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Abstract—The Sumudu transform is derived from the classical
Fourier integral. Based on the mathematical simplicity of the Sumudu
transform and its fundamental properties, Maxwell’s equations are
solved for transient electromagnetic waves propagating in lossy
conducting media. The Sumudu transform of Maxwell’s differential
equations yields a solution directly in the time domain, which
neutralizes the need to perform inverse Sumudu transform. Two sets of
computer plots are generated for the solution of Maxwell’s equations
for transient electric field strength in lossy medium. A set of plots
presents the Sumudu transform of the transient solution and another
one presents inverse Sumudu transform. Both sets of plots reveal
similar characteristics and convey equal information. Such property
is referred to as the Sumudu reciprocity.

1. INTRODUCTION

An integral transform, referred to as Sumudu transform, was
introduced by Watugala [1, 2] to facilitate the process of solving
differential and integral equations in the time domain, and for the
use in various applications of system engineering and applied physics.
Although the mathematical properties of the Sumudu transform have
been explored in some details [3–11], to the best of our knowledge, no
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systematic derivation of the Sumudu transform is available in the open
literature.

The phenomenon of electromagnetic-wave propagation in different
media is well described by solutions of Maxwell’s differential equations
that satisfy specified set of initial and boundary conditions [12–
18]. Typically, Fourier and Laplace transforms are the convenient
mathematical tools for solving differential equations [19]. In this paper,
we first present a systematic derivation of the Sumudu transform,
and based on its fundamental properties we use it to solve Maxwell’s
equations for transient excitation functions propagating in a lossy
conducting medium. The Sumudu transform of Maxwell’s equations
yields a solution directly in the time domain. The obtained solution
and its inverse Sumudu transform are of similar characteristics and
provide equal information regarding the phenomenon of transient-
wave propagation in lossy conducting media. This property of the
Sumudu transform is referred to as the Sumudu reciprocity, which is an
attractive one for solving differential equations and investigating many
practical problems in the time domain without the need for performing
inverse Sumudu transform. The Fourier transform as well as the
Laplace transform methods of solving differential equations require an
inverse transform operation in order to obtain a time-domain solution.

In Section 2, starting with the classical Fourier integral, a detailed
derivation of the Sumudu transform is presented, and its relationship
to the Laplace transform is established. The Sumudu transform of the
unit-step function, the ramp function, the exponential-ramp function,
and the Gaussian pulse are presented and plotted too. These functions
are often used in many engineering problems. In Section 3, the Sumudu
transform and some of its fundamental properties are used to solve
Maxwell’s equations for a transient electric field excitation function
propagating in a lossy conducting medium. Two sets of computer
plots are generated for the solution of Maxwell’s equations for transient
electric field strengths with the time variation of an exponential-ramp
function and that of a Gaussian pulse. One set of plots presents the
Sumudu transform of the transient solution and another set presents
the inverse Sumudu transform of the same solution. Both sets of
plots reveal similar characteristics and provide equal information.
Conclusions are given in Section 4.



Progress In Electromagnetics Research, PIER 74, 2007 275

2. THE ORIGIN OF SUMUDU TRANSFORM

For a function f(t) which is of exponential order,

|f(t)| <
{

Me−t/τ1 for t ≤ 0,
Met/τ2 for t ≥ 0,

(1)

the Sumudu transform, henceforth designated by the operator S[.], is
defined by the integral equation

S[f(t)] = G(u) =
∫ ∞

0
f(ut)e−t dt, −τ1 ≤ u ≤ τ2, (2)

where M is a real finite number and τ1 and τ2 can be finite or infinite
[2]. Analogous to the Laplace transform, which was derived from
the Fourier transform to account for transient functions, the Sumudu
transform given in (2) can also be derived directly from the Fourier
integral. Furthermore, the Sumudu transform can be related to the
Laplace transform, as will be demonstrated shortly.

The Fourier transform pair for a function f(t) that satisfies the
condition for absolute convergence,

∫ +∞
−∞ |f(t)| dt < ∞, is given by the

integrals,

F [f(t)] = F (ω) =
∫ +∞

−∞
f(t)e−iωt dt (3)

F−1[F (ω)] = f(t) =
1
2π

∫ +∞

−∞
F (ω)eiωt dω, (4)

where the operators F [.] and F−1[.] denote Fourier transform and
inverse Fourier transform, respectively. If f(t) does not vanish at
∞, absolute convergence can be enforced by the exponential order
condition described in (1) such that,

lim
T→∞

∫ T

0
|e−αtf(t)| dt < ∞, (5)

where α is constant and T time interval. The lower bound αa of
all values of α which satisfy (5) is called the abscissa of absolute
convergence. Analogous to (3) and (4), the Fourier transform pair
for the product f(t)e−αt is written as follows,

F (α+ iω) =
∫ +∞

−∞
f(t)e−(α+iω)t dt (6)

f(t)e−αt =
1
2π

∫ +∞

−∞
F (α+ iω)eiωt dω (7)
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where α > αa and t ≥ 0. Note that for t < 0 the integral given in
(7) must equal to zero since f(t) is said to be of exponential order.
Hence, the inverse Fourier transform can be expressed in terms of the
unit step function s(t),

f(t)s(t) =
1
2π

∫ +∞

−∞
F (α+ iω)e(α+iω)t dω. (8)

s(t) =
{

1, for t ≥ 0
0, for t < 0

(9)

Solving first the integrals in (6) and (8) and then applying the
limit α → 0 to the solutions, one obtains for αa ≤ 0 the Fourier
transform pair for functions that are not absolutely convergent. The
introduction of the Laplace transform proved that such laborious steps
are unnecessary.

With the substitution s = α + iω, α > αa, the Fourier transform
integral given in (6) and the inverse Fourier transform integral
given in (8) become the Laplace–transform pair of the function f(t),
respectively [19],

L[f(t)] = F (s) =
∫ +∞

−∞
f(t)e−st dt, Re(s) > αa, (10)

L−1[F (s)] = f(t)s(t) =
1
i2π

∫ α+i∞

α−i∞
F (s)est ds, (11)

where the abscissa of convergence αa is determined by the functional
properties of f(t). The operators L[.] and L−1[.] denote Laplace
transform and inverse Laplace transform, respectively. Since f(t)s(t) =
0, for t < 0, and Re[s] = α > αa, the Laplace transform can be
interpreted as a mapping of the points lying on the positive real axis
of t onto that portion of the complex plane of s which lies to the
right of the abscissa of convergence αa. Such a mapping, which is of
significance in applied physics and engineering, does not exists for the
Sumudu transform.

The Sumudu transform given by (2) can now be derived explicitly
from the Fourier integral given in (7). Integration over time from −∞
to +∞ of both sides of (7) yields the following two integrals,

q1(α) =
∫ +∞

−∞
f(t)e−αt dt =

∫ +∞

0
f(t)e−αt dt (12)

q2(α) =
1
2π

∫ +∞

−∞
F (α+ iω)

(∫ +∞

−∞
eiωt dt

)
dω. (13)
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Using the substitutions w = αt and u = 1/α into (12), one obtains the
Sumudu transform of the function f(t),

αq1(α) = α

∫ +∞

0
f(t)e−αt dt

=
∫ +∞

0
f(w/α)e−w dw = G(1/α) = G(u), (14)

where G(u) is the Sumudu transform.
With the help of the complex-conjugate property of the Fourier

transform, F [f∗(t)] = F ∗(−ω), and F [1] = 2πδ(ω), where (∗) denotes
complex conjugate and δ(t) is the Dirac-delta function, one obtains

q2(α) =
1
2π

∫ +∞

−∞
F (α+ iω)

(∫ +∞

−∞
e−iωt dt

)∗
dω

=
∫ +∞

−∞
F (α+ iω)δ(ω) dω = F (α) = F (s)

∣∣∣
s=α+i0

. (15)

According to (14) and (15), the relationship between the Sumudu
transform and the Laplace transform is expressed as follows,

G(u) = G

(
1
α

)
= αF (α), Re[s] = α > αa. (16)

Two-dimensional Sumudu transform is described in [20], and can
be useful for the applications of two-dimensional signal and image
processing.

Let us list the Sumudu transform of certain functions that are of
interest in practice:
Unit-step function s(t),

S[s(t)] = S(u) = 1, for u ≥ 0
= 0, for u < 0 (17)

Ramp function r(t),

r(t) = t, for t ≥ 0
= 0, for t < 0 (18)

S[r(t)] = R(u) = u, for u ≥ 0
= 0, for u < 0 (19)
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Exponential ramp function e(t),

e(t) = 1 − e−t/τ , for t ≥ 0
= 0, for t < 0 (20)

S[e(t)] = E(u) =
u/τ

1 + (u/τ)
, for u ≥ 0

= 0, for u < 0 (21)

Gaussian Pulse g(t),

g(t) = exp{−a2(t− t0)2}, for t ≥ 0
= 0, for t < 0 (22)

S[g(t)] = G(u) =
√
π

2au
erfc

[
1

2au
− at0

]

× exp

{(
1

2au

)2

− t0
u

}
, for u ≥ 0

= 0, for u < 0 (23)

In (23), erfc[.] is the complementary error function, and g(t) is a
Gaussian pulse with the spread parameter a and unity peak amplitude
positioned at the time instant t = t0. The exponential ramp function
e(t) is shown in Fig. 1a as a function of normalized time t/τ , and its
Sumudu transform E(u) is shown in Fig. 1b as a function of u/τ . The
two plots in Fig. 1 are of a similar time variation. The Gaussian pulse
g(t) is plotted in Fig. 2a as a function of normalized time t/∆T , and
its Sumudu transform G(u) is plotted in Fig. 2b as a function of u/∆T .
The spread parameter for the Gaussian pulse is a = 2

√
π/∆T , where

∆T is the nominal duration, and t0/∆T = 1.

3. SOLUTION OF MAXWELL’S EQUATIONS

Laplace transform method has been used for solving Maxwell’s
equations based on transient excitation functions [12]. Here, we shall
apply the Sumudu transform for solving the problem of transient
propagation in an unbounded lossy medium with conductivity σ > 0.

Let a planar, transverse electromagnetic (TEM) wave propagate
in the direction z in a lossy medium with constant permittivity ε,
permeability µ, and conductivity σ. The electric field vector E and
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Figure 1. Exponential-ramp function e(t) (a), and its Sumudu
transform E (b).

the magnetic field vector H are related to one another by Maxwell’s
equations,

∇× E = −µ∂H
∂t

, (24)

∇× H = ε
∂E
∂t

+ σE. (25)

If the electric field vector is polarized along the x direction such
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Figure 2. Gaussian pulse g(t) with nominal duration ∆T (a), and its
Sumudu transform G(u) (b).

that E = Ex(z, t) and the magnetic field H = Hy(z, t), the Maxwell’s
equations given in (24) and (25) yield the following pair of differential
equations,

∂Ex

∂z
+ µ

∂Hy

∂t
= 0, (26)

∂Hy

∂z
+ ε

∂Ex

∂t
+ σEx = 0. (27)
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With the help of the Sumudu transform property

S

[
dnf(t)
dtn

]
=
F (u)
un

− f(0)
un

− · · · − d(n−1)f(0)
u

, (28)

the Sumudu transform of (26) and (27) with respect to t results in the
differential equations

∂F (z, u)
∂z

+ µ
G(z, u)

u
− µ

H(z, 0)
u

= 0, (29)

∂G(z, u)
∂z

+ ε
F (z, u)

u
+ σF (z, u) − ε

E(z, 0)
u

= 0, (30)

where F (z, u) = S[Ex(z, t)] and G(z, u) = S[Hy(z, t)]. In order to
eliminate G(z, u) and obtain a differential equation for F (z, u) only,
take the partial derivative of (29) with respect to z,

∂2F (z, u)
∂z2

+
µ

u

∂G(z, u)
∂z

− µ

u

∂H(z, 0)
∂z

= 0 (31)

Upon elimination of G(z, u) an ordinary inhomogeneous differ-
ential equation for F (z, u) is obtained in which u enters only as a
parameter,

∂2F (z, u)
∂z2

−
(µε
u2

+
µσ

u

)
F (z, u) =

µ

u

[
∂H(z, t)

∂z

]
t=0

− µε

u2
E(z, 0)

(32)

From (20), one obtains the relationship,[
∂H(z, t)

∂z

]
t=0

= −ε
[
∂E(z, t)

∂t

]
t=0

− σ[E(z, t)]t=0. (33)

Insertion of (33) into (32) yields

∂2F (z, u)
∂z2

−
(µε
u2

+
µσ

u

)
F (z, u)

= −
(µε
u2

+
µσ

u

)
E(z, 0) − µε

u

[
∂E(z, t)
∂z

]
t=0

(34)

Let us assume that the following initial conditions are known,

lim
t→0

E(z, t) = f0(z), lim
t→0

∂E(z, t)
∂t

= f ′0(z), (35)
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where the initial condition E(z, 0) = f0(z) means strictly the limit of
E(z, t) as t → 0. With the help of the substitution

γ2 =
µε

u2
+
µσ

u
(36)

we obtain finally the differential equation

d2F (z, u)
dz2

− γ2F (z, u) = −γ2f0(z) −
µε

u
f ′0(z). (37)

The right side of (37) can be defined by the function W (z, u),

W (z, u) = −γ2f0(z) −
µε

u
f ′0(z), (38)

so that (37) can be expressed as follows,

d2F (z, u)
dz2

− γ2F (z, u) = W (z, u). (39)

The general solution of (39) is composed of two parts:
complementary function Fc(z, u) that is a solution of the differential
equation

d2F (z, u)
dz2

− γ2F (z, u) = 0, (40)

and particular solution Fp(z, u) of (39). The two solutions are of the
forms,

Fc(z, u) = A(u)eγz +B(u)e−γz (41)

Fp(z, u) =
eγz

2γ

∫
e−γzW (z, u) dz +

e−γz

2γ

∫
eγzW (z, u) dz (42)

Consider the boundary condition

lim
z→0

E(z, t) = E(0, t) = f(t), t ≥ 0, (43)

and the assumption that for z > 0, the wave f(t) is traveling in a lossy
medium with conductivity σ > 0. In this case, one obtains from (41)
A(u) = 0 and

F (0, u) = f(u) = S[f(t)] = B(u). (44)
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With the substitutions a = 1/
√
µε and b = σ/2ε, the exponential

function e−γz/γ can be expressed as follows [12]:

e−γz

γ
= a

∫ ∞

z/a
e−btJ0

(
b

a

√
z2 − a2t2

)
e−t/u dt (45)

where J0(.) is the Bessel function of order zero. Differentiation of (45)
with respect to z yields:

e−γz = e−
b
a
ze−

1
au

z − a

∫ ∞

z/a
e−bt ∂

∂z
J0

(
b

a

√
z2 − a2t2

)
e−t/u dt. (46)

By using the substitutions ν = t/u, and dt = u dν, the integral in (46)
reduces to the Sumudu transform of the function Φ(z, ν),

e−γz = e−
b
a
ze−

1
au

z − au

∫ ∞

z/au

[
e−b(uν) ∂

∂z
J0

(
b

a

√
z2 − a2(uν)2

)]
e−ν dν

= e−
b
a
ze−

1
au

z − auS[Φ(z, ν)] (47)

where the function Φ(z, ν) is defined as

Φ(z, ν) =

{
0, for 0 < ν < z/a

e−bν ∂
∂zJ0

(
b
a

√
z2 − (aν)2

)
, for ν ≥ z/a

(48)

Based on (41), (44), and (47), the Sumudu transform of the
desired solution for the electric field strength E(z, t) can be expressed
as follows:

F (z, u) = F (u)e−γz

= F (u)e−
b
a
ze−

1
au

z − auF (u)S[Φ(z, ν)] (49)

Consider the following properties of the Sumudu transform [6]:

S[f(t− t0)] = F (u)e−t0/u (50)

S[f1(t) , f2(t)] = uF1(u)F2(u) (51)

where the star (,) denotes convolution. Now, the inverse Sumudu
transformation of (49) yields the solution

E(z, t) = e−
b
a
zf(t− z/a)

− a

∫ ∞

z/a
f(t− λ)e−bλ ∂

∂z
J0

(
b

a

√
z2 − (aλ)2

)
dλ (52)
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Figure 3. Electric field strength E(ζ, θ) due to an exponential-ramp
function (a), and its Sumudu transform F (ζ, θ)(b). The excitation
function is applied at the boundary of a lossy medium, i.e., sea surface,
with the ratio 2ε/σ = τ . The plots hold for the normalized distance
ζ = 0, 1, 2, and 3.

With the change of variable β = t− λ, (52) becomes

E(z, t) = e−
b
a
zf(t− z/a)

− ae−bt

∫ t−z/a

0
f(β)ebβ ∂

∂z
J0

(
b

a

√
z2 − a2(t− β)2

)
dβ (53)

The solution E(z, t) given in (53) can be expressed in terms of a
normalized time variable θ and a normalized space variable ζ for the
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Figure 4. Electric field strength E(ζ, θ) due to a Gaussian pulse of
peak amplitude unity centered at t0/∆T = 1, and nominal duration
∆T = 0.354 ns (a), and its Sumudu transform F (ζ, θ) (b). The
Gaussian excitation function is applied at the boundary of a lossy
medium, i.e., sea surface, with the ratio 2ε/σ = ∆T . The plots hold
for the normalized distance ζ = 0, 1, 2, and 3.
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convenience of numerical computation. Consider the substitutions

θ = bt =
σ

2ε
t; ζ =

b

a
z =

σ

2

√
µ

ε
z; η = bβ =

σβ

2ε
(54)

and the following properties of the Bessel functions:

Ip(x) = (i)−pJp(ix), p = 0, 1, 2, . . . , (55)
d

dx
I0[f(x)] = I1[f(x)]

df(x)
dx

, (56)

where Ip(.) is the modified Bessel function of order p. Based on (54)–
(56), one obtains the normalized form for the electric field strength
propagating in the lossy medium with conductivity σ > 0:

E(ζ, θ) = e−ζf

(
2ε
σ

(θ − ζ)
)

+ ζe−θ

∫ θ−ζ

0
eηf

(
2ε
σ
η

) I1

(√
(θ − η)2 − ζ2

)
√

(θ − η)2 − ζ2
dη (57)

The solution for the associated magnetic field strength H(ζ, θ)
can be derived from either (26) or (27). Detailed derivation of
H(ζ, θ), based on the Laplace transformation method, is given in
[18]. General solutions for E(ζ, θ) and H(ζ, θ) for electric as well as
magnetic transient excitation functions are derived in [14] based on the
modification of Maxwell’s equations.

Analogous to (57), the Sumudu transform given in (49) can also
be expressed in terms of normalized time variable θ = bu and space
variable ζ = bz/a for the convenience of numerical computation and
plotting,

F (ζ, θ) = S[E(ζ, θ)] = e−ζF

(
2ε
σ
θ

)
e−ζ/θ

+ ζe−θ

∫ θ−ζ

0
eηF

(
2ε
σ
θ

)
e−(θ−η)/θ

I1

(√
(θ − η)2 − ζ2

)
√

(θ − η)2 − ζ2
dη

(58)

Plots of the electric field strength E(ζ, θ) due to the exponential-
ramp function f(t) = e(t) given in (20), applied at the boundary of
a lossy medium with the ratio 2ε/σ = τ , are shown in Fig. 3a for
the normalized distances ζ = 0, 1, 2, 3, and 10. At the boundary where
ζ = 0, the electric field strength E(0, θ) = e(θ). The corresponding
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Sumudu transform F (ζ, θ) of the electric field strength E(ζ, θ) is shown
in Fig. 3b. According to the plots in Fig. 3, E(ζ, θ) = F (ζ, θ) = 0
for θ < ζ, and for θ ≥ ζ, the electric field E(ζ, θ) and its Sumudu
transform F (ζ, θ) have similar characteristics for the different values
of normalized distance ζ.

Plots of the electric field strength E(ζ, θ) due to a Gaussian
pulse excitation function g(t) given in (22), with a = 2

√
π/∆T ,

∆T = 0.354 ns, are shown in Fig. 4a, for the normalized distances
ζ = 0, 1, 2, 3, and 10. The lossy conducting medium in which the
Gaussian pulse is propagating is seawater with relative permittivity
εr = 80, permittivity ε = 705 × 10−12 F/m, and conductivity σ = 4
S/m. In this case, the ratio 2ε/σ = ∆T in (57). The corresponding
Sumudu transform F (ζ, θ) of the Gaussian electric field strength
E(ζ, θ) is shown in Fig. 4b.

According to Fig. 3 and Fig. 4, the set of plots for the solution
E(ζ, θ) given in (57) and the plots for the Sumudu transform F (ζ, θ)
given in (58) reveal equal information regarding the characteristics of
transient-wave propagation in a lossy conducting medium. In this case,
performing an inverse Sumudu transform to obtain the time-domain
solution E(z, t) from its Sumudu transform F (z, u) is a redundant
step for the purpose of investigating the problem of transient-wave
propagation in lossy media.

4. CONCLUSIONS

The origin of the Sumudu transform is traced back to the classical
Fourier integral. The Sumudu transform is a convenient tool for
solving differential equations in the time domain without the need
for performing an inverse Sumudu transform. For transient excitation
functions, the time-domain solution of Maxwell’s differential equations
and its Sumudu transform yield equal information regarding the
phenomenon of wave propagation. This property is referred as the
Sumudu reciprocity which is useful in engineering applications that
involve solving differential equations.
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