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Abstract—An efficient method is proposed in this paper to
reconstruct the shape of a two-dimensional perfectly electrically
conducting (PEC) target using limited scattered information. Based
on the physical optics approximation, a Fourier transform relation has
been obtained between the PEC target and the scattered fields. In
theory, all scattered-field data are required for the reconstruction in
the whole angle range (from 0 to 2π) and in the whole frequency
range (from 0 to ∞). However, such data are impossible in practical
applications. In this paper, we have discussed the influence of limited
frequencies and limited incident angles on the imaging, where a Pade
interpolation technique has been developed to obtain the scattered
information in the whole angle range from limited-angle information.
In order to overcome the ill-posed problem in the interpolation, the
Tikhonov regularization has been used. Reconstruction examples are
given to validate the efficiency of the proposed approach.

1. INTRODUCTION

The electromagnetic scattered information of a perfectly electrically
conducting (PEC) target has been popularly used in the modern
radar system. Among all kinds of target detecting theories, the
target imaging has received increasing interest because it can provide
more particular details in the shape and location of the target than
others. The theory of inverse scattering for PEC targets has been well
studied since 1965 using the physical optics (PO) approximation [1–
16]. The most significant contribution to the inverse-scattering theory
was established by Bojarski in 1982 [4], where he developed a Fourier
transform relationship between the PEC target and the scattered
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field. However, such a theory is difficult to be realized in practical
applications because all scattered-field information in the whole angle
range (from 0 to 2π) and in the whole frequency range (from 0 to ∞)
have to be known, which is hard to to be satisfied in practice.

In this work, we mainly discuss the two-dimensional (2D) imaging
for PEC targets using limited scattered information. In Section 2,
a brief introduction to the inverse scattering theory is given based
on the PO approximation, where a Fourier transform relation has
been obtained between the PEC target and the scattered fields. In
Section 3, the influence of limited frequencies to the imaging is first
investigated. Then a Pade extrapolation is proposed to approximate
the scattered information in the whole directions around the target
using limited measurement data, which can be conveniently achieved
in practical applications. In order to overcome the ill-posed problem in
the interpolation, the Tikhonov regularization has been used. Finally,
reconstruction examples are given to validate the proposed approach
in Section 4, followed by the conclusion remarks in Section 5.

2. INVERSE SCATTERING THEORY BASED ON THE
PO APPROXIMATION

Consider a 2D PEC target, a PEC cylinder, as shown in Figure 1.
When an electromagnetic plane wave is incident upon the target, where
the incident magnetic field is parallel to the cylindrical axis, there
are electric currents induced on the target. If the electrical size of
the object is much larger than the wavelength, we can use the PO

(a) (b)

Figure 1. The scattering model of a PEC cylinder. (a) The overview.
(b) The cross section.
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approximation to estimate the electric current as

�J = n̂× �H =
{

2n̂× �Hi
�k · n̂ < 0

0 �k · n̂ > 0,
(1)

where �k is the wavenumber vector, and n̂ is the unit normal vector of
the PEC target. As shown in Figure 1(a), the incident magnetic field
is written as

�Hi = ẑH0e
j�k·�R.

Then the scattered magnetic field can be obtained using the far-field
approximation

�Hs(�ki,�ks, �R) =
1
2

∫
�ki·n̂<0

H
(1)
0 (ks

∣∣∣�R− �R′
∣∣∣) �Hi(�R′)(�ks · n̂)dl′ (2)

As shown in Figure 1(b), when the receiving antenna is far from the
PEC object, the large-argument approximation of the Hankel function
can be used, which yields the scattering field as

�Hs(�ki,�ks, �R) = ẑH0

√
i√

2πksR

∫
�ki·n̂<0

eiksRe−i(�ks−�ki)·�R′�ks · n̂dl′. (3)

Now we define a normalized scattered magnetic field as

ρ(�ki,�ks) =
Hs(�ki,�ks)e−iksR

√
ks√

i
.

In a mono-static radar system, we have �ks = −�ki ≡ �k. Considering
two opposite incident directions, Eq.(3) can be rewritten as

ρ(�k) − ρ∗(−�k) = H0
1√
2πR

∮
l
e−i2�k·�R′�k · n̂dl′. (4)

Applying the Gaussian divergence theorem, Eq. (4) can be reduced to

ρ(�k) − ρ∗(−�k) = H0
1√
2πR

∫
S
∇ · (e−i2�k·�R′�k)ds

′

= H0
−i2k2√

2πR

∫
S
e−i2�k·�R′

ds′, (5)

where S is the cross section of the cylindrical target. We define a
characteristic function of the scatterer as

γ(�R) =
{

1, �R ∈ S
0, �R /∈ S, (6)
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then Eq. (5) can be rewritten in the following form

ρ(�k) − ρ∗(−�k) = H0
−i2k2√

2πR

∫
∞

γ(�R′)e−i2�k·�R′
ds′. (7)

Clearly, Eq. (7) describes a Fourier relation. In other words, the
characteristic function of the PEC target, γ(�R), is the inverse Fourier
transform of the following re-normalized scattered field

S(�k) =

ρ

(
�k

2

)
− ρ ∗

(
−
�k

2

)

k2H0
× 2

√
2πR.

3. RADAR IMAGING USING LIMITED SCATTERED
INFORMATION

If we want to perform the inverse Fourier transform shown in Eq. (7),
we should know the scattered field information in the whole �k space.
Suppose that the �k vector is written as keiφ, where k corresponds to the
frequency of incident wave, and φ corresponds to the incident angle.
Then all frequencies from 0 to ∞, and all incident angles from 0 to
360◦ should be used. In practical applications, however, we can only
obtain limited scattered information, in which �k is limited in a certain
frequency bandwidth, as shown in Figure 2(a), and also we cannot
place radars to surround the object. In actual cases, the radars can be
only placed in some particular directions, as shown in the black areas
in Figure 2(b).

Now we discuss the influence of limited bandwidth as shown in
Figure 2(a). Let the scattered data be 0 when �k is not in the black
region (a ≤ |k| ≤ b) shown in Figure 2(a) when we perform the
inverse Fourier transform. Then we define the characteristic function
computed using such limited bandwidth as γ′(�R). Apparently, the
relation between γ′(�R) and the real characteristic function γ(�R) is
simply written as

γ′(�R) = w(�R) ∗ γ(�R),

in which w(�R) is the inverse Fourier transform of the following function

W (�k) =
{

1, a ≤ |k| ≤ b
0, eleswhere.
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(a) (b)

Figure 2. The scattered field information. (a) Limited frequency
bandwidth. (b) Limited frequency bandwidth and limited incident
directions.

Clearly, w(�R) has an analytical solution:

w(�R) =
1

2πR
[bJ1(bR) − aJ1(aR)].

A typical distribution of w(�R) when a = 0 and 1/b � L is shown
in Figure 3(a), where L is the object dimension. From this figure, it
is easy to see that w(�R) will be a good approximation to the delta
function, and furthermore γ′(�R) ≈ γ(�R) [1]. When a �= 0, for example
b/a = 2.0, the distribution of w(�R) is shown in Figure 3(b). Obviously,
the first sidelobe of w(�R) will affect the object function in performing
the convolution. As a result, the outline of the object will have a little
defect.

Next, we consider the limitation of the incident directions as shown
in Figure 2(b). Suppose that the �k vector is written as keiφ, where k
corresponds to the incident wave frequency, and φ corresponds to the
incident angle. As a consequence, the scattered fieldHs(�k) is a function
of φ when k is fixed, which is symbolled as f(φ). In the practical case,
we can only place the radars in some certain directions, as shown in
Figure 2(b). In other words, only the scattered fields at some certain
angles φi = φ0+∆φi (i = 1, 2, · · · , P ) are known. Here, φ0 is a reference
angle. Now we want to reconstruct the scattered information in the
whole angle range approximately using the limited scattered data. In
this work, we choose the Pade approximation because it can provide
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Figure 3. The curve of ω(�R), where the horizontal axis represents
R, and the vertical axis represents the function ω. (a) a = 0; (b)
b/a = 2.0.
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a good performance for oscillating functions, which has been widely
used in the asymptotic waveform evaluation (AWE) technique for the
frequency-domain electromagnetic analysis. In general, the scattered
field in an arbitrary angle φ = φ0 + ∆φ can be expanded as

f(φ0 + ∆φ) =

M∑
m=0

am∆φm

1 +
N∑

n=1

bn∆φn

, (8)

where the expansion coefficients am(m = 0, 1, · · · ,M) and bn(n =
1, 2, · · · , N) are unknown. Hence, there is a total ofM+N+1 unknown
parameters to be determined. In order to determine such unknowns,
at least P =M +N + 1 scattered data are required:

f(φ0 + ∆φi) =

M∑
m=0

am∆φm
i

1 +
N∑

n=1

bn∆φn
i

, (9)

in which i = 1, 2, · · · , P . After simple derivations, the above equation
is written as


1,∆φ1, . . . . . .∆φM
1 ,−∆φ1f(φ1) . . . . . . ,−∆φN

1 f(φ1)
1,∆φ2, . . . . . .∆φM

2 ,−∆φ2f(φ2) . . . . . . ,−∆φN
2 f(φ2)

...

...
1,∆φP , . . . . . .∆φM

P ,−∆φP f(φP ) . . . . . . ,−∆φN
P f(φP )







a0
...
am
b1
...
bn




= [f(φ1), f(φ2), . . . . . . f(φP )]T , (10)

where T denotes a conjugate. Clearly, the expansion coefficients can be
obtained after solving the above matrix equation. Unfortunately, such
a matrix equation is usually ill-conditioned, especially when the order
of equations is larger than 40. In order to achieve a stable solution of
the ill-posed problem, a Tikhonov regularization [18, 19] is used.

For easy implementation, the matrix equation (10) can be simply
rewritten as

A · x = y. (11)
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To seek the minimal norm solution to Eq. (11) by an optimization
scheme, we consider the following object function

E = ||y − A · x||2 + δ||x||2, (12)

in which ||·|| is the norm of a vector. The regularization term in Eq.(12)
is to ensure the norm of x not to be too large with the regularization
parameter δ. Using the minimization technique, Eq. (12) is equivalent
to the following matrix equation

(A+ · A + δI) · x = A+ · y, (13)

where A+ is the conjugate transpose matrix of A, and I is the unitary
matrix. Because the matrix I is well posed, the matrix A+ · A + δI
is also well posed. As a consequence, a stable solution of x will be
obtained.

4. RECONSTRUCTION RESULTS

In order to test the validity of the proposed method, we first consider a
circular PEC cylinder with radius a = 1 m. In such a simple case, the
scattered magnetic fields can be computed exactly using the Mie series
[17], which are regarded as the measured data. In this example, we
mainly observe the influence of limited frequency band on the imaging.
With the aid of the fast Fourier transform (FFT), the imaging results
from Eq. (7) are illustrated in Figure 4. Here, full-angle information
from 0 to π is used and different maximum frequencies are chosen to
produce different resolutions.

From the FFT procedure [11], we have known that ∆x = π/kxm

and ∆y = π/kym if −kxm ≤ kx ≤ kxm and −kym ≤ ky ≤ kym. Hence,
the larger kxm and kym are, the higher the imaging resolution is, as
shown in Figures 4(a) and 4(b). On the other hand, the imaging
region Dx ×Dy is defined by Dx = 2π/∆kx and Dy = 2π/∆ky. As a
consequence, the less ∆kx and ∆ky are, the larger the imaging region
is, as depicted in Figure 4(b).

For the cases of larger kmin, for example, kmax/kmin ≈ 2.0, the
reconstruction results of the PEC circular cylinder are illustrated in
Figure 5, where the full-angle information are again used. When
kmax = 128.0 and kmin = 70.0, the imaging result is shown in
Figure 5(a). When kmax = 256.0 and kmin = 150.0, the imaging result
is shown in Figure 5(b). Comparing the two figures, we clearly see that
the high-frequency information can produce a much better resolution
if kmax/kmin is fixed, which is coincident with the earlier analysis.
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(a)

(b)

Figure 4. The reconstructed results of a PEC circular cylinder
with radius a = 1 m=1m, where the horizontal axis represents the
x coordinate, and the vertical axis represents the y coordinate. (a)
kmax = 32.0, kmin = 1.0, ∆k = 1.0, and 32 frequencies have been used.
(b) kmax = 25.6, kmin = 0.1, ∆k = 0.1, and 256 frequencies have been
used.
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(a)

(b)

Figure 5. The reconstructed results of a PEC circular cylinder
with radius a = 1 m=1m, where the horizontal axis represents the
x coordinate, and the vertical axis represents the y coordinate. (a)
kmax = 128.0, kmin = 70.0, and ∆k = 1.0; (b) kmax = 256.0,
kmin = 150.0, and ∆k = 1.0.
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(a) (b)

Figure 6. The original model and the reconstructed image of a PEC
missile. (a) The original model. (b) The imaging result with full
incident angles.

Next, we consider the reconstruction of a PEC missile model
shown in Figure 6(a). For such a model, the method of moments
(MOM) has been applied to simulate the scattered data by adding 10
% white noise. When the whole scattered information for all incident
angles around the target are involved, the imaging result is illustrated
in Figure 6(b), where kmax = 16.0, kmin = 0.5, and 32 frequencies
are used. Clearly, the missile target is well reconstructed with the
full-angle information.

However, the full-angle information is hard to be obtained in
practical applications. Suppose that we have four radars located at
φ = 0, π/2, π, and 3π/2 to collect scattered data, and each radar can
scan a maximum angle of π/9. Hence, only the scattered information
in limited angles is available in this case: φ ∈ (−π/9, π/9) ∪ (π/2 −
π/9, π/2+π/9)∪(π−π/9, π+π/9)∪(3π/2−π/9, 3π/2+π/9). Clearly,
we only know the scattered fields in a totally 8π/9 angle range. The
other scattered data in an angle range of 10π/9 are unknown. If we
simply ignore such scattered data, the imaging result is illustrated in
Figure 7(a), where the head and bottom parts of the missile cannot
be reconstructed. When we apply the Pade interpolation technique to
recover the scattered data in the angle range of 10π/9, the imaging
result is shown in Figure 7(b). Clearly, the whole missile target is well
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(a)

(b)

Figure 7. The reconstructed results of the PEC missile with
limited incident anglesangle, where the horizontal axis represents the
x coordinate, and the vertical axis represents the y coordinate. (a)
Without using the Pade interpolation technique. (b) Using the Pade
interpolation technique.
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(a) (b)

Figure 8. The original model and the reconstructed image of a PEC
aircraft. (a) The original model. (b) The imaging result with full
incident angles.

reconstructed using the proposed method even though more than half
angle information is unknown.

Finally we consider a complicated aircraft model as demonstrated
in Figure 8(a). Again, MOM has been used to simulate the scattered
data by adding 10% white noise. When the whole scattered field
information for all incident angles around the target are known, the
reconstruction result of the aircraft target is shown in Figure 8(b),
where kmax = 16.0, kmin = 0.5, and 32 frequencies are used. Obviously,
the aircraft is well reconstructed with the full-angle information.
Similarly, if we only know the scattered fields in the limited angle range
of 8π/9 as listed in the above example, and ignore the other scattered
information, the imaging result is shown in Figure 9(a). Clearly,
the aircraft is hardly identified without using the Pade interpolation
technique.

Figure 9(b) illustrates the radar image with limited angle
incidences using the Pade interpolation technique, where the Tikhonov
regularization is not applied (δ = 0). From this figure, we can
see that the reconstruction result is still poor due to the ill-posed
problem. After adopting the Tikhonov regularization, however, the
image quality has been greatly improved, as shown in Figure 10. Here,
the regularization parameter is set as δ = 10−4. The above examples
validate the efficiency of the proposed method.
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(a)

(b)

Figure 9. The reconstructed results of the PEC aircraft with limited
incident angles. (a) Without using the Pade interpolation technique.
(b) Using the Pade interpolation technique and δ = 0.
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Figure 10. The reconstructed result of the PEC aircraft with limited
incident angles using the Pade interpolation technique, where δ = 10−4.

5. CONCLUSIONS

In this work, we have proposed an efficient method to reconstruct
the shape of 2D PEC targets using limited scattered information.
From the theoretical analysis, all scattered-field data are required for
the target imaging in the whole angle range (from 0 to 2π) and in
the whole frequency range (from 0 to ∞). Obviously, such data are
impossible in a practical application. To solve the problem, we have
studied the influence of limited frequencies and limited incident angles
on the quality of imaging, where the Pade interpolation technique
with the Tikhonov regularization has been developed to obtain the
scattered field information in the whole angle range from limited-angle
information. Reconstruction examples have verified the validation and
efficiency of the proposed method.
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