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Abstract—An effective approach is proposed in this paper for
estimating the near-field data external to the measurement region in
the plane-polar scanning. It relies on the nonredundant sampling
representations of the electromagnetic field and makes use of the
singular value decomposition method for the extrapolation of the
outside samples. It is so possible to reduce in a significant way the error
due to the truncation of the measurement zone thus increasing the far-
field angular region of good reconstruction. The comparison of such
an approach, based on the optimal sampling interpolation expansions,
with an existing procedure using the cardinal series has highlighted
that the proposed technique works better. Some numerical tests are
reported for demonstrating its effectiveness.

1. INTRODUCTION

The nonredundant sampling representations of electromagnetic (EM)
fields [1], which are based on the spatial bandlimitation properties [2]
of the fields radiated by finite size sources, allow a very remarkable
reduction of the near-field (NF) data to be acquired in the case of
electrically large antennas and extended scanning regions. As a matter
of fact, the NF data required to perform the near-field-far-field (NF-
FF) transformations are recovered from the collected ones by using
proper sampling interpolation formulas [3–10].

When the measurement region is truncated, such as in the
cylindrical and planar scannings, an inevitable truncation error affects
the NF data reconstruction in the zones close to the boundary of such



214 D’Agostino et al.

a region. As a consequence, the reconstruction results to be accurate
in a zone smaller than the measurement one (since the required guard
samples must belong to this last) and this implies a reduction of the
angular region wherein an accurate FF reconstruction is attained. Of
course, an enlargement of this last region can be obtained by decreasing
the distance between the antenna under test (AUT) and the scanning
surface. However, such a distance cannot be reduced beyond certain
limits, otherwise the interactions between the AUT and the probe
cannot be neglected any more.

An extension of the zone of “good NF reconstruction” is achievable
by employing the optimal sampling interpolation (OSI) expansions
instead of the cardinal series (CS) ones. In fact, when evaluating the
field (or the voltage measured by the probe) at each needed point, these
last require the use of many samples to keep the truncation error low
and this leads to a large computational time too. On the contrary, the
OSI expansions minimize the truncation error for a given number of
retained samples and, therefore, they require only a reduced number of
data in the neighbourhood of the output point. Furthermore, the use
of OSI expansions allows one to overcome the other serious drawback
of the CS ones, i.e., the propagation of the errors affecting the data
from high to low field (voltage) regions [11], due to the slow decay of
the interpolation functions.

It is worth noting that, although the use of the nonredundant
sampling representations of the EM field is extremely convenient from
the data reduction viewpoint, it gives rise to an unavoidable decrease
in the ratio between the extensions of the accurate reconstruction zone
and the measurement one. In fact, in such a case the guard samples
represent a more relevant percentage of the overall number of data and
lie in the peripheral zones, where the sample spacing is remarkably
greater than in the central region. Accordingly, in order to obtain
an accurate field (voltage) reconstruction in the whole measurement
region, it becomes very important to estimate a proper number of
outside samples.

In light of the above discussion, we are led to the following
extrapolation problem: estimation of a (spatially) bandlimited
function outside the observation region from the knowledge of its
internal samples taken at a rate greater than the Nyquist one. As
well-known, this is an ill-posed problem widely studied in literature
with reference to the case of bandlimited signals which are known only
in a finite time interval [12–21].

It is well-known that a continuous bandlimited signal can be
extrapolated, without error, outside any finite interval. To this end,
a Taylor series expansion can be used, since such a signal is analytic.
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In practice, such a procedure is not feasible, because observed data
are always corrupted by noise and the evaluation of derivatives is
a noise-sensitive process. A different procedure using the prolate
spheroidal wave functions has been proposed by Slepian and Pollak
in [12]. Unfortunately, also this method is sensitive to the errors
affecting the data and is onerous from the computational viewpoint.
Papoulis introduced in [13] an iterative algorithm, which reduces at
each iteration the mean-square error between the estimated and the
original (time unbounded) signal. He compared it with that using the
prolate spheroidal wave functions and showed that his method works
better.

When considering discrete signals, the analyticity property
vanishes, due to their sampling representation. Therefore, other
constraints besides the limited bandwidth assumption are required
in order to achieve an accurate solution. A discrete version of the
iterative algorithm proposed by Papoulis has been developed in [14].
Moreover, in the same paper, a noniterative method has been proposed
for solving the extrapolation problem from noise-free observations by
means of an extrapolation matrix. In [15], Cadzow proposed a different
extrapolation matrix, which does not have the existence problem of
that suggested in [14]. In both papers, the solutions for the discrete
case have been obtained by sampling the continuous solutions. The
criterion of the minimum norm least squares for the extrapolation
of the signal from observations containing additive noise has been
introduced by Jain and Ranganath in [16]. In any case, as explicitly
stated in [17], extrapolation techniques in presence of noise must
be used judiciously in order to obtain reasonable results. Since the
extrapolation can be viewed as a minimum norm least squares solution
of a generally ill-posed system of linear equations, Sullivan and Liu
suggested the use of the singular value decomposition (SVD) method
for controlling the ill-conditioning [18]. A regularization procedure,
based on the SVD and employing multiple regularization parameters
to be determined optimally, has been proposed in [19] to deal with
data affected by white Gaussian noise. Other considerations on the
stability of the estimation procedure can be found in [20].

As explicitly stated in [21], when the samples are error affected, an
accurate extrapolation of the signal is possible for at most a bounded
distance beyond the observation interval. Accordingly, since physical
measurements can never be perfect, this implies that only few samples
external to the observation interval can be reliably estimated. This last
consideration justifies why the extrapolation techniques have scarcely
attracted the attention of the antenna measurement community. In
fact, until the standard and redundant sampling representations (based
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on the truncation of the spectrum to the visible region and, then, using
a sample spacing at most equal to λ/2, λ being the wavelength) were
the only available ones, the estimation of few external samples would
have allowed a very limited extension of the zone wherein the near field
was known.

The development of nonredundant sampling representations of
EM fields has deeply modified the scenario [22]. In fact, by using these
last representations, the sample spacing, as already stated, increases
remarkably when moving far away from the center of the scanning
region. Accordingly, even the estimation of very few samples external
to such a region allows a noticeable extension of the zone wherein the
near field is known, thus enlarging in a significant way the angular
region wherein an accurate FF reconstruction is attained. In this
framework, an approach for reducing the truncation error in the NF-FF
transformations with plane-polar and cylindrical scannings has been
developed in [22, 23] and [24], respectively. Such an approach is based
on the aforementioned nonredundant representations and makes use of
the CS expansions and of the SVD method for recovering the outside
data.

A convenient OSI based extrapolation procedure for estimating
the outside samples on a NF line is described in the following Section
and compared with the technique using the CS expansions. Such an
approach is properly extended in Section 3 to the extrapolation of
the NF data external to the measurement region in the plane-polar
scanning. At last, conclusions are collected in Section 4.

2. NF EXTRAPOLATION ALONG A LINE

In this Section the OSI expansions based extrapolation technique
for recovering the samples external to the measurement region along
a straight line in the NF region of an electrically large antenna is
described and compared with that employing the CS expansions. Quite
analogous results can be obtained when considering a two-dimensional
observation domain too.

Without any loss of generality, let us consider an AUT enclosed
in an oblate ellipsoidal surface Σ (having major and minor semi-axes
equal to a and b) and a radial line of a plane-polar domain at distance
d in the NF region (see Fig. 1).

According to [1], a nonredundant sampling representation can be
obtained by introducing the “reduced electric field”

F (ξ) = E(ξ)ejγ(ξ) (1)

wherein the phase factor γ to be singled out from the field expression
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Figure 1. Relevant to a rectilinear observation domain. Dots: regular
samples. Crosses: extra samples.

and the optimal parameter ξ for describing the radial line are given by
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In the above relations, β is the wavenumber, ε = f/a is the eccentricity
of the spheroid, 2f is its focal distance, E(·|·) is the elliptic integral of
second kind, and u = (r1 − r2)/2f, v = (r1 + r2)/2a are the elliptic
coordinates, r1,2 being the distances from the observation point P to
the foci.

The reduced field is characterized by a spatial bandwidth Wξ =
β�′/2π (�′ being the length of the ellipse intersection curve between
the meridian plane through the radial line and Σ), and its value can
be evaluated at any point on the radial line at ϕ via the following OSI
expansion [1]:

F (ξ, ϕ) =
n0+q∑

n=n0−q+1

F (ξn, ϕ)ΩN (ξ − ξn)DN ′′(ξ − ξn) (4)

where F (ξn, ϕ) are the reduced field samples, n0 = Int (ξ/∆ξ) is the
index of the sample nearest (on the left) to P, 2q is the number of
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retained samples, Int (x) gives the integer part of x, and

ξn = n∆ξ = 2πn/(2N ′′ + 1); N ′′ = Int (χN ′) + 1 (5)
N ′ = Int (χ′Wξ) + 1; N = N ′′ −N ′ (6)

χ′ > 1 and χ > 1 being the bandwidth enlargement and oversampling
factors, which allow to control the bandlimitation and truncation
errors, respectively. Moreover,

DN ′′(ξ) =
sin[(2N ′′ + 1)ξ/2]
(2N ′′ + 1) sin(ξ/2)

(7)

ΩN (ξ) =
TN [2(cos(ξ/2)/ cos(ξ0/2))2 − 1]

TN [2/ cos2(ξ0/2) − 1]
(8)

are the Dirichlet and Tschebyscheff Sampling functions, wherein TN (·)
is the Tschebyscheff polynomial of degree N and ξ0 = q∆ξ.

Since the linear sample spacing along the radial line increases
remarkably when moving far away from the origin, it is expected
that, when extended measurement regions are considered, even the
estimation of very few outside data enlarges significantly the zone
wherein the near field is known.

Let us now tackle the problem of estimating the NF samples
external to the measurement interval [−ρmax, ρmax] on the considered
radial line at ϕ (see Fig. 1). In order to explain the methodology, let
us consider the right-hand side of the interval of interest. If q ≤ q
is the number of the external samples to be estimated, let us assume
the knowledge of the field components at the K ≥ q extra points
P (ρk, ϕ), spaced at fixed step ∆ρ from the end. Then, for each of
these points, just q unknown outside samples are always involved in
the OSI expansion (4). Accordingly, for each reduced field component
F , we have:

n+q∑
n=n+1

F (ξn, ϕ)ΩN (ξ(ρk) − ξn)DN ′′(ξ(ρk) − ξn) = F (ξ(ρk), ϕ) +

−
n∑

n=n0−q+1

F (ξn, ϕ)ΩN (ξ(ρk) − ξn)DN ′′(ξ(ρk) − ξn) = bk, k = 1, . . . ,K

(9)

where n is the index of the last “regular sample” inside [0, ρmax], and
it is assumed that n+ q ≤ n0 + q.

These K equations can be rewritten in matrix form as

Ax = b (10)
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where b is the sequence of the known terms, x is the sequence of the
unknown outside samples F (ξn, ϕ), with n = n + 1, . . . , n + q, and A
is the K × q matrix, whose elements are given by the weight functions
in the considered OSI expansion:

Akn = ΩN (ξ(ρk) − ξn)DN ′′(ξ(ρk) − ξn) (11)

As already stated, the overdetermined linear system (10) is
ill-conditioned due to the presence of the bandlimitation and
measurement errors. As a consequence, the vector of the known terms
generally does not belong to the range of A, i.e., the subspace spanned
by such a matrix. As well-known [25, 26], a convenient technique
to handle this problem and to find a solution, which is the best
approximation in the least squares sense of the system (10), is obtained
by using the SVD.

The approach proposed in [22] makes use of the CS expansion for
the field interpolation instead of the OSI one. According to such an
interpolation scheme, a reduced field component at the point P (ξ, ϕ)
can represented by the following expansion:

F (ξ, ϕ) =
M∑

m=−M

F (ξm, ϕ) sinc [χ′Wξ(ξ − ξm)] (12)

where sinc (ξ) is the sin(ξ)/ξ function,

ξm = m∆ξ = mπ/(χ′Wξ); M = Int (χ′Wξ/2] (13)

It is worthy to note that the number of samples in the whole unbounded
observation line is 2M + 1, whereas the number of samples falling
in the finite measurement interval [−ρmax, ρmax] is 2m + 1, with
m = Int (ξ(ρmax)/∆ξ).

Expansion (12) is employed to reconstruct the field components
at each extra sampling point, thus getting overdetermined linear
systems, which can be solved by using the SVD method. Two different
extrapolation procedures have been proposed in [22] for estimating
the outside samples. In the former, all the “regular samples” are
unknown (both the samples external to the measurement interval
and those falling inside it), and the extra samples are obtained by
oversampling the field at points which are uniformly spaced in ρ.
Such an approach allows the filtering of part of the noise affecting
the measured data and falling outside the AUT spatial bandwidth.
However, it becomes very onerous from the computational viewpoint
in the here considered case of electrically large antennas and extended
scanning regions. Therefore, it will not be considered in the following.
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In the latter, only the regular samples external to the measurement
interval are considered as unknowns and the “extra samples” F (ξ̃k, ϕ)
are collected, starting from the boundary of the considered interval,
at the middle points (in ξ) between two consecutive regular samples.
Since only a small number of outside samples can reliably recovered, it
is convenient to reduce the number of unknowns, cutting away those
corresponding to the farther sampling points. Moreover, a number of
extra samples less than twice the number of unknowns is considered in
order to reduce the ill-conditioning of the problem [22].

In light of the above discussion, by considering the right-hand side
of the interval of interest, we get the following overdetermined linear
system:

m+q∑
m=m+1

F (ξm, ϕ) sinc
[
χ′Wξ(ξ̃k − ξm)

]
= F (ξ̃k, ϕ) +

−
m∑

m=−m

F (ξm, ϕ) sinc [χ′Wξ(ξ̃k − ξm)] = bk, k = 1, . . . ,K (14)

which can be again recast in the matrix form (10), where b is the
sequence of the known terms, x is the sequence of the considered q
unknown outside samples F (ξm, ϕ), with m = m+1, . . . ,m+ q, and A
is the K × q matrix, whose elements are given by the weight functions
in the considered CS expansion:

Akm = sinc
[
χ′Wξ(ξ̃k − ξm)

]
(15)

Many numerical tests have been performed in order to compare the
performances of both techniques. The reported results refer to a
uniform planar circular array with radius equal to 20λ. Its elements,
radially and azimuthally spaced of 0.8λ, are elementary Huygens
sources linearly polarized along the y axis. Accordingly, an ellipsoidal
source modelling with 2a = 40λ and 2b = 5λ has been used. The
considered straight line is the radial line at ϕ = 0◦ of a plane-polar
domain located at distance d = 12λ from the AUT center. The
measurement interval is [−35λ, 35λ]. By choosing χ′ = 1.15 and an
oversampling factor χ = 1.20, the number of outside samples on each
side is 5 for both sampling representations.

The following figures from 2 to 5 are reported for assessing
the improvement achievable (without any extrapolation process) from
the truncation error and stability viewpoints by employing the OSI
expansions, instead of the CS ones. In particular, Figs. 2 and 3 confirm
that, as already stated, a significant extension of the zone of good NF
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Figure 2. Amplitude of the NF y-component. Solid line: exact.
Crosses: reconstructed via CS without estimated outside samples.
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Figure 3. Amplitude of the NF y-component. Solid line: exact.
Crosses: reconstructed via OSI without estimated outside samples.
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Figure 4. Amplitude of the NF y-component. Solid line: exact.
Crosses: reconstructed via CS from error affected data without
estimated outside samples.

reconstruction is attained when the OSI expansions are used. Whereas,
Figs. 4 and 5 show that, in presence of errors affecting the data, a less
accurate pattern recovery is obtained when using the CS ones. Both
a background noise (bounded to ∆a in amplitude and with arbitrary
phase) and uncertainties on the data of ±∆ar in amplitude and ±∆ψ
in phase have been simulated by corrupting the ideal data by random
errors.

Figure 6 highlights the improvement in the reconstruction
accuracy achieved when using the CS based extrapolation procedure.
The estimation has been performed by choosing q = 5 and acquiring
(on each side of the measurement interval) 7 extra samples at the
middle points in between the regular sampling points starting from the
end. Moreover, a truncated SVD (TSVD), which consists in zeroing
the coefficients 1/σi corresponding to the small singular values σi of A,
has been employed in order to improve the accuracy [25–27]. As can
be seen, by taking into account the so estimated outside samples, the
reconstruction is accurate not only in the whole measurement region,
but also in a zone outside it.

Even better results are obtained if the OSI based extrapolation
procedure is adopted (see Fig. 7). In such a case, q and the number of
extra samples are the same of the CS based approach, but these last
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Figure 5. Amplitude of the NF y-component. Solid line: exact.
Crosses: reconstructed via OSI from error affected data without
estimated outside samples.
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Figure 6. Amplitude of the NF y-component. Solid line: exact.
Crosses: reconstructed via CS with outside samples estimated using
TSVD.
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Figure 7. Amplitude of the NF y-component. Solid line: exact.
Crosses: reconstructed via OSI with outside samples estimated using
TSVD.

have been acquired at a 0.75λ step starting from the end. It is worthy
to note that q = 13 has been used in (9), whereas q = 6 has been
employed in the final interpolation.

Figures 8 and 9, which refer to error affected NF data, are
analogous to the corresponding ones concerning exact NF samples
(Figs. 6 and 7). Note that, in such a case, we have assumed q = 9 in
the extrapolation process for reducing the propagation of errors from
high to low field regions. As can be seen, also in presence of errors
affecting the samples, the OSI based extrapolation procedure behaves
better than the CS based one. Accordingly, only the former procedure
will be employed in the following.

An alternative procedure to improve the accuracy of the solution
achievable via the simple SVD is to adopt a Tikhonov regularization
approach [28]. Such a solution corresponds to minimize the functional:

∥∥∥Ax− b∥∥∥2

2
+ α2 ‖x‖2

2 (16)

α being the regularization parameter. Thus, the regularized solution
xreg and the corresponding residual vector b−Axreg can be written in
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Figure 8. Amplitude of the NF y-component. Solid line: exact.
Crosses: reconstructed via CS from error affected data with outside
samples estimated using TSVD.
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Figure 9. Amplitude of the NF y-component. Solid line: exact.
Crosses: reconstructed via OSI from error affected data with outside
samples estimated using TSVD.
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term of the SVD of A as

xreg =
q∑

i=1

fi
uH

i · b
σi

vi (17)

b−Axreg =
q∑

i=1

(1 − fi)uH
i · b ui +

K∑
i=q+1

uH
i · b ui (18)

In (17) and (18), the symbol H denotes the conjugate transposition
operator, the singular values σi (i = 1, . . . , q) are ordered from the
maximum to the minimum, fi = σ2

i /(σ
2
i + α2) are the corresponding

filter factors, and ui, vi are the left and right singular vectors of A,
respectively [28]. The choice of the optimal parameter α to be used
can be made by means of the L-curve [27], which is simply a plot
of the norm of the regularized solution xreg versus the corresponding
residual norm of b−Axreg drawn in log-log scale for a set of admissible
regularization parameters. In this way, the L-curve displays the
compromise between the minimization of these two quantities, which
is the heart of any regularization method. With reference to the
Tikhonov regularization, the best compromise is represented by the
so-called “corner”, i.e., the distinct point separating the vertical and
the horizontal parts of the curve.

Figures 10 and 11 refer to same cases considered in Figs. 7 and 9,
but they have been obtained by using a Tikhonov regularization with
the parameter α chosen via the L-curve. As can be seen, no particular
gain results from the employ of this last regularization procedure in
such a case.

3. ESTIMATION OF OUTSIDE DATA IN THE
PLANE-POLAR SCANNING

In the first part of this section the key results relevant to the
nonredundant NF-FF transformation with plane-polar scanning [4, 10]
are briefly reported for reader’s convenience.

These results rely on the extension of the aforementioned
nonredundant representations of the EM fields to the voltage acquired
by the probe. In fact, the voltage V measured by a non directive
probe has the same effective (spatial) bandwidth of the field. The
voltage representation from plane-polar data has been obtained [10]
by describing the scanning plane by means of radial lines and rings,
and assuming an oblate ellipsoid as surface Σ enclosing the AUT. In
particular, the representation of the “reduced voltage” Ṽ along a radial
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Figure 10. Amplitude of the NF y-component. Solid line: exact.
Crosses: reconstructed via OSI with outside samples estimated using
Tikhonov regularization.
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Figure 11. Amplitude of the NF y-component. Solid line: exact.
Crosses: reconstructed via OSI from error affected data with outside
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line is quite analogous to that (4) concerning the field, whereas, when
considering a ring, the phase function is constant and it is convenient
to use the azimuthal angle ϕ as optimal parameter. The corresponding
bandwidth isWϕ(ξ) = βa sinϑ∞(ξ) [1, 4], ϑ∞ = sin−1 u being the polar
angle of the asymptote to the hyperbola through the observation point.
Accordingly, the proper OSI expansion along a ring at ξn is:

Ṽ (ξn, ϕ) =
m0+p∑

m=m0−p+1

Ṽ (ξn, ϕm,n)ΩMn(ϕ−ϕm,n)DM ′′
n
(ϕ−ϕm,n) (19)

wherein m0 = Int (ϕ/∆ϕn), 2p is the number of retained samples, and

ϕm,n = m∆ϕn = 2mπ/(2M ′′
n + 1); M ′′

n = Int (χM ′
n) + 1 (20)

M ′
n = Int (χ∗Wϕn) + 1; Mn =M ′′

n −M ′
n (21)

Wϕn = Wϕ(ξn); χ∗(ξ) = 1 + (χ′ − 1)[sinϑ∞(ξ)]−2/3 (22)

By properly matching the OSI expansions along ξ and along ϕ, we get:

Ṽ (ξ(ϑ), ϕ) =
n0+q∑

n=n0−q+1

{
ΩN (ξ − ξn)DN ′′(ξ − ξn)

·
m0+p∑

m=m0−p+1

Ṽ (ξn, ϕm,n)ΩMn(ϕ− ϕm,n)DM ′′
n
(ϕ− ϕm,n)




(23)

Such an expansion can be employed to recover the NF data at each
point of the measurement plane and, in particular, at the points
required by the classical probe-compensated NF-FF transformation
with plane-rectangular scanning [29]. In the here considered spherical
reference system (R,Θ,Φ), the key relations for performing such a
transformation are:

EΘ(Θ,Φ) =
[
IHE

′
ΦV

(Θ,−Φ) − IVE′
ΦH

(Θ,−Φ)
]
/∆ (24)

EΦ(Θ,Φ) =
[
IHE

′
ΘV

(Θ,−Φ) − IVE′
ΘH

(Θ,−Φ)
]
/∆ (25)

where E′
ΘV
, E′

ΦV
and E′

ΘH
, E′

ΦH
are the FF components radiated by

the probe and the rotated probe when used as transmitting antennas,

∆ = E′
ΘH

(Θ,−Φ)E′
ΦV

(Θ,−Φ) − E′
ΘV

(Θ,−Φ)E′
ΦH

(Θ,−Φ) (26)
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and

IV,H = A cos Θejβd cos Θ

+∞∫
−∞

+∞∫
−∞

VV,H(x, y)ejβx sin Θ cos Φejβy sin Θ sin Φdxdy

(27)
A being a proper constant and IV and IH the two-dimensional Fourier
transforms of the voltages VV and VH measured by the probe and the
rotated probe, respectively.

Equations (24) and (25) are valid whenever the probe maintains
its orientation with respect to the AUT and this requires that it rotates
together with the AUT. Obviously, the positioning system is simplified
when the probe co-rotation is avoided. Probes exhibiting only a first-
order azimuthal dependence in their radiated far field (as, f.i., an
open-ended cylindrical waveguide excited by a TE11 mode) can be
used without co-rotation, since VV and VH can be evaluated from the
knowledge of the measured voltages Vϕ and Vρ through the relations:

VV = Vϕ cosϕ− Vρ sinϕ; VH = Vϕ sinϕ+ Vρ cosϕ (28)

Let us now tackle the problem of estimating the voltage samples
external to the scanning region ρ ≤ ρmax in a plane-polar NF facility
(see Fig. 12). If n is the index of the last ring inside such a zone,

d

P

2a

2b

x y

max

z

n(   )

n+1(      )

O

Figure 12. Relevant to the extrapolation of outside data in the plane-
polar scanning.
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let us assume the knowledge of the voltage data on the K rings at
radii ρk, spaced at fixed step ∆ρ from ρmax, as in the one-dimensional
case. On each of these rings, the samples are assumed known at the
points specified by ϕm = m∆ϕmin, where ∆ϕmin is the azimuthal
spacing between the samples to be estimated on the last considered
outside ring. Moreover, it is convenient to estimate the same number
of samples (at spacing ∆ϕmin) on each outside ring. In such a way, the
extra sampling points and the positions of samples on the external rings
are all aligned, and the starting problem is reduced to an estimation
procedure involving, each time, only a radial line. For each radial
line, when reconstructing the reduced voltage at the extra sampling
points, just q ≤ q unknown outside samples are always involved in the
OSI expansion along ξ, since the other q can be easily determined by
applying (19). Accordingly, by assuming n + q ≤ n0 + q, we get the
following overdetermined system:

n+q∑
n=n+1

Ṽ (ξn, ϕm)ΩN (ξ(ρk) − ξn)DN ′′(ξ(ρk) − ξn) = Ṽ (ξ(ρk), ϕm) +

−
n∑

n=n0−q+1

Ṽ (ξn, ϕm)ΩN (ξ(ρk)−ξn)DN ′′(ξ(ρk)−ξn) = bk, k = 1, . . . ,K

(29)

Also in such a case, the above linear system can be rewritten in the
matrix form (10) and solved via SVD.

It is worthy to note that, on each extra ring, it is convenient to
collect the samples in the positions fixed by the nonredundant sampling
representation and to reconstruct the data needed at ∆ϕmin spacing via
the OSI expansion (19), thus minimizing the number of extra samples
to be acquired.

Numerical tests assessing the effectiveness of the approach are
reported in the following. The simulation refers to the same AUT
and scanning plane considered in the previous section. An open-ended
cylindrical waveguide with radius a′ = 0.338λ is chosen as probe, thus
allowing to avoid the probe co-rotation.

As in the one-dimensional case, the radii of the extra rings are
spaced at fixed step ∆ρ = 0.75λ from ρmax. It is worthy to note that
the number of rings needed to cover the range ]35λ,+∞[ is 5. In the
reported example, we have considered q = 5, K = 7 and have assumed
q = 13 in the extrapolation process, whereas p = 8 has been adopted
in (19) to obtain the involved known samples. It must be stressed that
the SVD is applied to a small matrix with a negligible computational
effort.
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Figure 13. Amplitude of VV on the radial line at ϕ = 90◦. Solid line:
exact. Crosses: reconstructed without estimated outside samples.

Figure 13 shows the amplitude of the voltage VV (the most
significant one) on the radial line at ϕ = 90◦. It has been reconstructed
without using the extrapolation process and putting the outside
samples equal to zero. The result is not good in the range where the
knowledge of the outside samples is needed. As can be seen in Fig. 14,
by using the described estimation procedure, the reconstruction is very
accurate not only in the whole measurement region, but also in an
extended zone outside it. It is worthy to note that, in both cases,
p = q = 6 have been adopted when applying (23) for the final voltage
reconstruction. Analogous comments can be made for Figs. 15 and 16,
which are relevant to the reconstruction on the radial line at ϕ = 60◦.

To assess the effectiveness of the approach in a more quantitative
way, the maximum and mean-square reconstruction errors have been
evaluated by comparing in the measurement zone the exact voltage
values and those reconstructed with and without the estimated outside
samples. Figure 17 shows such errors, normalized to the voltage
maximum value on the plane, for χ = χ′ = 1.20, and some p = q
values. As can be seen, the errors evaluated by taking into account the
estimated samples decrease until very low levels are reached. On the
contrary, those obtained without considering them saturate to constant
values, due to the truncation error present near to the boundary of the
measurement region.
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Figure 14. Amplitude of VV on the radial line at ϕ = 90◦. Solid line:
exact. Crosses: reconstructed with estimated outside samples.
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Figure 15. Amplitude of VV on the radial line at ϕ = 60◦. Solid line:
exact. Crosses: reconstructed without estimated outside samples.
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Figure 16. Amplitude of VV on the radial line at ϕ = 60◦. Solid line:
exact. Crosses: reconstructed with estimated outside samples.
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Figure 18. Amplitude of VV on the radial line at ϕ = 90◦. Solid line:
exact. Crosses: reconstructed from error affected data with estimated
outside samples.

The stability of the algorithm has been investigated by adding
random errors to the exact samples. These errors simulate a
background noise (bounded to ∆a in amplitude and with arbitrary
phase) and uncertainties on the data of ±∆ar in amplitude and ±∆ψ
in phase. As shown in Fig. 18, the technique works well also in presence
of errors.

The described technique has been applied to recover the
plane-rectangular data needed for the probe compensated NF-FF
transformation and lying in a 100λ × 100λ square grid. Figures 19
and 20 report the AUT pattern in the E-plane, reconstructed via the
NF-FF transformation without and with estimated outside samples,
respectively.

As can be seen, the FF reconstruction obtained by considering the
estimated samples is accurate in a significantly wider angular range.
In fact, as can be seen in Figs. 19 and 20, the angular extension of the
good FF reconstruction zone increases about 35% for the considered
example.

It is useful to note that the number of employed NF data in the
reported example is 12 151 significantly less than those (30 731) needed
by the NF-FF transformation [30]. In particular, the number of extra
samples is 2 355.
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Figure 19. FF pattern in the E-plane. Solid line: exact field. Dots:
reconstructed from NF data without estimated outside samples.
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Figure 20. FF pattern in the E-plane. Solid line: exact field. Dots:
reconstructed from NF data with estimated outside samples.
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4. CONCLUSION

In this paper, we have proposed an effective technique for extrapolating
the NF data external to the measurement region in the plane-polar
scanning. It allows a significant reduction of the error related to
the truncation of the scan zone. Such a technique relies on the
nonredundant sampling representations of the EM fields and on
the OSI expansions of central type, and uses the SVD method for
estimating the outside samples. The comparison of this approach with
a procedure available in literature and employing the CS expansions
has shown that the proposed technique works better. Numerical
simulations assessing the effectiveness of the extrapolation procedure
are reported. In particular, they show that a significant enlargement
of the good FF reconstruction zone is attainable when considering the
so estimated data.
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