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Abstract—An approach for the PAD modeling technique for
microwave on wafer measurement based on a combination of the
conventional equivalent circuit model and artificial neural network
(ANN) is presented in this paper. The PAD capacitances are
determined from S parameters of different size of PAD test structure
based on EM (electromagnetic) simulation and described as functions
of the dimensions of the PAD structure by using sub-ANN. Good
agreement is obtained between ANN-based modeling and EM
simulated results up to 40 GHz. The de-embedding procedure for
PHEMT device utilizing the ANN based PAD model is demonstrated.

1. INTRODUCTION

The intrinsic characteristics of the on-wafer devices is interesting
for IC engineering. However, it is impossible to measure it by
placing the coplanar probes directly on the devices. Instead, on-
wafer measurement requires probe pads and interconnect lines leading
to the DUT. In this way, it significantly limits the performance in
devices or circuits using pads, which is in particularly sensitive to the
substrate effects due to its large metal plate area, like 60µm×60µm [1–
6]. The high-frequency cross-talk and power loss through the bonding
pads to the substrate can result in poor performance gain that the
design optimization at the circuit level. To illustrate the impact of the
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pads and interconnects on the device measurement, consider H21, the
current gain of a transistor with a shorted output, defined as:

H21 =
Y21

Y11
(1)

Any parasitic capacitance will affect the measured admittances
Y21 and Y11, so de-embedding the probe pads and interconnects is
critical to coming up with an accurate H21 measurement. Failure to
do so can impact each of the four S-parameter by 1 to 2 dB. This error
compounds when the S parameters are used in complex calculations,
making transistor benchmarks such as fT and fmax appear around 25%
lower than they actually are. The impact of the pads and interconnects
becomes larger as the device’s dimensions get smaller, particularly with
conductive substrate.

In order to easily remove the pad effect, pad de-embedding is
needed [7]. Usually the pad de-embedding is done in two ways:
One is obtaining the pad S parameters by using EM simulation and
another is measuring the S parameters of the dummy device [8–12].
Recently, ANN is widely used in RF design and CAD combination of
EM simulation is investigated by researchers [13–19]. The artificial
neural network (ANN) modeling techniques are efficient alternatives
to conventional methods such as numerical modeling methods, which
could be computationally expensive, or analytical methods, which
could be difficult to obtain for new device or empirical models, whose
ranges and accuracy could be limited.

In this paper, an approach for the pad modeling technique for
microwave on wafer measurement based on a combination of the
conventional equivalent circuit model and artificial neural network
(ANN) is proposed, which is based on the combination of the
conventional equivalent circuit model of the pad and artificial neural
network (ANN) [19]. Each circuit elements in the pad equivalent circuit
model can be regarded as a sub-artificial neural network (SANN).
Pad capacitance can be directly obtained from S parameters by using
EM simulation of measurement of different pad dimensions. Good
agreement is obtained between the equivalent circuit model results
and the EM simulated results. Example of PHEMT pad de-embedding
utilizing the proposed technique is demonstrated.

The organization of this paper is as follows: the artificial
neural network (ANN) is introduced in Section 2; the ANN base
pad modeling is described in Section 3; the pad de-embedding
technique is demonstrated by using pseudomorphic high electron
mobility transistors (PHEMTs) in Section 4; the conclusion is shown
in Section 5.
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2. ANN TECHNIQUE INTRODUCTION

The multiplayer perceptron (MLP) [19] is a popularly used neural
network structure. The neurons are grouped into layers in the MLP
neural network. The first and last layers are called input and output
layers, respectively. Between input and output layers there exists a
central part of the neural network called a hidden layer. Depending on
the complexity of the input response and desired output, the number of
hidden layers and neurons at each layers can vary. Because there always
exists a three layer perceptron that can approximate an arbitrary
nonlinear, continuous, multi-dimensional function f with any desired
accuracy. Therefore, a typical MLP neural network consists of an input
layer, a hidden layer and an output layer, as shown in Fig. 1 [20].

Figure 1. Three-layer MLP structure.

For given input x, the output of three-layer MLP neural network
can be computed by:

y = w0
3 +

n∑
i=1

wi
3σ


wi0

2 +
m∑

j=1

wij
2xj


 (2)

i.e.,
y =

[
w0

3, w1
3, · · · , wi

3, · · · , wn
3
]
[1, z1, · · · , zi, · · · , zn]T (3)
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(4)

where σ(.)is an activation function.The overall nonlinear relationship
between input and output is realized by various activation patterns of
the neurons whose activation functions are typically a smooth switch
function, e.g., the sigmoid function can be expressed:

σ(γ) =
1

1 + e−γ
(5)

wij
l represents the weight of the link between the jth neuron of

the (l − 1)th layer and the ith neuron of the lth layer. w0
3 and wi0

2

represent the bias of each neurons of output and hidden layers.
The neural model is then trained to learn the input-output

relationship from the training data (sample of input-output data).
Specifically training is to determine the neural model parameters,
i.e., neural network weights wij

l, such that the ANN model predicted
output best matches that of the training data. The testing data (new
input-output samples) is used to test the accuracy of the ANN model.

3. ANN BASED PAD MODELING TECHNIQUE

Neural-based microwave device modeling technique combines the
conventional equivalent circuit and artificial neural network (ANN)
modeling technique. Each intrinsic nonlinear circuit elements can be
modeled by using a SANN.

A typical pad profile on GaAs substrate and corresponding
equivalent circuit model is shown in Fig. 2(a) and (b), respectively.
Where C1 is the capacitance between the signal pad to ground, C3=C1

for symmetrical pad structure, C2 is the cross talk between two signal
pad. The dimension Variation of the pad structure is shown in Table 1.
The pad capacitance can be described as follows:

C1 =
imag(Y11 + Y12)

2πf
(6)

C2 = − imag(Y12)
2πf

(7)
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Figure 2. Pad and its equivalent circuit model. a) Pad structure b)
Equivalent circuit model.

C3 =
imag(Y22 + Y12)

2πf
(8)

Where f is frequency, Yij(i, j = 1, 2) is the Y parameters of the pad,
and Y11 = Y22, Y12 = Y21.

Table 1. Variable pad input parameters values.

Parameters Notation Values (µm)

Width W 50–100

Length L 50–100

Slot S 50–300

In Fig. 2(b), C1, C2 and C3 can be described by using sub-ANN
as follows:

C1 = fANN
C1(W,L, S) (9)

C2 = fANN
C2(W,L, S) (10)

C3 = fANN
C3(W,L, S) (11)

where fANN represents ANN of each element of pad structure. It can
be found that the pad capacitance is a function of W, L and S. The
corresponding ANN based pad equivalent circuit model is shown in
Fig. 3.

The training data has been obtained in the EM simulation over
a frequency range of 0 to 40 GHz by different pad dimensions. After
the pad capacitance versus dimensions was obtained, the training was
conducted by using a combination of the Conjugate-Gradient and Back
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Figure 3. ANN based pad equivalent circuit model.

Propagation methods until the difference between the training data
and the output from the ANN model has reached less than 1%. 5
neurons were used in the ANN model.

Fig. 4, Fig. 5 and Fig. 6 show the pad capacitance versus width
W, length L and slot S, respectively. From Figs. 4–6, we can see the
comparison between the data obtained from the ANN model and the
EM simulated (training) data for the pad. The solid line and circle line
show the EM simulated results and ANN modeled results, respectively.
We can see that good agreement is obtained. When different size of
device or circuit is considered, its pad performance can be obtained
from the function efficiently instead of EM simulation. We can consider
the pad presented by sub-ANN and DUT together as shown in Fig. 7.

Figure 4. Pad capacitance versus its width (L = 50µm and S =
100µm).
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Figure 5. Pad capacitance versus its length (W = 50µm and
S = 100µm).

Figure 6. Pad capacitance versus its slot (W = 50µm and L =
50µm).

4. PAD DE-EMBEDDING METHOD FOR PHEMT

In Fig. 7, let the DUT to be PHEMT, which is an AlGaAs/InGaAs
/GaAs pseudomorphic high electron mobility transistors (PHEMTs)
with 0.25µm mushroom gates grown and fabricated using NTU’s
developed process technology. The layer structure of the wafer,
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Figure 7. ANN based pad and DUT network model.

from bottom to top, consists of a GaAs undoped buffer layer, 140Å
undoped In0.22Ga0.78As strained layer, 40Å Al0.25Ga0.75As spacer
layer, 5 × 1012 cm−2Si δ-doping plane, 220Å i-Al0.25Ga0.75As source
layer, and a Si-dope 450Ån+ -GaAs cap layer.

In this paper, the PI-gate PHEMT has been used, which has
2×40µm gate width (number of gate fingers unit gate width), with
W×L×S=60µm×60µm×200µm pad dimension.

The main interest in RF probing for device characterization
purposes is to characterize the intrinsic device for the purpose of
modeling its behavior at the GHz frequencies when embedded in an
IC design environment. It is obvious that the intrinsic device in an
IC design environment will not have probe pads attached to it except
when used as a test structure. Therefore, the probe pad parasitic effect
must be de-embedded from the measurement since a measurement on
wafer with calibrated probe tips has the intrinsic device characteristics
plus pad parasitics. Pad capacitance can not be removed by using
calibration method (such as SOLT, TRL, LRM, etc.). In order to
get the DUT response from measurement, the pad parasitics must
be removed.Then the dummy devices are introduced.Layout patterns,
one including the DUT while the other (dummy) excluding it, are
fabricated on the same wafer as shown in Fig. 8. Here, we examine
both pad de-embedding and probe pad layout techniques since they are
closely related. Proper probe layout rules in addition to technology
design rules must be followed. Then the pad de-embedding can be
summarized as follows [7, 9].

1) Calibrate the network analyzer up to the tips of the probe by
using either on-wafer or off-wafer calibration standard patterns.

2) Verify the calibration on the measurement wafer. Verification
of the calibration can be done using high-Q inductors or capacitors.
Verification will not be correct if it is done on the standard pattern
where calibration is done. This is because those patterns are already
used for calibration.

3) Measure the s-parameters of the dummy device and convert
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Figure 8. Layout of the interdigitated double heterojunciton δ-doped
PHEMT.

Figure 9. Comparison of S11 magnitude of pad between ANN-based
method and EM simulated result.

them to y-parameters.
4) Measure the s-parameters of the DUT and convert them to

y-parameters.
5) Subtract the dummy y-parameters from DUT y-parameters,

and convert the results back to s-parameters.
By using ANN-based pad modeling, the S parameters of the pad

are presented and good agreement is obtained between the ANN-based
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Figure 10. Comparison of S21 magnitude of pad between ANN-based
method and EM simulated result.

Figure 11. Comparison of S11 phase of pad between ANN-based
method and EM simulated result.

method and the EM simulated results, as shown in Fig. 9–Fig. 12. The
discrepancy between the ANN-based and EM simulated results of S11

magnitude at higher frequency is because of loss omit in the ANN-
based model.

By using the ANN-based pad de-embedding method, the pad effect
is removed and shown in Fig. 13. From it we can see that the pad
capacitance affected more seriously to S12 and S22 than phase of S21
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Figure 12. Comparison of S21 phase of pad between ANN-based
method and EM simulated result.

Figure 13. Comparison of S parameters of PHEMT devices with and
without pad.
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Figure 14. High-frequency gain H21 with and without pad.

and the magnitude of S11.
Fig. 14 shows the pad effect to the high-frequency gain H21 used

to determine the fT . We can see from it that the discrepancy is around
10 GHz between the pHEMT with pad and without pad.

5. CONCLUSION

In order to investigate the effect of pad capacitance to the performance
of on-wafer devices, a pad modeling technique based on the
combination of the conventional equivalent circuit model and artificial
neural network (ANN) is proposed. The pad modeling technique shows
the relationship between pad capacitance and its dimensions based
on the ANN in the equivalent circuit model up to 40 GHz. Good
agreement between the ANN-based modeling and EM simulated results
demonstrate the validity of the pad modeling technique. Finally, the
effect of pad toAlGaAs/InGaAs/GaAs pseudomorphic high electron
mobility transistors (PHEMTs) is demonstrated by using the proposed
pad modeling technique.
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