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Abstract—In resonance domain, the radar scattering response of
any object can be modelled by natural poles of resonance with the
formalism of the Singularity Expansion Method. The mapping of
these poles in the complex plane gives useful information for the
discrimination of a radar target, as its general shape, its characteristic
dimension and its constitution. In this paper, we use an analogy
with resonant circuits modelling to define the quality factor Q of
each resonance. Therefore, we propose to characterize the resonance
behavior of perfectly conducting targets with this quality factor Q and
the natural pulsation of resonance ω0. Indeed, this new representation
in {ω0;Q} allows to better separate information than the usual
mapping of natural poles of resonance in the complex plane. For
perfectly conducting canonical and complex shape targets, we present
results exhibiting advantages of these two parameters {ω0;Q}.

1. INTRODUCTION

For years, the Singularity Expansion Method (SEM) has been used
to characterize the electromagnetic response of structures in both the
time and the frequency domains. SEM was first introduced by Baum
[1, 2] and was inspired by observing that typical transient temporal
responses of various scatterers (e.g. aircrafts, antennas, ...) behave
as a combination of exponentially damped sinusoids. Such damped
sinusoids correspond, in the complex frequency domain, to complex
conjugate poles called natural poles of resonance. The knowledge
of these singularities is an useful information for the discrimination
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of radar targets and it has been used for different purposes of
discrimination and identification [3–6]. In fact, the mapping of these
natural poles in cartesian complex plane behaves as an identity card
allowing to recognize the detected target by comparison with a library
of mapping of poles, created before experiments for a set of possible
targets. Thus, the information contained in poles of resonance can give
some indications on the general shape, the nature and the constitution
of the illuminated target.

We propose here to compare resonance phenomena of targets with
RLC resonant circuits. Indeed, both scatterers and RLC resonators
can be analysed in terms of their poles pattern in the complex
frequency plane. From this comparison, we define the quality factor
of each resonance of the target. The quality factor is an important
parameter which allows to estimate the selectivity of resonance of a
system. Accordingly, we propose to use a new representation with
the natural pulsation of resonance and the quality factor. Indeed,
it is very interesting to classify radar targets as a function of their
resonant behavior and this new representation allows to better separate
informations.

First, in Section 2, we briefly introduce the resonance poles. Then,
in Section 3, we use the comparison of resonance phenomena of targets
with resonant circuits to define the quality factor Q and the natural
pulsation of resonance ω0 for each resonance of the target. Finally, we
present results exhibiting advantages of this representation in {ω0;Q},
in Section 4.1, for several perfectly conducting (PC) canonical targets
and, in Section 4.2, for a PC complex shape target.

2. RESONANCES POLES OF RADAR TARGETS

A radar target is illuminated in the far field region by an incident
broadband signal including the resonance domain of the target. The
resonance domain corresponds to electromagnetic wavelengths of the
same order as object dimensions. In this frequency band, the
fluctuation of the energy scattered by the target is significant, with
induced resonances occurring at particular frequencies. In the time
domain, the scattered transient response is composed of two successive
parts. First, the impulsive part, hE(t), corresponding to the early time,
comes from the direct reflection of the incident wave on the object
surface. In general, for a monostatic configuration, in free space, this
forced part is of duration 0 < t ≤ 2D/c = TL , where D is the greatest
dimension of the target [8]. Next, during the late time (t ≥ TL), the
oscillating part, hL(t), is due to resonance phenomena of the target.
These resonances have two origins [7]: resonances occurring outside
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the object are called “external resonances” and correspond to surface
creeping waves. Conversely, resonances occurring inside the object are
called “internal resonances” and correspond to potential cavity waves.
In the case of a perfectly conducting target, only external resonances
occur. The resonant behavior during the late time is characteristic of
the studied target and can be used to define a method of identification.

The Singularity Expansion Method (SEM) [1, 2] provides a
convenient methodology, describing the late time response of various
scatterers as a finite sum of exponentially damped sinusoids

hL(t) ≈
M∑

m=1

2 | Rm | exp(σm(t)) cos (ωm(t) + φm) (t ≥ TL) (1)

Conversely, the Laplace transform of equation (1) gives the transfer
function H(s) corresponding to the sum of pairs of complex conjugate
poles in the complex frequency plane

H(s) ≈
M∑

m=1

(
Rm

s− sm
+

R∗
m

s− s∗m

)
(2)

where M is the total number of modes of the development, s is the
complex variable in the Laplace plane. For the mth singularity, Rm is
the residue associated to each resonance pole sm = σm + jωm (R∗

m and
s∗m are complex conjugate of Rm and sm). The imaginary part, ωm,
is the resonance pulsation. The real part, σm, is negative, indeed
corresponding to a damping coefficient due to losses on the surface
and, eventually, inside not perfectly conducting targets.

The interest for the characterization of targets led to the
development of algorithms for finding resonance poles and their
associated residues, using either the impulse response of targets in the
time domain or their transfer function in the frequency domain [2, 9–
18]. For our simulations, we can use any of existing methods of poles
extraction. We choose a frequency domain method [8–13], because we
get frequential data from an electromagnetic simulation software based
on the Method of Moments [19].

As an example, we present in Fig. 1 the modulus of the transfer
function H(ω) of two perfectly conducting canonical targets: a dipole
of length L = 0.10 m and aspect-ratio L/D = 400, where D is its
diameter, and a sphere with diameter D = 0.064 m. These targets are
studied in free-space, in the frequency range [1 GHz; 11 GHz] which
contains the zone of resonance of the studied targets (the pulsation
range is [ωmin = 0.63.1010 rad/sec; ωmax = 6.9.1010 rad/sec]). We
specify that it is important to have a priori information on scatterer
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dimensions to define the frequency range such as it really includes the
searched poles of resonance [2]. Only poles with pulsation ωm included
in the pulsation range [ωmin ; ωmax] can be extracted. We note that
for a very resonant object, as the dipole, resonance peaks are narrow
and clearly appear in the response | H(ω) |, what is not the case for a
less resonant object as the sphere.
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Figure 1. Modulus of the transfer function H(ω) of the dipole (upper)
and the sphere (lower) (monostatic configuration — 256 samples).

In order to extract poles of resonance, the frequential response,
H, is approximated by a ratio of two complex polynomials [9–13]. The
zeros of the denominator polynomial, B(s), are the poles of H(s). We
get

H(s) ≈ A(s)
B(s)

≈
N∑

n=1

Rn

s− sn
(3)

where N is the total number of singularities of the development and
Rn is the residue associated to each pole sn. Among these N poles,
we expect to get the 2M physical poles corresponding to equation (2),
called “natural” poles of resonance. They are complex conjugate by
pair, with negative real part σm, and should be independent of the
order N of the rational function. In fact, we find not only these nat-
ural poles of resonance but also parasitical poles, the ones which are
not complex conjugate by pair and/or have a positive real part. More-
over, these parasitical poles depend of the order N in equation (3). To
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be sure to get the whole set of natural poles of resonance existing in
the studied frequency range, we choose a high value of the order N
(N = 50 for instance). In order to separate the 2M natural poles of
resonance and the N − 2M parasitical poles, we vary the value of N
of some units (N = 50 ± 2). Consequently, the poles are natural ones
not only if they are complex conjugate by pair and have a negative
real part, but also if their value is stable when N varies (for instance:
2M = 8 for the studied dipole).
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Figure 2. Mapping of natural poles of resonance extracted from H(ω)
of the dipole and the sphere, in the complex plane {ω;σ}. (M = 4).

Fig. 2 shows the mapping of natural poles of resonance for the
studied targets, in the half complex plane because resonance poles have
a negative real part (σ < 0). Indeed, for canonical targets (sphere,
cylinder, dipole ...), poles are distributed over branches joining the
fundamental pulsation of resonance, ω1, and harmonic pulsations. For
a very resonant target as a dipole, we can notice in Fig. 1 (upper)
that resonance peaks of | H(ω) | occur at pulsations of resonance
ωm of resonance poles in Fig. 2. However, in the case of weakly
resonant targets as the sphere, peaks of resonance, corresponding to
pulsation of resonance, ωm, overlay and cannot be distinguished in the
modulus of the transfer function | H(ω) | (Fig. 1 (lower)). Indeed, low
resonant targets have poles of resonance with high value of damping
factor, | σm |, corresponding to wide peaks, and are close to each
other. Moreover, because of this low resonant behavior, resonance
poles of high order (sm > s4 for the studied sphere) become difficult to
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obtain. Only the fundamental pole of resonance and some harmonic
poles can be obtained. On the contrary for the dipole, we can extract
all the existing resonance poles (i.e. resonance poles with pulsation ωm

included in the pulsation range [ωmin;ωmax]).
The main advantage of using natural poles of resonance for the

discrimination of targets is that only 3 parameters {ωm;σm;Rm}
are required to define each resonance mode. Furthermore, in a
homogeneous medium, the mapping of natural poles in the complex
plane {ωm;σm} is independent of the target orientation relatively to
the excitation [20].

3. COMPARISON WITH RESONANT CIRCUITS

Actually, it is interesting to compare such resonance phenomena of
radar objects with RLC resonant circuits.

Figure 3. Example of a resonant circuit.

For example, the transfer function, A(ω), of the circuit of Fig. 3-a
corresponds to the impedance, Z, given by (Fig. 3-b)

A(ω) = Z(ω) =
V0

Iin
=

R

1 + jRCω +R/jLω
(4)

The peak occurs at the natural pulsation of resonance ω0 = 1/
√
LC,

with a bandwidth ∆ω = ω0/Q, where the quality factor is
Q = RCω0 = R/Lω0. Thus a narrow-band response gives a high Q.

If we replace the circuit component parameters, R, L, and C, by
the more general ones, Q and ω0, Eq. (4) becomes Eq. (5), valid for
any resonator, mechanical as well as electrical,

A(ω) =
R

1 + jQ
(

ω
ω0

− ω0
ω

) (5)
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In order to determine the poles of such a resonator, we replace,
in Eq. (5), jω by s, complex variable in the Laplace plane. Thus, the
s-plane transfer function is

A(s) = R
s(ω0/Q)

s2 + s(ω0/Q) + ω2
0

= R
ω0

Q

s

(s− s1)(s− s2)
=

r1
(s− s1)

+
r2

(s− s2)
(6)

with s1 and s2, the two roots of the denominator of A(s)

s1,2 = − ω0

2Q
± jω0

√
1 −

(
1

2Q

)2

(7)

For Q > 1/2, the two poles s1,2 are complex conjugate, with respective
residue r1,2

r1 = r∗2 = R
ω0

Q

s1
(s1 − s2)

(8)

In the complex plane (Fig. 3-c), the poles, s1,2 = σp ± jωp, are located
on the half-circle of radius equal to the natural pulsation of resonance,
ω0. The real part of poles, σp = − ω0

2Q = −∆ω
2 , is the damping factor

and the imaginary part is the damped pulsation ωp = ω0

√
1 −

(
1

2Q

)2
.

When Q value is high, ωp is very close to ω0.
In polar coordinates, we get: s1,2 = ω0 exp±iθ, with ω0 the

modulus and θ the angle of s1,2. We prefer to use a modified polar
representation in the half complex plane: {ω0; Φ} where Φ = θ − π/2
is the angle between the pole direction and the imaginary axis ω. We
have

2 sin Φ = −2σp

ω0
= −∆ω

ω0
=

1
Q

(9)

Indeed, Φ is related to the relative selectivity (i.e. the width ∆ω of the
peak of resonance (Fig. 3-b) divided by the pulsation of resonance ω0)
which is equal to 1/Q. Thus, a high Q corresponds to a low Φ and the
associated pole is close to the vertical axis.

Finally, instead of using the cartesian representation of resonance
poles in {σp;ωp}, it is interesting to use a new representation in
{ω0;Q}.

Now, we apply this resonant circuit analogy to the scattering
transfer function H(s) of radar targets (Eq. (2)), which can be ex-
pressed as a sum of transfer functions Am(s) (Eq. (6)) of elementary
resonators {ω0,m;Qm}.
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For the mth singularity (sm = σm + jωm), the natural pulsation
of resonance, ω0,m, and the quality factor, Qm, are respectively given
by

ω0,m =| sm | Qm = −ω0,m

2σm
(10)

4. USE OF THE QUALITY FACTOR FOR THE
CHARACTERIZATION OF PC OBJECTS

The quality factor is an important parameter specifying the selectivity
of a resonant system. It is used for instance for antennas [21, 22].
On account of the previous analysis of resonators, we propose to use
no longer the parameters {σm;ωm} but the parameters {ω0,m;Qm}
to characterize radar targets according to their resonant behavior. We
first study several PC canonical objects (4.1), then a PC complex shape
target (4.2).

Figure 4. Mapping of resonance poles in {σm;ωm} for nine PC
canonical targets: 3 dipoles (P variable; L/D = 400), 3 ellipsoids
(P variable; L/D = 8), 3 spheres (P variable; L = D).
(L: Length; D: Diameter; P : Perimeter). Log-Log scale.

4.1. PC Canonical Objects

Fig. 4 presents the usual mapping of resonance poles {σm;ωm} in
the complex plane for nine PC canonical objects. Fig. 5 shows the
evolution of the Q-factor, Qm, as a function of the natural pulsation
of resonance, ω0,m, for the same targets. It is interesting to observe
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Figure 5. Evolution of Q-factor as a function of ω0 {ω0,m;Qm} for
the same PC canonical targets of Fig. 4. Log-Log scale.

that this representation in {ω0,m;Qm} clearly brings out the resonance
behavior of each target. Particularly, we can notice that the more
objects are elongated, the more the Q-factor is high. Furthermore, for
a same kind of object, Q is constant for the same aspect ratio, L/D, as
indicated by horizontal dashed lines joining corresponding resonance
poles (fundamental or harmonics) in Fig. 5. From equation 9, we can
see that each value of Q corresponds to the same Φ angle between
the pole direction and the vertical axis in the linear mapping {σ;ω}
(Fig. 3-c). Consequently, poles located on a same horizontal line in
Fig. 5 are located on a straight line passing through the origin, with
slope a equal to

a =
ωp

σp
=

1
tan Φ

=
√

4Q2 − 1 (11)

For a better visibility of poles, the Figure 4 is presented in log-log
scale, consequently, this straight line of slope a is transform in straight
line of slope 1 at vertical level equal to Log(a). In Fig. 4, are plotted
such dashed lines corresponding to fundamental poles of each kind of
object.

Thus, the new representation of poles in {ω0,m;Qm} allows
to better separate informations and, consequently, to classify more
efficiently radar targets as a function of their resonant behavior.
Elongated targets correspond to a high Q value, while compact targets,
having a higher surface for the same perimeter, correspond to a low Q
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value, because of higher radiating losses on the surface. Moreover, Q
factor is lower in the case of targets with geometrical symmetries, on
account of the degeneracy phenomenon of resonance poles [23].

In the same manner as a library of mapping of poles {σp;ωp}, it
would be interesting to create a library of possible targets as a function
of the {ω0,m;Qm} representation.

4.2. PC Complex Shape Target

A complex shape target can often be modeled as a combination
of canonical objects (Fig. 6). Resonances occurring at particular
frequencies correspond as well to canonical objects (here: cylinder,
cone and three triangular wings) as to structures created by the
assembly of these canonical objects (for instance: dihedral created
by the junction between each triangle and the cylinder). However,
among the whole set of these possible resonances, only a few of them
appreciably contribute to the target response and are thus extracted
[24]. As previously, extracted poles of resonances are distributed over
some distinct branches joining the fundamental pulsation of resonance
and corresponding harmonic pulsations.

Figure 6. Example of a PC complex shape target.

Using the correspondence between pulsations of resonance and
characteristic dimensions of an object, we associate these branches
to elementary components of the complex shape target [25]. Indeed,
creeping waves on the surface of a PC target are in resonance if their
pulsation, ω0,m, corresponds to a characteristic dimension of the target
such as its perimeter P = mλm = m 2πc

ω0,m
, with m = 1 for the funda-

mental pulsation of resonance and, m > 1 and integer, for harmonic
pulsations. Fig. 7 showing the currents distribution on the surface of
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the target excited with different pulsations of resonance, allows to il-
lustrate the resonant behavior of the target. In Fig. 7(a), we can see
that the pulsation ω0 = 0.57.109 rad/sec corresponds to the length of
the target body (‘A’ in Fig. 6). In the same manner, we can see more
distinctly in Fig. 7(b) that the pulsation ω0 = 1.32.109 rad/sec cor-
responds to dihedrals created by the junction between the two main
wings and the body (‘B’ in Fig. 6), and in Fig. 7(c) that the pulsa-
tion ω0 = 1.86.109 rad/sec corresponds to the dihedral created by the
junction between the little wing and the body (‘C’ in Fig. 6). Indeed,
when the pulsation corresponds to the characteristic dimension of an
elementary component of the target, currents are concentrated on this
elementary component.

Figure 7. Surface currents on the PC complex shape target of Fig. 6
for 3 pulsations of resonance.

In order to clearly show how branches of poles are associated to
elementary components of the target, we study the whole complex
shape target (Fig. 6) and three partial complex shape targets: the
target body alone in Fig. 8, the target body with the little wing in
Fig. 9, and the target body with the two main wings in Fig. 10.
These three figures present results comparing the whole target and
each partial target, in both representations, the mapping of resonance
poles {σm;ωm} and the representation in {ω0,m;Qm}, both in linear
scale.
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Figure 8. Comparison between the whole target (•) and the partial
target (◦) [target body alone]. (a) {σm;ωm}, (b) {ω0,m;Qm}.

Figure 9. Comparison between the whole target (•) and the partial
target (◦) [target body + little wing]. (a) {σm;ωm}, (b) {ω0,m;Qm}.

From Fig. 8, we can see that the branch named ‘A’, joining the
fundamental pole ‘1’ and its harmonic poles, corresponds to the length
of the body of the target, noted ‘A’ in Fig. 6. In the same way, the
branch named ‘D’, with one pole ‘4’, corresponds to the circular section
of the body, noted ‘D’ on Fig. 6. Next, results of Fig. 9 show that
the ‘C’ branch, with fundamental pole ‘3’, actually corresponds to the
dihedral created by the junction between the little wing and the body,
noted ‘C’ in Fig. 6. Finally, results of Fig. 10 show that the ‘B’ branch,
with fundamental pole ‘2’, actually corresponds to dihedrals created by
the junction between the two main wings and the body, noted ‘B’ on
Fig. 6.
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Figure 10. Comparison between the whole target (•) and the partial
target (◦) [target body + two wings]. (a) {σm;ωm}, (b) {ω0,m;Qm}.

Poles of resonance corresponding to the target body (branches
named ‘A’ and ‘D’) are present for the three partial targets. However,
in Fig. 8 and 9, some harmonic poles of the ‘A’ branch are shifted,
mainly in horizontal direction (σ) in {σm;ωm} representation and in
vertical direction (Q) in {ω0,m;Qm} representation. In fact, this poles
shift comes from the coupling of canonical objects [26]. Poles of the
‘A’ branch are almost in the same location for the whole target and
for the partial target in Fig. 10, because these two targets are nearly
identical.

By using the representation in {ω0,m;Qm}, it is easier to
distinguish and to classify elementary components of the target from
the quality of their resonance and from their natural pulsation of
resonance. For example, in the case of the complex shape target
of Fig. 6, results show that the ‘C’ branch, corresponding to the
dihedral created by the junction between the little wing and the body,
corresponds to the highest quality of resonance.

Furthermore, we propose to show that the representation in
{ω0,m;Qm} allows to better separate informations when a dimension of
the target is varying. For this purpose we vary the size, w, of the two
main wings (Fig. 6). Fig. 11 presents the mapping of resonance poles
and the representation in {ω0,m;Qm} for several values of w. ‘A’, ‘C’,
and ‘D’ branches are in the same location. On the contrary, we can see
that the ’B’ branch, corresponding to the two main wings, moves as a
function of w. the natural pulsation of resonance ω0 is nearly constant,
it is indeed a characteristic of the junction of the two main wings and
the body. Only the Q-factor varies when w decreases, and thus the ‘B’
branch becomes increasingly resonant.
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Figure 11. Evolution of resonance poles of the ‘B’ branch as a function
of the wing width w.

5. CONCLUSION

In this paper, instead of using usual mapping of resonance poles in
{σm;ωm}, we have proposed to characterize targets with the quality
factor, Q, and the natural pulsation of resonance, ω0, defined by com-
paring resonance phenomena of targets to RLC resonant circuits. We
have shown that this representation in {ω0,m;Qm} allows to better
separate informations: the Q parameter allows to bring out clearly the
resonance behavior of targets and the natural pulsation of resonance,
ω0,m, depends on dimensions of targets. Next, we have shown that
each branch of poles corresponding to each elementary component of
a perfectly conducting complex shape target moves as a function of
dimensions of this elementary component. Here, we have presented
results only for PC objects. It would be very interesting to extend this
study to dielectric targets. Knowing that internal resonances have a
damping factor much lower than external resonances, the quality fac-
tor will be much higher.
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