, we can derive an equation
representing the conservation of energy. First, we note the identities

eT∇× Je = ∇ · (E × H) = ∇ · S(e) (8)

eT∂td(e) = ∂t(eTd(e) − φ(e)) = ∂tη(e), (9)

where the last identity follows from d(e) = φ′(e). The vector S(e)
is the Poynting vector, and the scalar, convex function η(e) is the
electromagnetic energy density. Multiplying (6) with eT now implies
the Poynting theorem (conservation of energy)

∇ · S(e) + ∂tη(e) = −eTj. (10)

When the solutions to (6) are not smooth, this equation is no longer
valid since the derivatives are not defined. We propose to replace it
with the inequality

∇ · S(e) + ∂tη(e) ≤ −eTj, (11)

which is interpreted in a weak sense, i.e., for all nonnegative test
functions ϕ, the inequality∫

R

∫
R3

[−S(e) · ∇ϕ− η(e)∂tϕ + eTjϕ] dV dt ≤ 0 (12)

holds. The inequality (11) is called the entropy condition, and is
here postulated in addition to the Maxwell equations. Observe that
since (11) is postulated and interpreted in the weak sense, it is valid
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for non-smooth solutions. The pair of functions η(e) and S(e) are
known in the mathematical literature as an entropy/entropy-flux pair,
see e.g., [6, pp. 604–611], [12, pp. 70–71], and [30, pp. 436–445]. The
existence of such a pair is nontrivial in the general case, and is a special
property of the system. Similar conditions are often present for systems
of nonlinear conservation laws, such as the equations governing gas
dynamics, see e.g., [7, pp. 21–35] and [19, 22, 4].

3.1. Why the Term “Entropy”?

It is quite obvious that no constitutive relation can capture all of the
physical processes which occur when electromagnetic waves interact
with matter. There is always some interaction that is left out, and if
we choose not to model it, we must assume that the electromagnetic
energy used in the interaction is lost in an irreversible process. If
the process were not irreversible, we would have to include it in our
equations if the equations are supposed to be realistic. Since the
electromagnetic energy is lost, it must be a nonincreasing function of
time (except for the energy fed to the system), which is the essence of
the entropy inequality (11). Namely, we can choose a suitable sequence
of test functions {ϕ} converging to a function constant on R

3 × [t1, t2],
a procedure which is performed in detail in Section 4.2, to find∫

R3

η(e) dV
∣∣∣∣
t=t2

≤
∫

R3

η(e) dV
∣∣∣∣
t=t1

−
∫ t2

t1

∫
R3

eTj dV dt, (13)

when all the integrals are defined. For active sources j, i.e., sources
which radiate electromagnetic energy, the term −

∫ t2
t1

∫
R3 eTj dV dt is

positive when t1 < t2 and represents the energy fed to the system.
The inequality sign in (13) represents the fact that there is a loss of

electromagnetic energy with increasing time. The irreversible processes
that are not modeled by the Maxwell equations can be represented with
an energy density term TS, where T is the temperature and S is the
entropy density. The first law of thermodynamics states that the total
internal energy

U =
∫

R3

(η(e) + TS) dV (14)

is constant for an isolated system (no exchange of heat or work, i.e.,
for time intervals when j = 0). If the integral of the electromagnetic
energy is nonincreasing with time, it then follows that the integral
of TS must be nondecreasing. This means the entropy must be
nondecreasing under isothermal conditions, which is consistent with
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the second law of thermodynamics. This shows that the term “entropy
condition” is justified for electromagnetic waves, if we interpret entropy
as a representation of the dissipative processes not modeled by the
Maxwell equations. Thus, we think of entropy as “missing information”
about the system. For a further discussion on the interpretation of
entropy, we refer to [29].

3.2. The Entropy Condition for Vanishing Viscosity
Solutions

We have previously postulated the entropy condition in addition to
the Maxwell equations. The question may be raised if there exists
solutions that satisfy both these criteria. There is at present no definite
answer to this question, but we can show that if we make a parabolic
regularization of the Maxwell equations,

∇× Jeδ + ∂td(eδ) = −j + δ∇2eδ, (15)

and the solution eδ is uniformly bounded in the supremum norm and
converges almost everywhere to e as δ → 0, this limit solution satisfies
the entropy condition (11), see [7, p. 27] and [30, p. 438]. This method
of constructing solutions to quasi-linear hyperbolic equations is called
the vanishing viscosity method, and is a standard method in partial
differential equation theory. It can be shown that for each δ > 0, the
initial value problem for (15) is well posed with solutions infinitely
differentiable in the interior domain and continuous on the boundary
[30, p. 338]. For similar systems of equations in one spatial dimension
and scalar equations in several dimensions, there exists a limiting
function as δ → 0. However, there are still some questions regarding
the convergence for systems of equations in several space dimensions,
that have not been resolved, and we can only conjecture the existence
of a limit e = limδ→0 eδ, see [26] and [7, p. 32].

The parabolic equation (15) is actually the equation which is
approximated to second order accuracy by some first order numerical
schemes used to solve hyperbolic equations, e.g., the Lax-Friedrichs
scheme in one spatial dimension [7, p. 181]. The viscosity parameter δ is
then typically of order (∆x)2/∆t, where ∆x and ∆t is the discretization
in space and time, respectively, implying δ → 0 as the discretization is
refined. In this context, the entropy is a measure of what goes on on
a finer scale than we are observing, i.e., on a scale of order δ.

4. KRUŽKOV’S METHOD FOR ENTROPY SOLUTIONS

In this section we use a method due to Kružkov (see [17] and [6,
pp. 608–611]) to study uniqueness and continuous dependence on data
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for solutions which satisfy the Maxwell equations as well as an entropy
condition,

∇× Je + ∂td(e) = −j, ∇ · S(e) + ∂tη(e) ≤ −eTj, (16)

where S(e) = E ×H and η(e) = eTd(e)− φ(e). The idea is to study
the difference between the energies for two different solutions, slightly
perturbed in space and time. This enables us to obtain an inequality
similar to (13), but with a new energy which is zero only when the
two solutions are equal almost everywhere. However, the inequality
also comprises a term which eludes further analysis. This is further
commented at the end of Section 4.1.

Suppose we have two solutions, e and ẽ, satisfying

∇x × Je + ∂td(e) = −j, ∇x · S(e) + ∂tη(e) ≤ −eTj, (17)

and

∇y × Jẽ + ∂sd(ẽ) = −̃, ∇y · S(ẽ) + ∂sη(ẽ) ≤ −ẽT̃, (18)

where j and ̃ may be different. Note that we have labeled the
independent variables differently for the two solutions, i.e., e =
e(x, t), j = j(x, t), ẽ = ẽ(y, s) and ̃ = ̃(y, s). This is helpful
when handling the differential operators in the following. We add
−ẽT(∇x × Je + ∂td(e) + j) + ẽT∇x × Jẽ + ∂tφ(ẽ) = 0 to the entropy
condition for e, which implies

0 ≥ ∇x ·S(e)+∂tη(e)+eTj− ẽT(∇x×Je+∂td(e)+j)+ ẽT∇x×Jẽ

+ ∂tφ(ẽ) = ∇x · S(e − ẽ) + ∂tη(e, ẽ) + (e − ẽ)Tj, (19)

where

η(e, ẽ) = (e − ẽ)Td(e) − φ(e) + φ(ẽ). (20)

Note that the terms ẽT∇x ×Jẽ and ∂tφ(ẽ) are identically zero since ẽ
does not depend on x or t, and are included in order to obtain better
symmetry in the inequality (19). Repeating the procedure for the set
of equations with independent variables (y, s), results in the entropy
inequalities

∇x · S(e − ẽ) + ∂tη(e, ẽ) + (e − ẽ)Tj ≤ 0 (21)

∇y · S(ẽ − e) + ∂sη(ẽ, e) + (ẽ − e)T̃ ≤ 0. (22)
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These inequalities are interpreted in a weak sense, i.e., they are
defined through their effect on nonnegative test functions. Thus, the
inequalities∫∫∫∫ {

− S(e − ẽ) · ∇xϕ− η(e, ẽ)∂tϕ

+ (e − ẽ)Tjϕ
}

dVx dVy dtds ≤ 0 (23)

and∫∫∫∫ {
− S(ẽ − e) · ∇yϕ− η(ẽ, e)∂sϕ

+ (ẽ − e)T̃ϕ
}

dVx dVy dtds ≤ 0, (24)

must hold for all test functions ϕ(x,y, t, s) ≥ 0. The integrations
are performed over R

3 × R
3 × R × R, but we suppress the integration

limits in order to simplify the notation. We now observe the symmetry
S(e− ẽ) = S(ẽ−e), and expand ∂tϕ and ∂sϕ as ∂tϕ = 1

2∂tϕ+ 1
2∂sϕ+

1
2∂tϕ− 1

2∂sϕ and ∂sϕ = 1
2∂sϕ+ 1

2∂tϕ+ 1
2∂sϕ− 1

2∂tϕ. After adding the
inequalities we obtain

0 ≥
∫∫∫∫ {

−S(e− ẽ) ·(∇xϕ+∇yϕ)− 1
2
[η(e, ẽ)+η(ẽ, e)](∂tϕ+∂s)

− 1
2
[η(e, ẽ) − η(ẽ, e)](∂tϕ− ∂s) + (e − ẽ)T(j − ̃)ϕ

}
dVx dVy dtds,

(25)

which is the general expression with an arbitrary test function ϕ. To
proceed with the analysis, we now choose a special test function which
somewhat simplifies this inequality.

4.1. Choosing the Proper Test Function

Following Kružkov’s classical uniqueness proof, we employ the special
test function

ϕ(x,y, t, s) = J
(3)
δ

(
x − y

2

)
Jδ

(
t− s

2

)
ψ

(
x + y

2
,
t + s

2

)
, (26)

where Jδ is a nonnegative mollifier, having unit integral and converging
to the Dirac measure as δ → 0. The mollifier in space J

(3)
δ can

be written as the product J
(3)
δ (x) = Jδ(x1)Jδ(x2)Jδ(x3). Since the
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support of the mollifiers shrinks to zero when δ → 0, this choice of test
function brings the variables x and y, and t and s, respectively, close
to each other as the parameter δ → 0. This is similar to restricting the
tensor product between two distributions to the diagonal, see [11].

Introducing the new variables

x̄ =
x + y

2
, ȳ =

x − y

2
, t̄ =

t + s

2
, s̄ =

t− s

2
, (27)

the inequality (25) is written

∫∫∫∫ {
−S(e−ẽ)·∇x̄ψ− 1

2
[η(e, ẽ)+η(ẽ, e)]∂t̄ψ+(e−ẽ)T(j− ̃)ψ

}
× J

(3)
δ Jδ dVx̄ dVȳ dt̄ ds̄

≤
∫∫∫∫

1
2
[η(e, ẽ) − η(ẽ, e)]J (3)

δ J ′
δψ dVx̄ dVȳ dt̄ds̄. (28)

The explicit expression for the energy term 1
2 [η(e, ẽ)+η(ẽ, e)] is found

from the definition of η(e, ẽ),

1
2
[η(e, ẽ) + η(ẽ, e)] =

1
2
(e − ẽ)T(d(e) − d(ẽ)), (29)

and in Appendix A it is shown that we can introduce a third rank
tensor Kijk(e, ẽ), defined in (A8), to write

1
2
[η(e, ẽ) − η(ẽ, e)] = Kijk(e, ẽ)(ei − ẽi)(ej − ẽj)(ek − ẽk), (30)

where summation over repeated indices is assumed. As seen in
Appendix A, the tensor Kijk is related to the third derivative of the
thermodynamic potential, φ′′′. Since φ is a quadratic function for linear
materials, we see that this term must be due to the nonlinearity of our
constitutive relation.

The explicit form of the entropy inequality (25) is thus

∫∫∫∫ {
− S(e − ẽ) · ∇x̄ψ − 1

2
(e − ẽ)T(d(e) − d(ẽ))∂t̄ψ

+ (e − ẽ)T(j − ̃)ψ
}
J

(3)
δ Jδ dVx̄ dVȳ dt̄ ds̄

≤
∫∫∫∫

Kijk(e, ẽ)(ei − ẽi)(ej − ẽj)(ek − ẽk)J
(3)
δ J ′

δψ dVx̄ dVȳ dt̄ds̄,

(31)
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where no approximations are made so far. It is conjectured that the
term on the right hand side of the inequality is negligible, since it is
cubic in the difference e − ẽ and should therefore be small compared
to the other terms when |e − ẽ| is small. However, the differentiated
mollifier J ′

δ could change this assumption. It should be noted that
in the case of a scalar conservation law, which Kružkov studied, it is
possible to choose the functions corresponding to S and η such that
this term does not appear. To see why it is desirable to obtain control
over this term, we spend the following subsections showing that this
implies that our solutions are unique and depend continuously on data.

4.2. Uniqueness and Continuous Dependence on Data

If we assume the term on the right hand side of (31) can be replaced
with zero, we are free to take the limit δ → 0 in the mollifiers since
the terms inside the curly brackets are summable over x̄ and t̄. This
implies that the integrals over ȳ and s̄ only contribute when (ȳ, s̄) is
close to (0, 0), which implies x̄ ≈ x ≈ y and t̄ ≈ t ≈ s. Hence the limit
δ → 0 provides the inequality∫∫ {

− S(e − ẽ) · ∇x̄ψ − 1
2
(e − ẽ)T(d(e) − d(ẽ))∂t̄ψ

+ (e − ẽ)T(j − ̃)ψ
}

dVx̄ dt̄ ≤ 0 (32)

and from this point on we use the variables x̄ and t̄ to emphasize
that they are the mean values of the variables x and y, and t and s,
respectively. Following [6, pp. 608–611] we choose the test function
ψ(x̄, t̄) = α(x̄)β(t̄) according to

α : R
3 → R is smooth,

α(x̄) = 1 if |x̄| ≤ r,

α(x̄) = 0 if |x̄| ≥ r + r0,

|∇x̄α(x̄)| ≤ 2/r0,

and

β : R → R is Lipschitz continuous,
β(t̄) = 0 if t̄ ≤ t1 or t̄ ≥ t2 + ∆t,

β(t̄) = 1 if t1 + ∆t ≤ t̄ ≤ t2,

β is linear on [t1, t1 + ∆t] and [t2, t2 + ∆t],

where ∆t satisfies 0 < ∆t < t2 − t1. Strictly speaking, β is not a test
function, but we can use a suitable sequence of proper test functions
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to construct this limit. Our inequality is now written

1
∆t

∫ t2+∆t

t2

1
2

∫
R3

(e − ẽ)T(d(e) − d(ẽ))α(x̄) dVx̄ dt̄

+
∫ t2+∆t

t1

∫
r<|x̄|<r+r0

S(e − ẽ) · ∇x̄α(x̄)β(t̄) dVx̄ dt̄

≤ 1
∆t

∫ t1+∆t

t1

1
2

∫
R3

(e − ẽ)T(d(e) − d(ẽ))α(x̄) dVx̄ dt̄

−
∫ t2+∆t

t1

∫
R3

(e − ẽ)T(j − ̃)α(x̄)β(t̄) dVx̄ dt̄ (33)

and the integral containing S(e− ẽ) vanishes as r → ∞ since S(e− ẽ)
is a quadratic function of e− ẽ and |e|2 and |ẽ|2 are integrable, which
means the integral must disappear in this limit. We next let ∆t → 0
to deduce the fundamental energy estimate

1
2

∫
R3

(e − ẽ)T(d(e) − d(ẽ)) dVx̄

∣∣∣∣
t̄=t2

≤

1
2

∫
R3

(e − ẽ)T(d(e) − d(ẽ)) dVx̄

∣∣∣∣
t̄=t1

−
∫ t2

t1

∫
R3

(e− ẽ)T(j− ̃) dVx̄ dt̄

(34)

for every pair t1 < t2. We emphasize that this estimate was obtained
by assuming that a term cubic in the difference e− ẽ could be ignored.

Our first question concerns the uniqueness of entropy solutions,
i.e., can different solutions be generated by the same data? From (34)
we see the answer is negative. The currents may be assumed to start
at a specific time, i.e., j = ̃ = 0 for t ≤ 0, and causality implies
e = ẽ = 0 for t̄ = 0. By choosing t2 = T and t1 = 0 and using the
same currents for the two solutions, j = ̃ everywhere, we obtain

1
2

∫
R3

(e − ẽ)T(d(e) − d(ẽ)) dVx̄

∣∣∣∣
t̄=T

≤ 0 (35)

for every finite time T > 0. Assuming the model saturates for high
field strengths, i.e., d(e) can be bounded by a linear function of e,
there exists positive constants C< and C> such that

C<|e − ẽ|2 ≤ (e − ẽ)T(d(e) − d(ẽ)) ≤ C>|e − ẽ|2, (36)

we see that (35) implies e = ẽ almost everywhere. Thus we have
uniqueness.
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Our second question concerns the continuous dependence of the
solution on given data. We use Hölder’s inequality to estimate the
source term

−
∫ T

0

∫
R3

(e − ẽ)T(j − ̃) dVx̄ dt̄ ≤
∫ T

0

∫
R3

|(e − ẽ)T(j − ̃)|dVx̄ dt̄

≤
∫ T

0

(∫
R3

|e − ẽ|2 dVx̄

)1/2 (∫
R2

|j − ̃)|2 dVx̄

)1/2

dt̄. (37)

Using the notation ‖e − ẽ‖ =
(∫

R3 |e − ẽ|2 dV
)1/2 and (36), the

estimate (34) implies

C<

2
‖e − ẽ‖2

t̄=T ≤
∫ T

0
‖e − ẽ‖ · ‖j − ̃‖dt̄, (38)

where we used ‖e − ẽ‖2
t̄=0 = 0. Since this inequality is valid for all

T > 0, the term on the left hand side can be replaced by its supremum.
After dividing by supt̄∈[0,T ] ‖e − ẽ‖, we find

sup
t̄∈[0,T ]

‖e − ẽ‖ ≤ 2
C<

∫ T

0
‖j − ̃‖dt̄, (39)

for every T > 0. This shows that the norm of the difference between
two solutions is bounded by the norms of the difference between the
difference between the sources. Thus we have continuous dependence
of the solution on input data for each finite time T .

4.3. Initial/Boundary-value Problem

To simplify and streamline the presentation, the analysis so far has
been for all of space and time, which means there are no initial or
boundary values involved. In this subsection, we give a brief review
on how to treat a finite region Ω ⊂ R

3 instead of all space. We also
allow for initial values by making the following weak formulation of
the Maxwell equations instead of (7),∫ ∞

0

∫
Ω
[−eT∇× Jϕ − d(e)T∂tϕ + jTϕ] dV dt

+
∫ ∞

0

∫
∂Ω

S(ϕ, e) · n̂ dS dt−
∫

Ω
d(e0)Tϕ dV

∣∣∣∣
t=0

= 0, (40)

where n̂ denotes the unit normal pointing out of the region Ω, and
S(ϕ, e) = ϕE×H−ϕH×E, with ϕE and ϕH denoting the parts of the
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six-vector test function ϕ corresponding to the electric and magnetic
field, respectively. We denote the initial values by e(x, 0) = e0(x).
Instead of the estimate (34) we now obtain

∫ T

0

∫
∂Ω

S(e − ẽ) · n̂ dSx̄ dt̄ +
1
2

∫
Ω
(e − ẽ)T(d(e) − d(ẽ)) dVx̄

∣∣∣∣
t̄=T

≤ 1
2

∫
Ω
(e0− ẽ0)T(d(e0)−d(ẽ0)) dVx̄−

∫ T

0

∫
Ω
(e− ẽ)T(j− ̃) dVx̄ dt̄,

(41)

once again under the assumption that we can ignore the cubic term in
(31). The initial values are given from the problem formulation, but it
remains to divide the integral of Poynting’s vector over the boundary,
representing the net flow of energy across the boundary, into parts
representing energy flow in and out of the region. We use the energy
splitting (change of variables) [8, 15]

E± =
−n̂ × (n̂ × E) ± n̂ × H

2
, (42)

to decompose the energy flux into

S(e − ẽ) · n̂ = |E+ − Ẽ+|2 − |E− − Ẽ−|2. (43)

Assuming we can choose boundary data such that the incoming energy
flux |E− − Ẽ−|2 is given, we obtain

∫ T

0

∫
∂Ω

|E+ − Ẽ+|2 dSx̄ dt̄ +
1
2

∫
Ω
(e − ẽ)T(d(e) − d(ẽ)) dVx̄

∣∣∣∣
t̄=T

≤
∫ T

0

∫
∂Ω

|E− − Ẽ−|2 dSx̄ dt̄ +
1
2

∫
Ω
(e0 − ẽ0)T(d(e0) − d(ẽ0)) dVx̄

−
∫ T

0

∫
Ω
(e − ẽ)T(j − ̃) dVx̄ dt̄, (44)

with everything on the right hand side given by initial/boundary data
or the sources j− ̃. It is easy to see that this estimate provides us with
the same conclusions regarding uniqueness and continuous dependence
on data as in the previous subsection.

5. ONE-DIMENSIONAL EXAMPLE

We give an example of a situation where we have several solutions
to the Maxwell equations (6), but the entropy condition (11) helps
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us finding the relevant solution. Assuming no sources and the initial
values

e(x, 0) =
{

el z < 0
er z > 0, (45)

where the constant six-vectors el and er denote the left and right state,
respectively, the Maxwell equations reduce to the one-dimensional
equations,

ẑ × J∂ze + ∂td(e) = 0, (46)

where ẑ is the unit vector in the z direction. This is a Riemann
problem, i.e., the propagation of a step function, which is the archetype
problem when studying discontinuous solutions, or shock waves. For
an isotropic, nonmagnetic material, we can further reduce the Maxwell
equations to the well investigated system [27, 16, 1]

∂zH + ∂tD(E) = 0, ∂zE + ∂tH = 0. (47)

Note that this can be converted to the p-system in gas dynamics by
making D the dependent variable instead of E.

The entropy condition reduces to

∂z(EH) + ∂tη(E,H) ≤ 0, (48)

where

η(E,H) = ED(E) −
∫ E

0
D(E′) dE′ +

H2

2
. (49)

We study the constitutive relation for an instantaneously reacting Kerr
medium,

D(E) = E + E3 ⇒ η(E,H) =
E2

2
+

3E4

4
+

H2

2
, (50)

and choose the initial values, corresponding to (45), as(
El

H l

)
=

(
1√
2

)
and

(
Er

Hr

)
=

(
0
0

)
. (51)

It can be verified that the one-dimensional Maxwell equations (47)
allow two solutions for these initial values (see Figure 1): the shock
wave solution
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z

t

z

t

z

E

z

E

Figure 1. Top row: the two solutions with initial values (51) for a
given time t. The solution to the left is the (nonphysical) shock wave
(52), and the one to the right is the rarefaction (53). Bottom row:
the ‘+’-characteristics for the two solutions. The ‘+’-characteristics
are the curves in spacetime along which the waves propagating in the
positive z-direction are constant, i.e., in order to find the field at a
certain point in space and time, we follow the characteristic curve
back in time to the initial values. There are also ‘−’-characteristics,
corresponding to waves propagating in the negative z-direction, but we
have chosen initial values such that these waves can be ignored. Note
that for the discontinuous solution, the characteristics originate from
the shock front, indicated by the bold line.

(
E

H

)
=

{
(1,

√
2)T, z < 1√

2
t

(0, 0)T, z > 1√
2
t

(52)

and the rarefaction wave solution (ignoring for simplicity a small shock
wave of amplitude [[E]] ∼ 0.01 propagating to the left with speed
∼ −0.5)

(
E

H

)
=




(1,
√

2)T, z < 1
2 t

(f(z/t), g(z/t))T, 1
2 t < z < t

(0, 0)T, z > t,
(53)
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where f and g are differentiable functions satisfying

f(1/2) = 1, g(1/2) =
√

2, f(1) = g(1) = 0, (54)

thus providing a smooth transition from the left state (1,
√

2) to the
right state (0, 0). For a discontinuous solution which is equal to (El, H l)
when z < vt and equal to (Er, Hr) when z > vt, the entropy condition
becomes

(ErHr − ElH l) − v(η(Er, Hr) − η(El, H l)) ≤ 0. (55)

Calculating the expression on the left hand side for the discontinuous
solution (52), we find it is equal to 1/4

√
2 �≤ 0. The entropy condition

is violated, and the true solution must be (53), which can be shown to
satisfy the entropy condition. Thus, the entropy condition has helped
us in choosing the correct solution, where the Maxwell equations alone
are not sufficient.

It should be noted that if we exchange the left and the right states
in the initial value problem, i.e.,(

El

H l

)
=

(
0
0

)
and

(
Er

Hr

)
=

(
1√
2

)
, (56)

z

t
z

E

Figure 2. Top: the (physical) shock wave (57) for a given time t.
Bottom: the ‘+’-characteristics corresponding to this solution. Note
that the characteristics cross each other on the shock front, indicated
by the bold line.
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the entropy condition is satisfied for the shock solution

(
E

H

)
=

{
(0, 0)T, z < 1√

2
t,

(1,
√

2)T, z > 1√
2
t,

(57)

since in this case (ErHr−ElH l)−v(η(Er, Hr)−η(El, H l)) = −1/4
√

2 ≤
0. Thus, the initial values (56) generates a unique, physical, shock
solution, where electromagnetic energy is dissipated. This solution is
depicted in Figure 2.

6. CONCLUSIONS

In the previous sections, the constitutive relation d(e) may depend
on additional parameters without any change in the analysis. In
particular, we allow for a dependence on the spatial variable, i.e.,
d(x, e). It is also easily seen that this form of constitutive relation
allows for a coupling between the electric and magnetic field and
any anisotropic effects, as long as the 6 × 6 matrix d ′(e) is positive
definite for all e. Thus, our presentation comprises inhomogeneous,
bianisotropic, instantaneously reacting nonlinear models.

It must be stressed that the results obtained in this paper are
subject to the assumption that the cubic term in (31) is negligible. We
have not been able to prove this conjecture, but one way might be to
study the conservation of pseudo-momentum D × B, as is done for
one-dimensional shock profiles in continuum mechanics [23, 24]. This
results in three additional conservation laws (one for each component
of the pseudo-momentum), which might bring additional information
to the problem. For instance, the problematic term can be related
to the balance of forces across shock fronts, but the usefulness of this
approach in three-dimensional electromagnetics is unclear.

Since it seems reasonable that entropy solutions to the Maxwell
equations are unique and depend continuously on data, numerical
methods for treating these equations should incorporate the entropy
condition. One way to do this is by choosing a numerical scheme
based on vanishing viscosity, where the viscosity parameter is of the
same order as the discretization as explained at the end of Section 3.2.

In the Introduction, we listed the three questions of existence,
uniqueness and continuity. The latter two have been treated in this
paper using Kružkov’s method, but the questions remain open. There
is also only empirical evidence regarding the existence of solutions
satisfying the entropy condition. If it is possible to answer these
questions by the vanishing viscosity technique, that answer will most
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probably also shed additional light on the problems with uniqueness
and continuity treated in this paper.
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APPENDIX A. ANALYSIS OF AN ENERGY TERM

In this appendix, we analyze the term 1
2 [η(e, ẽ) − η(ẽ, e)]. The

definition of the energy η(e, ẽ) is

η(e, ẽ) = (e − ẽ)Td(e) − φ(e) + φ(ẽ), (A1)

which enables us to write

1
2
[η(e, ẽ) − η(ẽ, e)] = (e − ẽ)T

d(e) + d(ẽ)
2

− φ(e) + φ(ẽ). (A2)

This is in fact a cubic function of e− ẽ. To see this, first note that we
can write

φ(e) − φ(ẽ) =
∫ 1

0

d
dr

φ(re + (1 − r)ẽ) dr

= (e − ẽ)T
∫ 1

0
φ′(re + (1 − r)ẽ) dr

= (e − ẽ)T
∫ 1

0
d(re + (1 − r)ẽ) dr. (A3)

We then have

(e − ẽ)T
d(e) + d(ẽ)

2
− φ(e) + φ(ẽ)

=
1
2
(e − ẽ)T

{
d(e) −

∫ 1

0
d(re + (1 − r)ẽ) dr + d(ẽ)

−
∫ 1

0
d(re + (1 − r)ẽ) dr

}
(A4)
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and we repeat the trick in (A3) to find

d(e) −
∫ 1

0
d(re + (1 − r)ẽ)T dr =

∫ 1

0
{d(e) − d(re + (1 − r)ẽ)}dr

=
∫ 1

0
(e − (re + (1 − r)ẽ))T

∫ 1

0
d ′(qe + (1 − q)(re + (1 − r)ẽ)) dq dr

= (e − ẽ)T
∫ 1

0
(1 − r)

∫ 1

0
d ′(qe + (1 − q)(re + (1 − r)ẽ)) dq dr,

(A5)

and

d(ẽ) −
∫ 1

0
d(re + (1 − r)ẽ)T dr =

∫ 1

0
{d(ẽ) − d(re + (1 − r)ẽ)}dr

=
∫ 1

0
(ẽ − (re + (1 − r)ẽ))T

∫ 1

0
d ′(qẽ + (1 − q)(re + (1 − r)ẽ)) dq dr

= (ẽ − e)T
∫ 1

0
r

∫ 1

0
d ′(qẽ + (1 − q)(re + (1 − r)ẽ)) dq dr

= (ẽ − e)T
∫ 1

0
(1 − r)

∫ 1

0
d ′(qẽ + (1 − q)(rẽ + (1 − r)e)) dq dr,

(A6)

where the last line follows from a change of variables r → 1 − r. The
sum of these terms involve the expression∫ 1

0
(1 − r)

∫ 1

0

{
d ′(qe + (1 − q)(re + (1 − r)ẽ))

− d ′(qẽ + (1 − q)(rẽ + (1 − r)e))
}

dq dr

=
∫ 1

0
(1 − r)

∫ 1

0
(e − ẽ)T(q + (1 − q)(r − (1 − r)))

×
∫ 1

0
d ′′

(
p(qe + (1 − q)(re + (1 − r)ẽ))

+(1 − p)(qẽ + (1 − q)(rẽ + (1 − r)e))
)

dpdq dr

= (e − ẽ)T
∫ 1

0

∫ 1

0

∫ 1

0
(1 − r)(2q + 2r − 2qr − 1)

× d ′′
(
p(qe + (1 − q)(re + (1 − r)ẽ))

+(1 − p)(qẽ + (1 − q)(rẽ + (1 − r)e))
)

dpdq dr. (A7)
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Since d ′′ = φ′′′ we can introduce the third rank tensor

Kijk(e, ẽ) =
∫ 1

0

∫ 1

0

∫ 1

0
(1 − r)(2q + 2r − 2qr − 1)

× ∂3φ

∂ei∂ej∂ek

(
p(qe + (1 − q)(re + (1 − r)ẽ))

+ (1 − p)(qẽ + (1 − q)(rẽ + (1 − r)e))
)

dpdq dr, (A8)

to write

(e−ẽ)T
d(e)+d(ẽ)

2
−φ(e)+φ(ẽ)=Kijk(e, ẽ)(ei−ẽi)(ej−ẽj)(ek−ẽk),

(A9)

where summation over repeated indices is assumed. Since φ is a
quadratic function for linear materials, we see that this term is non-
zero only for nonlinear materials.
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31. Åberg, I., “High-frequency switching and Kerr effect — Nonlinear
problems solved with nonstationary time domain techniques,”
Progress In Electromagnetics Research, PIER 17, 185–235, 1997.

32. Kung, F. and H. T. Chuah, “Stability of classical finite-difference
time-domain (FDTD) formulation with nonlinear elements —
A new perspective,” Progress In Electromagnetics Research,
PIER 42, 49–89, 2003.

33. Makeeva, G. S., O. A. Golovanov, and M. Pardavi-Horvath,
“Mathematical modeling of nonlinear waves and oscillations in
gyromagnetic structures by bifurcation theory methods,” J. of
Electromagn. Waves and Appl., Vol. 20, No. 11, 1503–1510, 2006.

34. Norgren, M. and S. He, “Effective boundary conditions for a 2D
inhomogeneous nonlinear thin layer coated on a metallic surface,”
Progress In Electromagnetics Research, PIER 23, 301–314, 1999.


