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Abstract—The requirements of achieving ionospheric modification by
ground-transmitted HF heating waves are discussed. The directly
relevant processes including linear mode conversion and parametric
instabilities are explained physically. The nonlinear Schrodinger
equation for Langmuir waves is reviewed and the initial conditions of
two types of nonlinear solutions are discussed; from which the criterion
for Langmuir soliton generation is pointed out.

1. INTRODUCTION

Ionospheric heating and modification by powerful HF waves
transmitted from the ground has been a very active research area over
the past three decades [1–3]. It is an ideal approach for experimental
and theoretical investigation of the linear and nonlinear properties of
the ionospheric plasma. Through the observations of many unexpected
phenomena [3, 4], considerable progress toward the understanding of
the nonlinear plasma processes has been accomplished. A major
facility for conducting ionospheric heating experiments in Gakona,
Alaska, as part of the High Frequency Active Auroral Research
Program (HAARP) [5], is being upgraded. The upgraded HAARP HF
transmitting system will be a phased-array antenna of 180 elements.
Each element is a cross dipole, which radiates a circularly polarized
wave up to 20 kW in the frequency band from 3 MHz to 10 MHz. The
antenna gain, which increases with the radiating frequency, varies from
15 dB to 30 dB. Thus an effective radiated power (ERP) of 90 dBW will
be available in heating experiments, which explore modification effects
on the bottom-side of the ionosphere as illustrated in Fig. 1.

Electromagnetic waves interact with charged particles in the
ionosphere and only electrons can effectively respond to the fast
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Figure 1. Ionospheric heating experiments and some remote sensing
facilities.

oscillations of HF waves. Neutral particles can also experience the
presence of HF waves through elastic and inelastic collisions with
charged particles (mainly electrons). In D and E regions, the density
of neutral particles is high, which results in a higher electron-neutral
collision frequency than electron-electron and electron-ion collision
frequencies. Therefore, in those regions, neutral particles can share a
considerable percentage of wave energy with plasma. Neutral particles
thermalize the indirectly absorbed wave energy rapidly; but neutral
particles have much higher density that reduces the energy share of
each one and thus limits their temperature increase. Consequently, the
HF modification in those regions is not expected to be effective, except
that the electrojet current appearing in these regions can be modulated
by intensity modulated HF heating to become a virtual antenna,
which radiates ELF/VLF waves for underwater communications [6].
Therefore, in most HF heating experiments the focus is on the F
region modification, where the wave energy delivered to the plasma is
mainly distributed in electrons, and non-thermal processes may prevail
because the energy thermalization and temperature equilibrium time
are much longer. Indeed, many nonlinear plasma processes occurring
in this region have been observed in the heating experiments.

However, the collision (electron-electron and electron-ion) process
will not be effective enough to absorb the electromagnetic (EM) wave
energy delivered to the F region of the ionosphere. Preparations of
heating waves in experiments are necessary in order to effectively trap
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the wave energy there and thus to optimize the HF modification effects
on the ionosphere. First, the frequency of the heating wave is chosen
to be below the maximum cutoff frequency of the ionosphere to keep
the wave energy in the bottom-side region. However, the heating wave
may be reflected back to the ground. To avoid this, a fast conversion
of the EM heating wave into electrostatic (ES) waves of the plasma is
necessary. This is because ES waves are supported by the plasma and
only stay in the plasma. Then the question is how to convert an EM
wave into ES waves. In general, there are two processes: linear and
nonlinear mode conversion processes.

Before discussing mode conversion, a comment on the wave
features is in order. In general, a wave is characterized by its frequency
and wavelength. In the plasma, a wave is also characterized by its
polarization, which refers to the direction of the wave electric field
(rather than that of the magnetic field). Using the wave propagation
direction as a reference direction, there are three types of waves, in
terms of their polarizations, that exist in plasma: transverse (EM),
longitudinal (ES), and hybrid. Transverse means that the wave electric
field is perpendicular (transverse) to the wave propagation direction;
hence, a transverse wave is an EM wave that also carries magnetic
field. Longitudinal means that the wave electric field is parallel to the
propagation direction; in essence, it is an ES wave because no magnetic
field is induced by the wave electric field. Plasma becomes anisotropic
when a dc magnetic field is imposed; the wave electric field may have
an angle other than 0◦ or 90◦ with respect to the propagation direction
(i.e., a combination of EM and ES polarization). In this situation, the
wave is a hybrid mode type.

2. MODE CONVERSION

A mode of a system is an oscillation that can self-sustain in the system.
For example, apply an impulse to a (lossless) system; oscillations at all
frequencies will be excited. However, not all the oscillations can persist
in time; in fact, most of the oscillations will be damped away via phase
mixing (among themselves or caused by the boundary effects). In
the steady state, only a few oscillations may stay, and these lasting
oscillations are the “modes” of the system. In a lossless system, the
modes are “eigen-modes”. In practice, there are always some losses in
the system; in this case, modes are also damped in time (but much
slower) and are “quasi-modes”. In the mathematical analysis, modes
represent the source-free solutions of the system’s governing equations.
Therefore, (ω-k) relations are determined by requiring the solutions of
the source-free equations to be nontrivial (i.e., non-zero solutions).
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These relations are called dispersion relations, which may be plotted
on a k-ω plane as dispersion curves. Each curve represents a mode
branch and each point on the curve is a mode of the system.

Linear mode conversion may occur in the ionosphere because it
is inhomogeneous magneto plasma. Magneto plasma supports various
branches of plasma modes, which are EM, ES, or hybrid mode type
depending on the frequency regime, polarization, and the propagation
angle with respective to the geomagnetic field. As explained in the
preceding paragraph, a dispersion relation represents a plasma mode
branch and is a functional dependence of the wave frequency ω on
the propagation constant k. Since magneto plasma is an anisotropic
(uniaxial) medium, ω is a function of k‖ and k⊥, where the subscripts
‖ and ⊥ stand for components parallel and perpendicular to the
magnetic field; thus the dispersion curves (i.e., ω-k relations) of
magneto plasma should be plotted in three-dimensional spectral space
(k‖, k⊥, ω). However, a three-dimensional diagram is not convenient for
explaining the physical phenomena to be discussed later. Therefore,
a conventional way is to only plot the dispersion curves for the 0◦
and 90◦ propagation cases; in these special cases, ω is a function of
|k| (= k). Thus these curves can be combined together in a single two-
dimensional diagram on the k-ω plane such as the one exemplified in
Fig. 2 (for downward magnetic field and cold plasma). In this figure,
only high frequency branches relevant to the following discussion are
plotted and the cutoff frequencies ω1 (for the L and X branches) and
ω2 (for the R branch) and upper hybrid resonance frequency ωu are also
expressed. Hence, a branch for an arbitrary propagation angle can be
located in the region between a pair of 0◦ and 90◦ branches. k‖ in the
plot represents the component, parallel to the geomagnetic field, of the
wavevector. Among the curves in Fig. 2, L and X is a pair to confine
the region of the X-mode branch for the propagation angle from 0◦ to
90◦. Likewise, R and O pair for the O-mode branch. The polarization
of the incident heating wave determines its mode type. A left- hand
(LH) circularly polarized wave falls into the X-mode branch, and the
O-mode branch starts with incident wave of right-hand (RH) circular
polarization. It is noted that Fig. 2 is plotted for uniform plasma, i.e.,
for constant plasma frequency ωP and electron cyclotron frequency Ωe.
However, the ionosphere is not uniform; although Ωe may be considered
to be a constant at each heating site, ωP increases with the altitude in
the bottom-side of the ionosphere. As a HF heater of a fixed frequency
ω0 propagates upward, ωP in Fig. 2 moves upward along the vertical
(ω) axis. Consequently, all the dispersion curves will also move upward
accordingly. This will be inconvenient in describing wave propagation
because Fig. 2 has to be modified constantly. However, there is a way to
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Figure 2. Dispersion curves of high frequency EM waves propagating
along (0◦) and perpendicular (90◦) to the geomagnetic field.

fix ωP on the vertical axis of Fig. 2: by constantly rescaling the ω axis
during the wave propagation. For example, as the wave propagates
upward, the scale of the ω axis is increased accordingly to keep ωP

at the same point on the axis. Consequently, ω0 of the wave has to
move down along the ω axis. In other words, the dispersion curves in
Fig. 2 will remain unchanged as the wave propagates upward; but the
point on an appropriate dispersion curve to represent the propagating
wave mode will move downward along this dispersion curve (which is
between a pair of 0◦ and 90◦ curves). A more precise way to follow the
wave trajectory is to employ a ray tracing technique [7].

2.1. Linear Mode Conversion

Linear mode conversion may occur at the point of intersection of
two mode branches. As shown in Fig. 2, the O-mode and R-mode
branches intersect with the electron plasma mode branch. Thus the
HF heating wave is set with RH circular polarization and Fig. 2
will be used in the discussion of linear mode conversion. Consider a
RH circularly polarized wave propagating upward, with an arbitrarily
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inclined angle θ0, into the ionosphere as indicated by the arrow in
Fig. 2; the vertically upward component of the wavevector, having the
initial magnitude k0 cos θ0, will decrease continuously as the plasma
density increases continuously, where k0 = ω0/c and ω0 is the wave
frequency. Consequently, the angle of inclination of the wave, with
respective to the geomagnetic field, also changes continuously. When
the wave reaches near the O-mode reflection height indicated by the
horizontal line ω = ωp, the wave will turn toward either 1) the O-
curve or 2) the R-curve, depending on the initial angle of inclination
(related to the injection angle). In either case, the wave will reach
an intersecting point on the ω = ωp line. In the first situation, for
example, for a vertically incident wave (θ0 = 0), the wave propagation
direction turns toward perpendicular to the geomagnetic field (with the
wavevector k → 0). The intersecting point located at (k = 0, ω0 = ωp)
is a cutoff point, where the wave experiences reflection; and in the
nearby region the polarization of the wave is drastically different from
that of the electron plasma wave (i.e., Langmuir wave), which has a
preferred direction parallel to the geomagnetic field. Therefore, the
linear mode conversion to directly convert the heating wave to the
Langmuir wave will not occur.

The second situation, where the wave turns to follow the R-curve
requires a proper injection angle of the heating wave. In this case,
the wave at the point of intersection (k = k‖, ω0 = ωp) does not
experience total reflection. Instead, the wave tends to continuously
propagate upward along the geomagnetic field to become a Z-mode in
the region above the O-mode reflection height. However, this linear
mode conversion can occur effectively if the wave at the intersecting
point can satisfy a phase matching condition, which requires θ0 = θs,
the Spitze angle, to be elaborated with the aid of Fig. 3.

Since the ionospheric plasma density is horizontally stratified,
the horizontal component (k0 sin θs in Fig. 3) of the wave vector is
conserved in the propagation. Thus the horizontal component of the
wavevector at the intersecting point, k‖ sinα, should equal to k0 sin θs.
If the wave converts to a Z-mode, (k‖, ω0) have to satisfy the R-
wave dispersion relation: 1 − ω2

p/ω(ω + Ωe) = (kc/ω)2, under the
condition ω0 = ωp. Thus the phase matching condition to convert
the incident wave to a Z-mode is given by k0 sin θs = k‖ sinα, where
k‖ = k0[Ωe/(ω0+Ωe)]1/2 determined by the R-wave dispersion relation.
The Spitze angle is then determined to be

θs = sin−1{[Ωe/(ω0 + Ωe)]1/2 sinα}
After the reflection of the Z-mode at its reflection height ωpZ =
[ω0(ω0 + Ωe)]1/2, this wave propagates downward to the region near
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Figure 3. Phase matching condition for mode conversion.

the upper hybrid resonance layer at ωpU = (ω2
0 − Ω2

e)
1/2 to become an

upper hybrid wave. Therefore, through this linear mode conversion,
the heating wave energy will be trapped in the region between the
ωp = ωpZ and ωpU layers.

2.2. Nonlinear Mode Conversion

Another effective way (and probably the most effective way) to
convert the HF heating wave to plasma waves is through parametric
instabilities, by which the heater decays into a high frequency electron
wave and a low frequency ion wave. Such a decay process involves
mode-mode couplings through the nonlinearity of plasma; hence it
is termed nonlinear mode conversion. Because the decay process
preferred the decay waves (in particular, the high frequency electron
mode) to be plasma modes to minimize the instability threshold
condition, the heating wave has to be accessible to the regions, where
the high frequency plasma mode frequencies are close to the heating
wave frequency. As shown in Fig. 2, the LH circularly polarized wave
will be reflected at a height ωpx = [ω0(ω0 − Ωe)]1/2 that is below
the electron plasma resonance layer ωpO = ω0 as well as the upper
hybrid resonance layer ωpU = (ω2

0 − Ω2
e)

1/2. Therefore, in F -region
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modification experiments, only RH circularly polarized heating waves
are used. Heating waves then converted to the O-mode (if the incident
angle does not closely match the Spitze angle) in the region near the HF
reflection height, which is located above the upper hybrid resonance
layer and overlaps with that of the electron plasma resonance layer.
Therefore, the heating wave is accessible to the spatial regions, where
many parametric coupling conditions can be matched. Moreover, the
heating wave electric field is enhanced by a “swelling effect” near its
reflection height. This makes it easy to excite instabilities, which have
threshold field requirements, and also works to increase the growth
rates of the instabilities. The swelling effect will be described in detail
in Section 4.

3. PARAMETRIC INSTABILITIES

A parametric amplifier uses three coupled resonant circuits (e.g., LC
circuits) to convert frequency from one to another. A nonlinear (variac)
capacitor C in the circuit provides the coupling (i.e., frequency mixing).
The three resonant modes, oscillating at ω0, ω1, and ωS , in a parametric
amplifier are called the source (pump), idler (sideband), and signal
(decay mode), where the frequency matching condition ω0 = ω1 + ωS

is satisfied. Generalize the basic principle for wave amplification in a
circuit to a system: one recognizes that the system has to be able
to support at least three branches of modes and carries nonlinear
properties to provide mechanisms for wave-wave couplings.

Plasma can support high frequency EM waves, as well as
electrostatic (ES) plasma waves of high and low frequencies as plasma
modes that oscillate in plasma as thermal fluctuations in the absence of
external sources. In essence, plasma is a nonlinear medium. Therefore,
parametric coupling among three modes can occur. When a large
amplitude high frequency wave Ep(ω0,kp) (either EM or ES) appears
in plasma, this wave can act as a pump wave to excite plasma modes
through parametric couplings. For example, this pump wave electric
field can drive a nonlinear current in the electron density perturbation
ns(ωs,ks) of a low frequency plasma mode to produce beat waves
E1(ω1,k1) and E′

1(ω
′
1,k

′
1). Since these are propagating waves, their

wavevectors, in addition to the frequencies, also have to be matched
in the couplings. In other words, both frequency and wavevector
matching conditions:

ω0 = ω1 + ω∗
s = ω′

1 − ωs and kp = k1 + ks = k′
1 − ks

are imposed in parametric couplings in plasmas. The strength of the
coupling depends on the involved nonlinearities and the nature of the
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induced beat wave. The coupling is strong when
the beat wave is resonant with plasma (i.e., a plasma mode). Beat

waves, in turn, also couple with the pump wave to introduce a low
frequency nonlinear force on electrons, which produces plasma density
perturbation having the same frequency and wavevector as ns(ωs,ks).
Hence, this coupling produces a feedback to the original density
perturbation ns(ωs,ks). If the feedback is positive and large enough to
overcome linear losses of coupled waves, the coupling becomes unstable
and coupled waves grow exponentially at the expense of pump wave
energy. This is called “parametric instability”, by which the pump
wave Ep(ω0,kp) decays to two sidebands E1(ω1,k1) and E′

1(ω
′
1,k

′
1)

through a low frequency decay mode ns(ωs,ks). This instability
process involves the nonlinearity of the plasma and thus is a nonlinear
instability. The parametric coupling is imposed by the frequency and
wavevector matching conditions as well as a threshold condition on the
pump wave field intensity.

This process can be reduced to a three-wave coupling process when
the decay mode ns(ωs,ks) has a finite oscillating frequency. In this
situation, two sidebands cannot satisfy the same dispersion relation
simultaneously. Thus the frequency-upshifted sideband E′

1(ω
′
1,k

′
1) is

off resonant with plasma and can be neglected in the coupling.
The most effective parametric instabilities excited directly by

the electromagnetic heating wave are 1) Parametric decay instability
(PDI) and 2) Oscillating two-stream instability (OTSI), in both mid-
latitude and high-latitude regions [4, 8, 9]. The sidebands in the mid-
latitude region are Langmuir waves. In the high-latitude region, the
sidebands can be upper hybrid waves or Langmuir waves. However,
the instabilities involving the Langmuir waves as sidebands have to
compete with those excited in the lower altitudes and having upper
hybrid waves as sidebands. Dipole pump, i.e., its wavevector k0 = 0,
can be assumed. This is because these instabilities are excited in the
region near the O-mode reflection height and the sidebands and decay
mode are electrostatic waves, which have much larger wavenumbers.

3.1. Parametric Decay Instability (PDI)

This is a three-wave coupling process represented by

EM Pump (ω0,k0 = 0) → (ω1,k1) + (ω∗
s ,ks)

where ks = −k1; (ω1,k1) and (ωs,ks) are Langmuir sideband and ion
acoustic wave.
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3.2. Oscillating Two Stream Instability (OTSI)

This is a four-wave coupling process represented

EM Pump (ω0, 0) →
{

(ω1,k1) + (−iγ,ks)
(ω1,−k1) − (iγ,ks)

where again ks = −k1; (ω1,±k1) and (iγ,ks) are Langmuir sidebands
and purely growing mode.

PDI and OTSI having the upper hybrid wave as a sideband have
similar representations. The instability processes usually prefer the
excited waves to be plasma modes. The instability threshold can
increase considerably if the ω-k relationships of the excited waves
are too far from the dispersion relations of the plasma modes. For
example, the threshold of OTSI is higher than that of PDI because a
purely growing mode is not a plasma mode and the sidebands are also
slightly off from the Langmuir mode.

In heating experiments, the wavenumbers of HF enhanced plasma
lines and ion lines (HFPLs and HFILs) are fixed by the wavenumber
of backscatter radar. Thus the HFPLs and HFILs contributed by PDI
and OTSI originate from narrow regions below the O-mode reflection
height, where the electron plasma frequency ωP = ω0.

3.3. HFPLs

In general, HF heating waves produce an abundance of wave
phenomena through parametric instabilities. However, remote sensing
by radars cannot explore all of them. For example, backscatter
radars cannot detect upper hybrid waves, whose excitation by the
HF heating waves in high-latitude region is inferred by the ground
measurements on stimulated electromagnetic emissions (SEEs). Radar
detection is based on incoherent and coherent scatterings from the
target. In probing background plasma, return signals come from
incoherent scatterings. On the other hand, plasma waves can scatter
radar signal coherently with much larger scattering cross sections,
which make the return signals have large signal to noise ratios. The
coherent scattering satisfies the Bragg scattering condition, i.e., the
frequencies and wavevectors of the scattered waves (ωB∓,kB∓), plasma
waves (ωL,kL), and incident radar wave (ωR,kR) are related by the
relations ωB∓ = ωR ∓ ωL and kB∓ = kR ∓ kL. In general, ωR 
 ωL;
thus |kB∓| ∼= |kR| = ωR/c. Therefore, in the backscattering case,
kB∓ ∼= −kR and kL

∼= ±2kR. In other words, radar can only
effectively detect those Langmuir waves having wavenumbers twice the
wavenumber of the probing radar signal and propagating parallel (up-
going) or anti-parallel (down-going) to the pointing direction of the
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radar. These recorded spectral lines are termed “HF enhanced plasma
lines (HFPLs)”. The up-going plasma wave scatters the radar signal
to produce a frequency-downshifted radar return (ωB−,kB−), and the
frequency-upshifted radar return (ωB+,kB+) is produced by scattering
the radar wave over the down-going plasma wave. In general, the
spectrogram of HFPLs records the spectrum of the radar return signals
at frequencies offset by ωR ∓ ω0. Therefore, the spectral lines of up-
going plasma waves will appear in the spectrogram as cascading to the
right hand side (positive frequency side) with increasing frequencies.
On the other hand, the spectral lines of down-going plasma waves will
appear in the spectrogram as cascading to the left hand side (negative
frequency side) with decreasing frequencies.

3.4. Langmuir Cascade

Langmuir waves excited by OTSI and PDI in the region below the
HF reflection height can become pump waves to excite new parametric
instabilities, which generate frequency-downshifted Langmuir waves to
be their sidebands. This is called “Langmuir cascade”. Continuous
cascade of Langmuir waves through new parametric instabilities
broadens the downshifted frequency spectrum of Langmuir waves
[10, 11]. A similar description is also applicable to the “upper hybrid
cascade”. The permissible number of cascade and the required pump
threshold field vary with each cascade process that can be distinguished
by the nature of the low frequency decay mode. In the following,
a Langmuir cascade process that involves an ion acoustic wave as
the decay mode is discussed. This three-wave coupling process is
represented by

Langmuir Pump (ω1,k1) → (ω2,k2) + (ω∗
s ,ks)

where ks = k1−k2
∼= 2k1; (ω2,k2) and (ωs,ks) are Langmuir sideband

and ion acoustic wave.
How the frequency and wavevector matching conditions of the

parametric coupling processes can be satisfied through the coupled
plasma waves is illustrated in Fig. 4, which exemplifies this Langmuir
cascade process with the special situation that k1,k2, and ks are
parallel to the geomagnetic field to simplify the plot. In the figure, the
dispersion curves of the Langmuir wave (represented by the parabola,
which asymptotically approaches the line labeled ω = kvte and its
mirror image) and the ion acoustic wave (represented by the straight
line labeled ω = kCS and its mirror image) are plotted on the ω-
k plane. Thus each wave (or mode) labeled by its frequency and
wavenumber (ω, k) can be represented by a position vector of the
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Figure 4. Vector relations showing the frequency and wavevector
matching arrangements on the dispersion plane to identify the plasma
modes in the parametric coupling.

corresponding point on the plane. In this representation, the frequency
and wavenumber matching conditions are combined into a single vector
matching condition.

Starting at a point (ω1,k1) on the right-hand side (RHS) of
the parabola, which represents a Langmuir wave excited by PDI, a
downward inclined line parallel to the line ω = kCS is drawn to
intersect with the parabola. The intersecting point (ω2,k2) on the left-
hand side (LHS) of the parabola determines the sideband. The vector
between the two points (ω1,k1) and (ω2,k2) can then be mapped on
the ω = kCS line to identify the decay mode. The matching conditions
are satisfied as indicated by the vector relations shown in the figure.
A similar procedure starting at the point (ω2,k2) can be applied
to determine the plasma modes (ω3,k3) in the subsequent cascade.
However, one can easily find that |k3| will be smaller than |k2| (likewise,
|k2| < |k1|). On the other hand, HFPLs have a fixed k value. Therefore,
the parabola has to move down slightly in each subsequent cascade to
keep the sideband to have a fixed |k|. In other words, the cascade
lines in the HFPLs contributed by this cascade process originate from
a relatively thick layer. In the frequency spectrum of HFPLs, the first
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spectral peak having the highest frequency at ω = ω1 is an OTSI line
if ω1 = ω0, the heating wave frequency; if ω1 is downshifted from ω0

by ∆ω = ω0 − ω1 = ωS0 = 2kRCs, where kR is the wavenumber of the
probing backscatter radar signal, then it is a PDI line; the subsequent
spectral peaks at ω2, ω3, . . . correspond to the first, second, . . . cascade
lines. The cascade lines are recognized by doubling their frequency
downshift from the preceding line to 2 ωS0.

For example, if a spectrogram of HFPLs contains 7 spectral peaks
starting at ω = ω0, then the first two spectral peaks at ω = ω0 and
ω0 − ωS0 are called OTSI and PDI lines, respectively. The remaining
5 spectral peaks at ω0 − (2n + 1)ωS0, n = 1, . . . , 5 are called cascade
lines and their first pump is a sideband of the PDI. In this case, the
spectral width of HFPLs is about 11 ωS0.

4. WAVE PROPAGATION IN A NON-UNIFORM
MEDIUM

Propagation of a heating wave is governed by the Helmholtz equation

d2E/dz2 + k2(z)E = 0 (1)

where k2(z) = [ω2
0 − ω2

p(z)]/c
2, ω0 is the wave frequency, ωp(z) =

[4πne(z)e2/me]1/2 is the electron plasma frequency, and the electron
density ne(z) increases with the altitude; geomagnetic field is not
included in the formulation to simplify the analysis and presentation.
Therefore, k(z) decreases as wave propagates upward. Consider the
situation that ω0 is less than the plasma frequency at the F -peak of the
ionosphere (where the plasma density is the maximum). In that case,
the wave can reach a layer at z = z0, where ωp(z0) = ω0 and k(z0) = 0.
This point z0 is called the turning point, where wave reflection occurs.
If the wave is not near a turning point (i.e., reflection point) z0, the
WKB solution [12] E = A0(k)−1/2 exp[±i

∫ z k(z)dz] of (1) is a good
approximation.

4.1. Solution of the Wave Equation near a Turning Point

In the vicinity of k → 0, the electron density can be assumed to
have a linearly increasing profile, i.e., ne(z) = n0[1 + (z − z0)/L],
where n0 = ne(z0) and L is the linear scale length. Hence, ω2

p(z) =
ω2

0[1 + (z − z0)/L], and k2(z) = [ω2
0 − ω2

p(z)]/c
2 = ν(z0 − z), where

ν = ω2
0/Lc

2. Moreover, if a new coordinate g = z0 − z is introduced,
then (1) becomes

d2E/dg2 + νgE = 0 (2)
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A coordinate transformation, y = (2/3)(νg3)1/2, leads to d/dg →
ν1/2(3/2ν1/2)1/3y1/3d/dy and d2/dg2 → ν(3/2ν1/2)2/3y2/3d2/dy2 +
(ν1/2/2)(2ν1/2/3)1/3y−1/3d/dy; and letting E = g1/2 F , i.e., E =
(3/2ν1/2)1/3y1/3 F , (2) is transformed to a Bessel equation [12]

d2F/dy2 + y−1dF/dy + (1 − 1/9y2)F = 0 (3)

The solution of (3) is a Bessel function of order 1/3, i.e., F = J±1/3(y),
for y2 > 0, or a modified Bessel function of the second kind of order
1/3, i.e., F = K1/3(|y|), for y2 < 0.

Therefore, the solutions of (2) in the two regions g > 0 and g < 0
are found to be

and
E± = A±g1/2J±1/3((2/3)

√
νg3) for g > 0

E = D|g|1/2K1/3((2/3)
√
ν|g|3) for g < 0

(4)

Applying the continuity condition to (4) at g = 0, i.e., z = z0, the
solution of (2) in the region around z = z0 is obtained to be

E =

{
E0g

1/2[J1/3((2/3)
√
νg3) + J−1/3((2/3)

√
νg3)] for z ≤ z0

E+|g|1/2K1/3((2/3)
√
ν|g|3) for z > z0

(5)
where E+ = E0[J1/3(0) + J−1/3(0)]/K1/3(0).

4.2. A Specific Example of Wave Propagation in the
Bottom-side of the Ionosphere

Let the turning point z0 = 0 to simplify the expression, so that g = −z.
This field function E(x) is plotted in Fig. 5, where x = (2/3)

√
νz3. As

shown, the field amplitude near the turning point (i.e., the reflection
height) is enhanced considerably by the cutoff effect. This is called
the “swelling effect”, which has a significant positive effect on exciting
instabilities. Eq. (1) with a more realistic plasma density distribution
can be solved by a finite element method [13].

5. NONLINEAR SCHROEDINGER EQUATION FOR
LANGMUIR WAVES

Plasma waves are governed by a set of fluid equations, which, in
essence, are nonlinear and coupled to each other. We will combine
these equations into two; one describes the Langmuir wave, and the
other the ion wave. They are coupled to each other due to the nonlinear
nature of plasma. We will introduce some assumptions and make some
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Figure 5. Distribution of the wave field near its turning point, where
x = (2/3)

√
νz3.

approximations. These two equations are then combined into a single
one describing the nonlinear Langmuir waves.

5.1. Coupled Nonlinear Equation for the Langmuir Wave

The electron continuity and momentum equations, and divergence
equation (Coulomb’s law) are given by

∂tne + ∇ · neve = 0, (6)

(∂t + νe)neve = −∇ · neveve −∇(Pe/me) − (e/me)neE, (7)
∇ · E = −4πe(ne − n̂) = −4πeδne (8)

where ∂t = ∂/∂t; ne = n0 + δne + ns; n̂ = n0 + ns; n0, δne, and ns

are the unperturbed plasma density and electron density perturbations
associated with Langmuir waves and ion waves, respectively; νe is the
effective electron collision frequency; Pe is the electron pressure and
the adiabatic relationship ∇Pe = 3Te∇δne will be used.

Apply the operation (∂t + νe) to (6). With the aid of (7) and (8),
a governing equation for the Langmuir wave field E is derived to be[
∂t(∂t + νe) + ω2

p − 3v2
te∇2

]
E = −4πe 〈∇ · (neveve)〉 − (ω2

p/n0) (nsE)
(9)



292 Kuo

where vte = (Te/m)1/2 is the electron thermal speed; 〈∇ · (neE)〉 =
∇·(n∗

sεp+n0δEL) = −4πen0δne+∇·(nsE) is employed and 〈 〉 stands
for a filter, which keeps only terms in the same frequency range.

This is a nonlinear mode equation of the Langmuir wave. The
nonlinear nature of the equation is shown implicitly by the two terms
on the RHS of (9). The second term on the RHS of (9) depends
explicitly on the density perturbation of the ion wave and manifests
the coupling between Langmuir waves and ion waves.

5.2. Coupled Nonlinear Equation for the Ion Wave

Both electrons and ions can effectively respond to low frequency wave
fields. Hence, the formulation of the ion wave equation needs to include
both electron and ion fluid equations. Since electrons and ions tend
to move together, the formulation can be simplified by introducing the
quasi-neutral condition: nsi

∼= nse = ns. The ion fluid equations are
similar to (6) and (7), except that the subscript e is changed to i, and
the charge −e changed to e. Moreover, the collision terms veve and
vivi are replaced by ve(ve − vi) and (me/mi)ve(vi − ve) + vinvi in
the electron and ion fluid equations, respectively, where ve = vei is
the electron-ion collision frequency and vin is the ion-neutral particle
collision frequency. When the quasi-neutral condition is applied to the
continuity equations of the electron and ion fluids, one can show that
|vse| ∼= |vsi|, i.e., electrons and ions tend to move together in the wave.

Combine the momentum equations of the electron (7) and the ion
(analogy of (7)) fluids by adding them together. The electric field terms
and electron-ion collision terms in the two equations cancel. Moreover,
both the electron inertial term me∂tve and the ion convective term
mivi · ∇vi are small compared to their respective counterparts, and
can be neglected. The result is

mi(∂t + vin)vi + meve · ∇ve = −n−1
0 ∇(Pe + Pi) (10)

With the aid of the quasi-neutrality, the relation ve · ∇ve = ∇ (v2
e/2),

and the continuity equation ∂tns + ∇ · (n0vi) = 0, (10) becomes

[∂t(∂t + vin) − C2
S∇2](ns/n0) = (me/mi)∇2

〈
(v2

e/2)
〉

(11)

where the implicit nonlinear term on the RHS of (11) can be expressed
explicitly in terms of the Langmuir wave field E.

5.3. Assumptions and Approximations

Consider only low frequency off-resonant ion waves, which are directly
driven by the Langmuir waves. We can assume that |∂t(∂t +



Progress In Electromagnetics Research, PIER 73, 2007 293

vin)(ns/n0)| � |C2
S∇2(ns/n0)| and (11) is approximated to obtain

(ns/n0) ∼= −(me/mi)
〈
(v2

e/2)
〉
/C2

S . Moreover, we will assume that
| 〈(∇ · (neveve)〉 | � |(ω2

p/4πen0) (nsE)|. This assumption imposes an
upper bound on the amplitude and a lower bound on the scale length
of a nonlinear Langmuir wave governed validly by the equation in the
formulation. Thus (9) reduces to[

∂t(∂t + ve) + ω2
p − 3v2

te∇2
]
E = (ω2

pi/C
2
S)

〈
(v2

e/2)
〉
E (12)

5.4. Derivation of Nonlinear Schrodinger Equation for
Langmuir Waves

Neglect the collision term on the LHS and the first two terms on
the RHS of (7) and set E = ε(z, t) exp[−i(ωt − kz)] + c.c., where
ε(z, t) is the envelope of the wave, ω = (ω2

p + 3k2v2
te)

1/2 is the
carrier frequency, and c.c. stands for complex conjugate. It leads
to ve

∼= −i[eε(z, t)/meω] exp[−i(ωt− kz)]+ c.c.. Taking forward wave
approximation, (12) reduces to

−2iω(∂t + vg∂z)ε− 3v2
te∂

2
zε−

(
ω2

pi/C
2
S

)
(e/meω)2|ε|2ε = 0 (13)

Perform a coordinate transformation (to the moving frame with
velocity vg) : t′ = t and z′ = z − vgt, and reset (t′, z′) to (t, z) to
simplify the presentation. Then (13) becomes

−(1/2m∗)∂2
zε−A|ε|2ε = i∂tε (14)

where m∗ = ω/3v2
te and A = (ω2

pi/2ωC
2
s )(e/meω)2.

Eq. (14) is the nonlinear Schrodinger equation for the envelope of
the Langmuir waves [14]. The second term on the LHS of (14) is a cubic
nonlinear term and the operator of this term, - A|ε|2, is the potential
function of the Hamiltonian of the wave function ε. This potential
function depends on the intensity of the wave, thus it is possible to trap
the wave in a self-induced potential well. When this occurs, the wave
will evolve into a localized nonlinear steady state called a “Soliton” as
demonstrated below.

5.5. Analysis

Substitute ε = eiκzF (ξ) into (14), where ξ = z− at and κ = m∗a, to
obtain

F ′′ − κ2F + 2m∗AF 3 = 0 (15)
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where F ′′ = d2F/dξ2. Multiply (15) by F ′. The result can be
integrated directly to obtain

F ′2 − κ2F 2 +m∗AF 4 = C (16)

where the integration constant C is the equivalent energy of the wave.
The solution of (16) is F ′ = ±(C+κ2F 2 −m∗AF 4)1/2, which becomes

dF/(C + κ2F 2 −m∗AF 4)1/2 = ±dξ (17)

1) C > 0: (17) can be converted to the integral equation
∫
dF/(C +

κ2F 2 −m∗AF 4)1/2 = ±ξ; this equation has periodic solutions.
2) C = 0: (16) becomes F ′2 − κ2F 2 +m∗AF 4 = 0; this equation has
a localized solution, which is given by

F = (κ2/m∗A)1/2sech κ(z − at) = a(m∗/A)1/2sech κ(z − at)

This function (a “soliton”) and the self-induced potential well trapping
this soliton are plotted in Fig. 6. The soliton is the result of the balance
between the dispersion effect (represented by the first term on the LHS
of (14)) and the nonlinearity (represented by the second term on the
LHS of (14)) of the medium. The nonlinearity of the medium focuses
the wave to overcome the wave dispersion in the propagation. Thus, a

Figure 6. Soliton and its trapping potential well.
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shape-preserved soliton can exist. Under different physical situations,
the nonlinearity may change. A localized solution still exists as long as
the balance between the dispersion effect and the nonlinearity of the
medium can be achieved [15]. However, it should be noted that this
localized solution exists only under the condition C = 0, i.e., only if the
initial source wave is localized. Otherwise, the solution of the nonlinear
Schrodinger equation is a periodic function. In other words, plasma
can support Langmuir solitons, but Langmuir soliton is not a necessity
of the plasma nonlinearity; the solution of the nonlinear Schrodinger
equation is either a periodic function or a soliton, depending on the
initial/boundary conditions of the source wave function.

In heating experiments, the heating wave covers a large cross
sectional area (a few tens of km in diameter). Therefore, under the
normal conditions, it is not likely to excite the localized Langmuir
waves as the source waves, which would evolve nonlinearly into
Langmuir solitons.
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